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On the strong local simple connectivity

“of the decomposition spaces of toroidal decompositions*

by
Steve Armentrout (Iowa City, Iowa)

1. Imtroduction. A topological space X is strongly locally simply con-
nected if and only if each point of X has arbitrarily small simply con-
nected open neighborhoods.

An upper semicontinuous decomposition G of E* is a toroidal de-
composition of B* if and only if there is a sequence M, M, My, ... of
compact 3-manifolds-with-boundary in F* such that (1) for each 7,
My, CInt M; and each component of M, is a solid torus (cube with one
handle) and (2) g is a non-degenerate element of & if and only if ¢ is a non-

e
degenerate component of (1| ;.
i=0

The main result of this paper is that the decomposition spaces of
a certain class of pointlike toroidal decompositions of B are not strongly
locally simply connected. We shall now state in greater detail the main
result of this paper. ‘

A toroidal decomposition & of E*® is simple if and only if, in addition
to the conditions deseribed previously, (1) M, is a solid torus T, and (2)
if 1=10,1,2,.. and T, is any component of M;, T, is polyhedral and
the components of M.y in T, form a chain of solid tori circling T,. We
denote by m, the number of solid tori in this chain, and by . the number
of times the chain circles T,.

Let @ be a pointlike simple toroidal decomposition of E* such that
for each index a, m, < 2n,. It follows from the results of [4] and essentially
from [13] that in this case, the associated decomposition space is topologi-
cally distinet from JZ° In this paper, we shall establish the following
stronger result: i )

For each such decomposition G of B, the associated decomposition space
is not strongly locally simply connected.

Tn Section 3 of [7], Bing describes an interesting toroidal decom-
position @ of E* such that the associated decomposition space P& is

* This research was supported in part by National Science Foundation Grant.
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topologically distinet from E° One corollary of the main result of this
paper is that E*/@ is not strongly locally simply connected. In [4] there
is-described a toroidal decomposition of E® into tame arcs and one-point
sets such that the associated decomposition space is not homeomorphic
to B®. It follows from the results of this paper that this decompositioh
space also fails to be strongly locally simply connected. Another corollary
deals with the (m,n)-spaces studied by Sher [13]. An (m, n)-space is
the decomposition space of a certain type of simple toroidal decomposition
of E® In the notation above, these have the property that for each
index a, m,= m and n, = n. Sher proved [13] that if m < 2n, an (m, n)-
space is topologically distinet from E°. It follows from the main result
of this paper that if X is an (m, n)-space associated with a pointlike
decomposition and m < 2n, then X is not strongly locally simply con-
nected.

There are now several results concerning local topological properties
of decomposition spaces. It is shown in [1] that the dogbone decomposition
space described by Bing [6] is not strongly locally simply comnected.

We define a topological space X to be locally peripherally spherical
provided each point of X has arbitrarily small neighborhoods whose
boundaries are 2-spheres (Lambert [8] uses the term “locally spherical).
Bing proved that the toroidal decomposition of Section 3 of [7] was not
locally peripherally spherical. Lambert [8] has studied locally peripherally
Spherical spaces of toroidal decompositions. Lambert [9] has shown
that the dogbone decomposition space [6] is mot locally peripherally
spherical. In [2], we study decomposition spaces in which each point

has arbitrarily small compact, locally connected, simply connected
neighborhoods.

2. Terminology and notation. If ¢ is an upper semicontinuous de-
composition of &, then E°/¢ denotes the associated decomposition space
and P denotes the projection map from E* onto E*/@. The union of all
the non-degenerate elements of @ is denoted by Hg.

A continuum K in B° is pointlike if and only if B°— X is homeomorphic
to the complement in #* of any one-point subset. By a poinilike de-
composition of E® is meant an upper semicontinuous decomposition of E?
into pointlike continua. )

Suppose that = is a positive integer. The statement that M is an
n-manifold means that M is a separable metric space, each point of
which has open #-cell neighborhood. The statement that 3 is an % -mani-
fold-with-boundary means that M is a separable metric space, each point
of which has an - cell neighborhood. Suppose that M is an #-manifold-
with-boundary. If @ is a point of M, then % is an interior point of M if
and only if # has an open n-cell neighborhood. The interior of M, de-
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noted by Int M, is the set of all interior points. The boundary of M; Bd M,
is M —Int M.

Suppose that 7 is a solid torus in E®, and J is a simple closed curve
on BAT. J is trivial on B4 7T if and only if J bounds a disc on B4 T. J is
meridional on BA T if and only if J is non-trivial on BdZ but J bounds
a dise in 7. J has non-zero longitudinal component on BAT if and only
if J is neither trivial nor meridional on Ba 7. A meridional disc in T is
a dise D such that BA.D is a meridional simple closed curve on BAT and
such that IntD CIntT.

Suppose that T is a polyhedral solid torus in E® and D is a polyhedral
dise such that (1) BAD and T are disjoint and (2) D and BdZ are
in relative general position. Each component of D ~BdAT is a simple
closed curve. D intersects Bd7T mon-trivially if and only if some
component of D ~BAT is non-trivial on BdZ. D intersects BdT
meridionally if and only if some component of D ~BdZ is meridional
on BdZT. ‘

If T is a solid torus, then we denote the universal covering space
of T by T* and the associated projection map by @.

We use “~” to mean “is homotopic to”. “Cl” denotes closure.

3. Toroidal decompositions. Suppose T is a solid torus. By a chain
of solid tori in 7' we shall mean a set {Ty, Ty, ..., T} of mutually disjoint
solid tori in TntT such that (1) m > 2, (2) for each 7, T'; lies in a 3-cell
in 7, and (3) for each ¢, if TF and T, are adjacent copies of 7 and Ty,
respectively, in 7™, then T% and T%., are linked (relative to the integers)
in T ’ :

It T is a polyhedral solid torus {7y, T, ..., Tm} is a chain of solid
tori in T, it is possible to define a winding number of {T';, Ty, ..., T} in T.
This was done for chains of a certain type by Sher in [13]. A treatment

. suitable for our purposes can be obtained by slight modifications of Sher’s

treatment, or by using the universal covering space T* of Z'. In either case,
one depends heavily on an extension of Theorem 3 of [6] to the case of |
linking relative to the integers.

If, in the notation of the preceding paragraph, the winding mumber
of {Ty, Ts, ..., Tm} is n, we shall say that {Ty, Tt, ..., Tm} circles T n times.

The definitions of toroidal decomposition of E® and of simple toroidal
decomposition of E* are given in Section 1. We remark that there is no
loss in generality in assuming that, for any toroidal decomposition, the
defining sets My, M;, M,, ... are polyhedral. If they are not polyhedrz@,
we may, by [5], replace them by polyhedral ones. bl

If G is any simple toroidal decomposition of B we adopt a nota;tlonal
scheme which we shall-now deseribe and which will be followed from tt%e
beginning of Section 5 to the/esd\of the paper. Suppose than that G is

2
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a simple toroidal decomposition of E°. There is a sequence My, M, M,, ...
of compact 3-manifolds-with-boundary as described in Section 1. Let T,
denote My; T, is a polyhedral solid torus. Let Ty, T, ..., and Tm, denote
the components of M;. {Th, T4, ..., Tm,} is & chain of polyhedral solid
tori in T,, and m, > 2. Let n, denote the number of times the chain
{Ty, Tyy oy Tmo} civeles T

Suppose j is a positive integer. If ¢ iy a component of M;, then ¢ will
be denoted by T's,i...;; Where for certain positive integers mo, My, My, -,
and Mii..4_, We have that 1 <i; <mp, 1 <y < My, 1 <lg < Maggyy ooy
and 1 <4j—1 < Migpiy. The components of Myyy in Ty will be
denoted bY Tiiseiny Tiviseips -y 004 Ligpimyg,.q, Where {Tye .,
Tisannipy ooy Trntatimigy a} 18 8 chain of polyhedral solid tori in .4
and M5 > 2. Let 74y, denote the number of times this chain
cireles Tiﬂ'a.--ij'

The statement that « is an indez means that either a =0 or for
some positive integer n, g = 4,4y...4, Where 1 < i, < mp and for k= 2, 3, ...,
or n—1, 1 <ir < Mig..ips. 1I a is the index 4,4, ... in, then oi denotes
GyTy on indy aij denotes 4y4, ... inij, and so on. Hence, if o is any index,
there is a solid torus 7', and a chain {Tu, Loz, «..y Tam,t of solid tori
circling T, », times.

In [13], Sher defines (m,n)-spaces. There are the decomposition
spaces of certain toroidal decompositions of E°. The decompositions of B*
considered by Sher are simple toroidal decompositions satisfying certain
additional conditions. If m and n are integers such that m > 2 and n > ¢
then by an (m, n)-space is meant the decomposition space B*/G of a simpl
toroidal decomposition G of E® satisfying additional conditions specifie..
in [13] and such that for each index a, m,= m and f,=n.

Sher proved in [13] that if X is an (m, n)-space for which m < 2n,
then X is not homeomorphic to E®. It follows by the results of Section 3
of [4] that if @ is any simple toroidal decomposition of E® such that for
each index a, m, < 2n,, then E/G is not homeomorphic to

Throughout this paper, indices are to be computed cyclically.

4. Preliminary lemmas on tori. We need the following slight. extension
of Theorem 1 of [7).

Lemuma 0. Suppose that, in E°, T is a polyhedral solid torus and D s
a polyhedral disc such that (1) BAD and BAT are disjoint, and (2) D and
BAT are in relative general position. If J is a component of D~ BAT,
then either (1).J bounds o disc on BAT, (2) J circles BAT exactly once
meridionally and no times longitudinally, or (3) J circles BAT exactly once
longitudinally. )

Proof. Suppose J is a component of D ~BAT such that J does
not bound a disc on BAZ. By an argument in the proof of Theorem 1
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On the slrong local simple commectivity 19

of [7], J bounds a polyhedral disc D' such that IntD’ and BAT are
disjoint. Tf Int D’ C Int T, then J circles Bd T exactly one time meridionally
and no times longitudinally. If IntD’ C B*—T, then T has an unknotted
centerline and hence 7' is unknotted. Consequently, J circles Bd T exactly

_one time longitudinally. Since each component of D ~BAT that does

not bound a dise on Ba T is parallel to J, Lemma 0 follows.

Lexuma 1. Suppose that in E°, T is a polyhedral solid torus and D is
a polyhedral disc such that (1) BAD and T are disjoint, (2) D and BAT
are in relative general position, and (3) there is a component J of D ~BAT
such that J has non-zero longitudinal component. If U is a neighborhood
of T, then there is a dise D’ such that (1) BAD' = BdD, (2) D'~U=D-T,
and (3) D' and T are disjoint.

Proof. By Lemma 0, if T is a component of (BdT) ~ D, either
T bounds a dise on Bd7T, or L circles BAT exactly once longitudinally,
or L circles BdT exactly once meridionally and no times longitudinally.
Therefore J circles 7' exactly once longitudinally. Sirice the components
of (BdT) ~ D are either trivial on Bd T or parallel to J, there is a polygonal
simple closed curve on (Bd7T)—D and parallel to J. There is, therefore,
a polygonal centerline J, of T lying in IntT and digjoint from D. Let T,
De a polyhedral tubular neighborhood of J, lying in IntT and disjoint
from D. There is a piecewise linear homeomorphism 7 from E° onto E?
such that (1) h[T,] = T and (2) if either « ¢ B*—TU, or £ e BAD, h(z)=z.
Let D’ denote h[D]. It is easy to see that D’ satisfies the conclusion of
Lemma 1.

Lemma 2. Suppose that T is a polyhedral solid torus in B, m > 2,
n >0, and {Ty, Ty, ..., Tm} is a chain of polyhedral solid tori in IntT
cireling T n times. Suppose D is a polyhedral meridional disc in I such
that if §=1,2,.., or m, D and BAT; are in relative gemeral position.
Let T* denote the universal covering space of T. If m < 2n, there ewist an
integer i such that i <i <m and consecutive copies Dy and D, of D in IT*
such that either (1) some copy TF of Ti in T* intersects both Dy and Dy
meridionally or (2) there exist adjacent copies T§ of T and TF1 of Tiya,
both in T*, such that (a) T% intersects D, meridionally and (b) T, inter-
sects D, meridionally.

Proof: First we shall show that there exists a polyhedral meridional
disc B in T such that (1) BAE = BdD and (2) if j=1,2,.., or m,
then (a) B and BdZ; are in relative general position and (b) each com-
ponent of B ~BAT; is meridional on BdT; and is a component of
D~ BAT;.

We first eliminate curves of intersection of D with BdT;, BTy, ...,
and Bd Ty, that are trivial on BdT,, BdT,, ..., and BdTm, respectively.
Suppose there is a component L of D ~ BT, such thab L~0 on BdT;.

g o+


GUEST


20 8. Armentrout

Then I bounds & disc on Bd7, and there exists a component I, of
D ~ BaT, such that L, bounds a dise 4, on Bd T, such that Int 4, misses D.
Let 42 be the disc on D bounded by L,. We can replace Ay by Ao, adjust
the resulting disc slightly, and obtain a polyhedral meridional dise D"
in 7 such that (1) BAD” = BdD, (2) D" ~ BAT, has fewer components
than D ~ Bd Ty, and (3)ifj =1, 2, ..., or m, each component of D' ~ BT
i a component of D ~BdTy. A continuation of this process yields
a polyhedral meridional dise D" in 7' such that (1) BdD'= BdD, (2)
each component of D'~ BdT, is non-trivial on BdTy, and (3) if
j=1,2,.., or m, each component of D'~ BdT; is a component of
D~ BaT;.

The process described above be repeated using D' and Bd T, yielding
a dise D* having properties analogous to those described above. Additional
repetitions yield a polyhedral meridional disc E° in T such that (1) BAE®
—=BdD and (2) if j=1,2,.., or m, each component of E° ~BdT; is
non-trivial on Bd7; and is a component of D ~BdT;.

We now eliminate curves of intersection of B° with Bd T, Bd Ty, ...,
and Bd T, that have non-zero longitudinal component on Bd 7, B4 T,, ...,
and Bd T, respectively. Suppose there is a component of B ~BdAT,
which has non-zero longitudinal component. By Lemma 1, there is
a polyhedral disc E' such that BAE'= BAE’, B' and T, are disjoint,
and, except in a neighborhood of Ty w Ty w ... w T’y that misses T, B =E"
Repetition of this process yields a polyhedral meridional disc ¥ in ' such
that (1) BAE = BdD, (2) if j=1,2,..., or m, (a) B and BdT; are in
relative general position and (b) each component of B ~ BdT; is a com-
ponent of D ~BdT; and is meridional on BdT}.

Suppose now that B* is a copy of E in T* and for some j, 1 <j < m,
T%is a copy of Tyin T*, It ¥* and 7'} intersect, each component of B* ~ T%
is meridional on 77

Suppose that Lemma 2 is false. Consider n+41 adjacent copies
By, By, ..., and By, of B in T* Let T¥ be a copy of T, in T*, T§ a copy
of T, in T* linked with 7%, 7% a copy of T, in T™ linked with 7%, ...
a copy of Ty in T* linked with T5—;, and 7% a copy of Ty in 7™* linked
with T%. We regard T* as a cylinder in E? and suppose that if 0 <7< j
< n, then E; is to the left of Hj.

We note that if j = 0,1, ..., or n, there is a copy D; of D in T* such
that (1) BdD;= BdE; and (2) if ¢=1,2,.., or m, each component
of B; ~BdT¥ is a component of D; ~ BdT}.

Case 1. T7 intersects E,. As we noted above, T intersects E,
meridionally. First, I7 lies wholly to the left of E,. For if not, then 7'}
intersects ;. But this implies that 77 intersects both D, and D, meridio-
nally. Since Lemma 2 is false, this is impossible. Second, 7% lies wholly
to the left of H;. For if not, 7% intersects E,. This implies that T% inter-

%
$T)/L
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sects D, meridionally and T3 intersects D, meridionally, Since Lemma 2
ig false, this is impossible.

If T intersects H,, then it does not interseect F, and it follows, by
an argument similar to that above, that TF lies wholly to the left of E,.
Tf T% does not intersect K, it lies wholly to the left of E; and T¥ lies
wholly to the left of F,. See Figure 1.
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Let this process continue. Since m < 2n, it follows that either (a)
T% lies wholly to the left of E,_; or (b) T%, intersects Bn—;. Now con-
sider T**. Since {Ty, T, ..., Tm} circles T = times, Tt* intersects¥H,.
Now if (a) above holds, then TF* intersects both B, andl®,. This implies
that T** intersects both D,—, and D, meridionally, but since Lemma 2
is false, this is impossible. If (b) holds, then T7, intersects Dn- meridio-
nally and T3* intersects D, meridionally, but this is also impossible:
Hence Case 1 leads to a contradietion.

Case 2. T¢ les between E, and F,. By an argument similar to that
used in Case 1, we find that T% lies wholly to the left of By, T% either
intersects H, or lies wholly to the left of E;, T% lies wholly to the left
of B,, T} either intersects B, or lies wholly to the leit of B, ..., and,

By 2 Epa &

£ E, £4 K 1
R 7_* \\ “ [ ‘\\ g Ry 0.\‘) \\l
Y 1
/ ' N BB TS hi-z ! R\ Lln - h

Fig. 2

since m < 2n, T% lies wholly to the left of B,. See Figure 2. Now since
{Ty, Ty, ..., T} circles T n times, T7* lies to the right of B,. This is
impossible since T5 and T3* are linked. Hence Case 2 leads to a contra-
diction. ’
The remaining cases are similar to Cases 1 and 2. The supposition
that Lemima 2 is false leads to a contradiction, and hence Lemma 2 holds.

5. Preliminary lemmas on toroidal decompositions, Throughout the
remainder of the paper, we shall use the notation described in Section 3.

Suppose M is a solid torus. By a homoiopy centerline of M we mean
any loop in M homotopic in M to a core of M.
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LEawa 3. Suppose that a is an indez, 4 and Ay are disjoint polyhedral
meridional dises in T,, and for each index B, mg < Snp. Then some element g
of G lying in To intersects both 4, and A,.

Proof. It is clear that each homotopy centerline of 7', intersects
both 4, and 4,. By induction and the proof of Lemma 2 of [4], it follows
that there is a sequence iy, 4, is, ... Of integers such that for each j, each
homotopy centerline of Tais,..s; intersects both 4, and A4;,. Hence for
each §, Taii..;; intersects both A, and A4,. It follows that if

0= Tatigist J=1,2,3,..},

g is an element of ¢ lying in 7, and intersecting both 4, and 4,.

Suppose that « is an index. 7% denotes the universal covering space
of T,. Fach of Tu, Tz, .., ad Tom, lifts homeomorphically into ViR
Tt follows that if ¢ is an element of @ lying in T,, 4 is an inbeger such
that g C Tu, and T% is any copy of To; in 7%, then there is a copy g*
of ¢ in Tq;.

LevwmA 4. Suppose that a is am index, D is a polyhedral meridional
diso in Ty, and if 7=1,2, .o, OF May BAdTor and D are in relative general
~ position. Suppose that for some integer i, there are distinct copies D, and D,

of D in the universal covering space Ta of To such that Dy and D, inter-
sect T% meridionally. Suppose finally that for each index B, mpg << 2ms.
Then there is an element g of G in To; such that g* intersects both Dy and D,.

Proof. If j=1 or 2, let D} be a component of T% ~ D, such that
one boundary curve ps of Dj is meridional on BAT% and every other
boundary curve of Dj is trivial on BdT%. By filling in boundary curves
of DY and D distinet from g, and u,, respectively, with discs on BdT%
and adjusting slightly, we may construct disjoint polyhedral meridional
dises 4, and 4, in T%; such that if j =1 or 2, (1) Bd4; = Bd.D; and (2) if
k=1,2,.., OF Mg, and Thy is a copy of Tuy in T3, then Ty~ 4y
=T :{k g -Df .

Since for each index f#, mz < 2np, it follows by Lemma 3 that there
is an element ¢ of @ in T,; such that g* intersects both 4, and 4,. Hence g*
intersects both D; and D,.

Lmmwvia 5. Suppose that o is an indew, U is an open set in B* which
is a wwion of elements of G, and D is a polyhedral meridional disc in T,

Mg
such that (1) D n(HTﬂ) lies in a punctured disc D, lying in D~ T

and (2) for each i, D and BdT,; are in relative general position. Suppose
that, in the universal covering space- Ty of T,, there is an integer i such
that T2 intersects adjacent copies Dy and D, of D in T¥ meridionally. Then
there is a loop yo in Lo~ U such that y,~0 in T\,.

e © ' e DR ;
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Proof. By Lemma 4, there is an element ¢ of @ in T,; such that g*
intersects both D, and D,. Let z and y be points of g* ~ D, and g* ~ Dy,
respectively. Notice that ¢(z) and ¢(y) belong to D,. Let ' be the point
of D, that corresponds to . .

Observe that since g* intersects D;, g intersects D. Further, since
D ~ T,;C U, g intersects U. Since U is a union of elements of &, gC U.

Fig. 3

There is, then, an are f in T7 from @ to y such that ¢[8]C U. There is
also an are p’ in D, such that g’ joins «’ and y, and @[8']1C D,. See Figure 3.
Tt follows that if y = @[f v §], then y CTo~ U and y~+0 in T,.
Suppose M is a polyhedral 2-manifold-with-boundary in E® and 4 is
a polyhedral singular disc in E® such that (1) 4 and Bd M are disjoint,
(2) Bd4 and M are disjoint, and (3) 4 and M are in relative general
position. Lew A4° be a 2-simplex. Since A is a polyhedral singular disc,
there is a defining map f from 4° onto A such that at each point of
-4 ~'M], f is locally a homeomorphism. It follows that each com-
ponent of f7[4 ~ M] is a simple closed curve. The statement that y is
o curve of intersection of A with M means thab for some component ¥,
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of f7[4 ~ M,y =flp] If y i3 & curve of intersection of A with I,
then y is #rivial on M if and only if fly, is homotopic to 0 on M.
Suppose now that ¥ is a polyhedral solid torus in B?, 4 is a polyhedral
singular dise such that Bd4 and BAN are disjoint, and 4 and BdN are
in relative general position. Suppose y is a curve of intersection of A
with BdN, let f be a defining map for 4 as above, and suppose v, is a com-
ponent of f~[4 ~ BAN] such that y = f[y,]. Then y is meridional on
BdW if and only if fly, is homotopic on BAN, to a non-zero multiple of

some meridional simple closed curve on BdN. We shall say that v has.

non-zero longitudinal component on BAXN if and only if » is homotopic,
on BdXN, to a curve which is a non-zero multiple of a longitude times
some multiple of a meridian. Equivalently, y has non-zero longitudinal
component on Bd ¥ if and only if y is neither trivial on Bd ¥ nor meridional
on BdXN.

Leywa 6. Suppose that, a is an indew, U is a simply connected open
set in B, and D is o polyhedral meridional disc in T, such that (1)

mﬂ
D~ (| Toi) lies in a punctured disc Dy lying in D ~ T and (2) for each i,
=1

D and Bd T are in relative general position. Suppose that § is am integer
such that there exist adjacent copies Dy and D, of D in T3, adjacent copies T%
and T3isny of Toj and Tujyy, respectively, in T¥, and loops y; and y;4,
n Toj and Toiry, respectively, such that (1) y3+0 in Ty and v;~+0
i Toyyn, (2) Dy intersects T meridionally and D, intersects T2
meridionally, and (3) each of y; and piy, lies in U. Then there is a loop v
i Lo~ U such that y+«0 in T,.

Proof. Let 4 be a polyhedral singular disc in U bounded by y; and
in general position relative to BdT,. ’

Suppose that there is a curve of intersection y of 4 with Bd T, such
that y has non-zero longitudinal component. Then yC U ~ T, and
ya~0 in T,.

Suppose then that each curve of intersection of 4 with BdT, is
either trivial or meridional on Bd 7,. Let 4° be a 2-gimplex and let f he
defining map for 4, from A° onto 4, locally a homeomorphism at each
point of f4 ~BAT,]. Let E® be the closure of the component of
A°~f7{4 ~ABAT,] that contains BAA® and let B be fLE"); fLB] is
a singular punctured disc. Since each curve of intersection of A4 with Bd 7,
is either trivial or meridional on BdT.,, there is a singilar punctured
disc B* in T7 such that B* has as boundary the copy yf of 9, in T
and E* covers B once. Let y¥.; denote the copy of yyuy in Thyyy.

Now we shall prove that %, intersects B*. Since y741 is compact,
there is a polyhedral dise ' in 7* such that (1) BAF CBA T* and BdF~0

on BdT3, and (2) F and y¥,, are digjoint. Construct a singular disc as

\
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follows: If u is a boundary curve of E* such that u~0 on BdT¥, then
fill in p with a singular dise 8, on BAZ7 and attach 6, to E*. If u is
a boundary curve of E* such that u~0 on Bd T3, then ux is homotopic,
on BAT%, to seme multiple of BAF. For such a curve g, if u~%k-(BdF)
on BATZ, construect a singular dise 6, from (1) a singular annulus on
Bd T having as boundary curves g and k-(BdF) and (2) a singular disc
lying in F and having as boundary k- (BAF). Then fill in x with §,. This
yields a singular disc lying in #* v (BATZ) v F and a slight adjustment
yields a polyhedral singular dise B’ such that (1) BAE' = 7, (2) &' CInt T,
and (3) E’ lies in F* together with a small neighborhood of F v BdT%
migsing y741. In particular, since y;C Ty and y;~0 in Ty, and
21 C Togrny and yj217-0 in Tyyeq then yF and yf., are linked. It follows
that y3. interseets E*.

Now we shall show that yf intersects D,. Since D, intersects T2
meridionally, there is a component D; of D; n T% such that Di is
a punctured disc with one, and only one, boundary curve non-trivial
on BdTy;. The trivial boundary eurves of D; can be filled in by singular
disc on Bd Ty, yielding a singular disc D;’ whose boundary is meridional
on Bd Te. Sinee y;+0 in T, y§ intersects Di’. But D' ~ Int 1% C D,.
Hence y7 intersects D;. A similar argument shows that y§.; intersects D,.

Let z be a point of ¥f ~ Dy, z' be the corresponding point of D,,
and y be a point of yfy1 ~ D,. Let »* be a point of B* ~ y¥,,. There is
a path A, in B* from # to 2, and there is a path 1, in y}., from #’ to y.
If Dj and Dj denote the copies of D, in D, and D,, respectively, then
since D A (Toj v Togsry)) C Dy, ©eDy and yeD;. Hence z'’ ¢ Di and
there is an are 4, in D§ from y to . See Figure 4. If y = g v 4, v 4],
it follows that y C U sinee EC U, ;11 C U, and D,C U. Clearly yC T,
and y~+~0 in T,.

LemMA 7. Suppose a is an index, A is a polyhedral singular disc such
that (1) 4 and BA T, are in relative general position and (2) 4 intersects BAT,
non-trivially but only in trivial and meridional curves of intersection, and V
is an open set in E* such that A CV. Then there is a polyhedral meridional
disc D in T, such that there is a punctured disc Dy in D~V containing

DAy _L_leai).

Proof. Since 4 intersects Bd 7, non-trivially but in no curve with
non-zero longitudinal component, there is a singular subdisc 4’ of 4 such
that (1) Bd4’ is meridional on Bd 7, and (2) every curve of intersection
of A’ with Bd T, distinet from Bd 4’ is trivial on Bd Z,. There is, therefore,
a singular punctured dise I" in A’ such that Bd4A’ is a boundary
curve of I' and every other boundary curve of I is trivial on BdT,,
and I'C T,.
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There is a polyhedral solid torus 7T, concentric with 7., lying in
Mg
IntT,, and such that | JZw CIntT.: Let W denote (IntZ.)—Ti.
i=1 !

For each boundary curve x of I' distinet from Bd4’, u~0 on BdT,
and hence x bounds a singular dise J, on Bd7,. Let I" be a polyhedral

Fig. 4

singular disc obtained by adding each such 8, to I" and then pushing d,
slightly into Int 7, so that the adjusted 4, lies in W. We may assume I
has the following properties:

(1) I"C(IntT,) v (Bd4'), 2 Ir"—-acw,
Recall that 4'CV.

By the loop theorem and Dehn’s lemma [10], [11], [14], there is
a polyhedral disc ¥ such that (1) BAE C BdT,, (2) BAE~0 on BdT,,
(3) Int B CIntT,, and (4) F lies in the union of I” and a small neighbox-
hood of the singularities of I”, the latter chosen so that B ~ T.,CV.

Clearly E is meridional in T, and we assume F and Bd 7, are in relative
general position.

my
(iul-Ta'l)hPICA"

i
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Now it will be shown that there is a component y" of B ~BAT,
such that y’ is meridional on BdT;. First, no component v of B ~nBdT,
has non-zero longitndinal component on BdT,. For if there is such
a component 7, then by Lemma 1, there is a polyhedral disc R such that
BdR = BdE, IntR CIntT,, and R is disjoint from T;. Since T and T's
are concentric, this is impossible. Hence each non-trivial component
of B ~BAT, is meridional.

Suppose that there is no meridional component of B ~ BdT,. Then
each component of B ~ Bd T, is trivial on BdZ,, and it is easy to con-
struct a singular disc B’ such that BAE = BAE and B’ C T.—IntT..
But since 7, and 7. are concentric, this is impossible. Therefore, there
is a component y’ of B ~ Bd T, such that »' is meridional on Bd T%.

Let y be a component of B ~BdT; which is meridional on BdT,
and is an innermost component of H ~ BAd T; which is meridional on B4 T..
Let E, denote the dise on & bounded by y. Each component of (Bd T,) ~
~ (Int H,) is trivial on Bd T, and it follows that the component of By ~ 7.
containing 5 is a punctured polyhedral dise having y as a boundary
curve and such that every other boundary curve of D, is trivial on Bd Z;.
Hence each boundary curve of D, distinet from ¢ bounds a dise on Bd T,
migsing y.

Let y, be a boundary curve of D, distinet from y such that if @, is
the dise on (BdT.)—y bounded by y,, Int@, does not intersect Dy. Then
add @, to D,, adjust the result to get a polyhedral punctured disc by
pushing @, slightly into Int T;, and let D, denote the resulting punctured

mﬂ .
dise. The adjustment is to be made so that D, A U Tw) CDy. If Dy has
i=1

a boundary curve distinet from y, the process above is repeated. After
finitely many repetitions, there results a polyhedral dise D’ such that

ma
BdD =y, IntD' CIntT,, D,C D', and D’ ~ (| Twi) C D,.
i=1

There is a polyhedral annulus A such that Bd4d = (BdFE) vy and
IntA CW. Let D denote A v« D’. Then D satisfies the conclusion of
Lemma 7.

6. Arrays. In order to handle a slightly complicated situation which
occurs later, we introduce configurations we call arrays. In this section,
we define them and establish an elementary property of arrays.

Suppose that a is an index, F, is a polyhedral meridional dise in T,
and if 1 <j<m,, 7, and Bd T, are in relative general position.

(1) By a basic array of type I is meant a configuration of the form

(Tay Fo)
(Tai'y -Xui)
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where 1 <7 < m, and XL,; is either (i) a polygonal loop y.; in Ty such
that ya0 in Ty, or (i) a polyhedral meridional dise Fo; in T such

Mg
that (a) there is a punctured disc F; in F,; such that Fuy A ( U1 T.i) CF,
3=

and (b) if 1 <§j < My, Fos and BdTey; are in relative general position.
We call (T, F,) and (Z.i, Xo) the top and bottom pairs, respectively,
of this array. .

(2) By a basic array of type IT is meant a configuration of the form
(Tay Fa)
(Taty Xas)  (Tatirny Lati+n)

where 1 <4 <, and X,; is either a polygonal loop y.; in Tu as above
or a polyhedral meridional disc Fy; in To; as above, and Xy satisfies
analogous conditions relative to Zyiy. We call (T4, F.) the fop pair,
and (Tui; Xoi) and (Logrn, Xogrn) the bottom pairs, respectively, of
this array.
By a basic array is meant either a basic array of type I or one of
type IL.
Suppose that
(T, Fo)
(Ta'ly -Xa'i)
is a basic array of type I. This array satisfies case I if and only if there
exist adjacent copies F, and F of F, in T% and a copy T% of Tu in T*
such that T% intersects both ¥ and F2 meridionally.
Suppose that
(Tay Ia)

(Taiy Xai)  (Tatsrnyy Xogrny)

is a basie array of type II. This satisties case IT if and only if there exist
adjacent copies F and F* of F.in T7 and adjacent copies T%; and T;’ml)
of To; and T4y, respectively, such that 7% intersects F} meridionally
and T%;4q) intersects F2 meridionally.
Suppose that « is a positive integer. By an array of n-41 rows we
mean a diagram of #41 non-empty rows such that for some index a,
(1) the top row is
(T, Fo)

where ¥, is a polyhedral meridional dise in 7, as above,
(2) the first two rows form a basic array,

(3) if 1 < %< nt1, each entry on the kth row is a bottom pair for
some basic array whose top pair is an entry on row %-—1,
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4) it 1<k<n+l and (Lois.ir) Xaizip.ix) 1S an entry on the
kth row, there is one and o>nly one entry (Tunss.sp; Xags.ire) O the
(k—1)st row such that (Taonis.iprr Xeniseizn) A (Losinnies Xaiyigis)
are top and bottom pairs, respectively, of some one basic array, and
Xuiyis. iz 18 necessarily a meridional dise in Tusg,...ip,,

B) it 1 <k<n and (Tais..ipy Fapnie.p) i8 an entry on the kth
row where Foii,...q; is @ meridional dise in Togs..ip, then (Lui..ins Fasrion.ix)
is the top pair of some basic array whose bottom pair or pairs appear
on row {k+1), and

(6) each basic array of type I that appears in the diagram satisfies
case I, and each basic array of type IT that appears satisfies case II.

Suppose now that A is an array of n41 rows, with first row (7., F.),
and U is an open set in B°. U is admissible with respeci 1o U if and only
if the following conditions hold:

(1) If (T, yp) is an entry of U, then y5C U.

(2) Xt (Ts, Fy) is an entry of 9, then the punctured disc F associated
with Fs lies in U.

LeMMA 8. Suppose a is an indem, U is a simply connected open set
in B n is a positive integer, and A is an array of n-1 rows, admissible
with respect to U, with first row (Ta, Fa). Suppose that if Tasyg,. . i8 @ solid
torus on row n-+1 of A, there is a polygonal 100D Yojijgtn M Topygyois N U
such that y;i,..5%0 0 Tojgyge- Then there is a polygonal loop v, in
To ~ U such that y,+~0 in T,.

Proof. Suppose that
(Lairiponiin-1s Fairianina)

(Toitainaing Xajsistdnin)  (Lotrinin-stintn) s Xanriguinatint)

is & subarray of U of type II. Tf % = j, or j»-+1, there exists, by hypothesis,

a polygonal 100D ¥s..jpsk I Tupigpmiaat ~ U SUh that yapfy..snsr®0

I Tojijgentn-are Sinee A is admissible with respect to U, there is a punctured
Maf1fae.dn-1

disc Fy in Fojijejay ™ U that containg Fupse.ge, ~ (| Tingani)e

i=

Since the basic array considered satisfies case II, then by Lemma &,
there Is a polygonal 100P ¥jsp.ijny I Lajsjainsg © U 50CH that pjyg.iu a0
in Tahiz---:in-x-

Now suppose that

(Tahhma‘n-u Fah?‘z~--7‘n—1)

(Tdﬁ]'zn-:fn—x:fn ’ Xuilh---?'n—ﬂ'n)
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is & subarray of U of type I. Since U is admissible with respect to U,
there is a punctured disc Fy in Fups..j-f that containg Fajifaunine O

Majfifaeesin-1 . ' . s ope
~( U i} Tojijs..d). Since the basic array considered satisties case I,

=1
then by Lemma 3, there is a polygonal 100D ¥is.ju-y 0 Toppyge, n U
such that ypjp.jney ™0 I Tojygy. ey -

Hence, in either case considered, there i a polygonal loop Y ifaednay
in Tojijatns ™ U such that ysg,.5,-,+0 in Topris.ins- Now let A’ denote
the array obtained from U by deleting the last row of 2. A’ satisfies
hypotheses analogous to those assumed for % so the process above may
be repeated.

It follows by induction that there is a polygonal loop yein Ton U
such that y,~0 in T,.

7. The main lemmas. In this section we shall establish the main
lemmas for the proof of Theorem 1.

Lmwwia 9. Suppose that o is an index and U is a simply conmected
open set in B® such that U is a union of elements of G. Suppose that A is
o polyhedral singular disc in U such that (1) Bdd and T, are disjoint,
(2) 4 and BAT, are in relative general position, and (3) A4 intersects BT,
non-trivially. Then there is a polygonal loop y. in Ty~ U such that
Ya®0 in T,. )

Proof. Suppose first that there is a curve of intersection v of 4
with BdT, such that y has non-zero longitudinal component. Then
yCTyn U and y+0 in T,.

Hence, in the remainder of the proof, we ghall suppose that each
non-trivial curve of intersection of A4 with BAT, is meridional. Let V¥ be
an open set such that ACV, VC U, ¥ is a union of elements of @, and
V is compact. Such an open seb may be constructed as follows: P[U]
is open in B°/@ since U is a union of elements of @. P[4] is compact and
P[4]CP[U). Since P[Hg] is a 0-dimensional set in BP|@, there is an
open set W such that P[A]C W, WC U, Wis compact, and Bd W is
disjoint from P[Hg]. Let V denote P W]; since 7 = P{W], it is easy
to see that V has the properties stated above.

By Lemma 7, there is a polygonal meridional disc F, in T, such

m,
that there is a punctured disc F% in F, AV containing F, n (Ua Tui)-
=1

Now there are two cases to be considered. By Lemma 2, either (1) for
S0Me 4y, 1 <4y < Mg, s0Mme copy T, of Ty, in T* intersects Hwo adjacent
copies 7 and F of F, in T*, or (2) for some i1, 1 <4y < m,, some adjacent
copies T and T,y of T,y and Togir1y, Tespectively, in T%, and some
adjacent copies F. and F2 of ¥, in T%, T%, intersects ¥ meridionally
and T3 1y intersects B2 meridionally. Tf (1) holds, then by Lemma 5,
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there is a polygonal loop y, in T, ~ U such that y,~+0 in T,. Hence we
shall suppose (2) holds.
We have begun the construction of an array. At this point, we have.
only the first row:
(Tay Fo) .

Suppose ¢ =1; or ¢;+1, and consider ¥, and To. Either (3) some
curve of intersection of F, and BdT, has non-zero longitudinal com-
ponent, or (4) each curve of intersection of F, and Bd T, is either trivial
or meridional. Suppose first that (4) holds. Recall that there is a punctured

Mg
dise F° in P, such that FoCV and F, (iL;JlTai) CF.. Tt follows that

P, T,yCV. Hence by Lemma 7, there is a polyhedral meridional dise
Py in T,y such that (i) if i=1,2,.. 0r My, Fy and Bd T, are in
relative general position, and (ii) there is a punctured disc Fy, in FognV

m,
containing Foy M ( Lj Togi). It follows that regardless of whether (3) or
i=1 .

(4) holds, either (5) there is a polygonal 100p ye in Zog~ U such thab
Vg0 In T,y or (6) there is a ‘disc F,y as desceribed above.

We may now construct the second row of the array. If there exist
polygonal 100Ps ¥asy and Yas+1), the second row is

(Tatys Yotrr)  (Tatizrn)s Votitny) -

If there exist a loop and a dise, it is the appropriate one of

(Toiy o) (Lattryy Fagir+n)
and
(Tui“ Faﬁ) (Ta(i1+1): 7a(i1+1)) .

In the remaining case, there exist two discs, and the second row is
(Tatny Faiy) (Tt Fatiatn) «

If the firgt of the three alternatives described in the preceding
paragraph holds, the process terminates. Otherwise, for each pair of the
type (Log, Fog) on the second row, we repeat the preceding procedure.
and construct a third row.

Suppose then that ¢ is a positive integer and the (7-+1)st row has
been constructed and is non-void. Each pair on the (f41)st row is eithgr
of the type (Tuggs.asr Vamsgs.r) WHET® Yaggs.q 18 @ polygonal loop in
Tags.s © U, non-trivial in Toggp.q, 0F of the type (Topgs..ars Fonge.a)
where Fogg,..q 18 2 meridional dise in ZTlug,g,..q having certain properties.
If for each pair on the (¢4-1)st row, the second term is a loop, the process

© terminates. Otherwise, for each pair whose second term is a disc, the

process described previously is used to obtain entries for the (¢--2)nd row.
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Either this construction 'terminates or it continues indefinitely.
Suppose that it continues indefinitely. For each positive integer ¢, let X,
be the union of all the solid tori appearing on the ¢-th row. Then for
each ?, K; is a compact non-empty set, and Ky, C K;. Let K denote
ﬁ K; K is compact, non-empty, and is a union of sets of G. Further,
i=1 .

K C . To establish this, suppose that g is an element of @ contained in K,
There exists a sequence T., Tupyy Tupsay -.. Of s0lid tori such that (1) for

each 7, Tyj,;,..5, appears on row -1 and (2) g=rﬂ1 Totigeir- Now for

each 7, the second term of the pair of row 41 whose first term is Lottt
is necessarily Flajj,..s,, because if that second term . is Vajijadry then
there are no tori on row r4-2 that lie in T.yy,.5. Hence each of Ty T,y
Tejipny - intersects V and therefore g intersects 7. Since ¥V C U and U is
a union of elements of &, then ¢ C U. Consequently, K C U.

Since K is compact, there is a positive integer # such that K, C U.
Let us consider a solid torus T that appears on row 7. If Tp intersects X,
then T, C U and hence there is a polygonal loop ys in Ts ~ U such that
)15'1‘-/0 in T, B

Now suppose T does not intersect K. Then there exists a positive
integer s such that s >r and there is no solid torus in row s that lies
in Tp. If not, then for each positive integer s, K, intersects T and hence I{
intersects T5. This is contrary to supposition, so such an s exists. Liet & be
the least positive integer s such that s > r and no solid torus on row s lies
in Tp. It is necessarily true that if 7T, is a solid torns-in row. k—1 that
lies in T}, the second term of the pair of row % —1 whoge first term is Ty is
a polygonal Ioop v, in T; ~ U such that y#+~0 in T;. By Lemma 8, there
is a polygonal loop vz in Ty ~ U such that yp~0 in T,

Suppose, on the other hand, that the construction above terminates,
and let 7 be the positive integer such that it terminates on row . If T is
a solid torus on row 7, then necessarily there exists a polygounal loop y;
in Ty~ U such that ys+0 in T, : '

In either case, consider the array consisting of the first » rows
constructed above. This array satisties the hypothesis of Lemma 8. Hence
there exists a polygonal loop vain Ty ~ U such that y,~0 in T,.

Lewya 10. Suppose that o is an index and if i=1,2,.., or My,
4i is a polyhedral singular disc in B such that if 9=1,2,.., or mg,
- (1) Bd4;C Ty and (Bddy) =0 in Tai, (2) As and BAT, are in relative
general position and each ourve of intersection of Ay with BAT, is trivial

. My -
on BAdT.. Then there is a polygonal loop v i Ty such that y C Ty~ (| 45)
=1

and y circles T, n, times.
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Proof. Let 4° be a 2-simplex. If i =1, 2, ..., or mq,, lot f; be a de-
fining map for A; such that f; is a local homeomorphism at points of
fi'[di ~BAT,). Let A3 be the component of A°—f;[4; ~BaT,] that
contains BdA°’. Let 4} denote fi[A%).

Now we shall show that if ¢ =1,2, ..., or mq, 47 and Bd 4,4, inter-
sect. Suppose that for some 4, 4; and Bdd;y, ave disjoint. Let A{’ be
a singular disc obtained as follows: If 4 is a boundary curve of A distinet
from Bd4;, then u CBdT, and u~0 on BdT,. For each such p, a,fid
to 4; a singular disc on Bd T, bounded by . The resulting singular dlsg
will be denoted by A4;'. Since 4; and Bd ;4. are disjoint, it follows that A;
and Bd4;;, are also disjoint. However, (1) Bd4; = Bd4;, (2) Bd4;C Ty
and BdAcf‘l-’O in T,;i, and (3) BdAi.H C Ta({.ﬂ) and BdTQ(i_;.l)ﬁiJO in T,z(i+1).

Let T denote the universal covering space of T,, and let T%; and
T¥i+1 be adjacent copies of T and Tuiry, respeetively, in ’L{’:‘. .Then T;:‘f
and T¥..y are linked in T%. A;" lifts to a singular disc Q.i with BdQ;
the copy of BdA; in T%;. Since Bd A1 C Toiyy, Bd Ay, lifts to aJuloop
y¥i1 in T¥ipn) such that y3a~~0 in T3py. It then fol}ows that Q}' .a,nd
v¥y1 intersect. Since A;" and Bd4;;, are disjoint, this is a contradiction.
Hence if 1=1,2,..., or mq, 47 and Bd4;,; intersect.

Fig. 5

For each i, let p; be a point of 4; ~ Bddy;. Now for each i,fl[Aé]
is a punctured disc having Bd4° as one boundary compone!olt,‘ I3 gl),-_%)
is a point of BAA°, and fi'(ps) efi [4i] Th(zre is an arc f; in ]:i [43]
joining f7 Y (p:—y) and f7'(ps). Let f; denote fi[f3]; i is a path on A; from

. See Figure 5.
b It,th; denote %1 U Ba .oV Bmy; v is to be regarded as a loop. We
shall show that y circles T, m, times. Since the chain {Tu, Loy <o) Tam,}
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circles T, n, times and for eaeh 4, Bd4;~0 in T, it follows that
{Bd4,, Bdd,, ..., Bddy,} circles T, 1, times.

Now congider the universal covering space 7% of T,. Recall that
for each 7, 4; lies on a singular dise 4" in T,. Let 4%, 4%, ..., and A%,
denote adjacent copies, in T3, of 41, 45, ..., and 45 , respectively. Let
P 15 D3y ..y and ph, —1 denote the copies of pu, 1, Ps, ..., and Ding—1,
respectively, on Bd4f, Bd4%, Bd4f, ..., and Bdd},, respectively. Let
P, denote the copy of pn, on 4. :

If 1 < i < mq, Bs lies on 45 and hence §; lifts to a path g¥ from pt,
to pi. Similarly, 8, and 5, lift to paths g¥ from P, to pf and B3, from
Pme-1 tO P, Tespectively. Then gF v g w ... v Bk is a path in 77 from
P, 10 ph. Since {Bd 4y, Bdd,,...,Bdd,,} circles T, n, times, it follows
that if 4 is any are in T% from p3, to pht, ¢[A] circles T, n, times. Since
pIfT v pE v v Bh =y, y circles T, n, times.

Levma 11. Suppose a is am index, i =1,92,.., or m,, and Y 18
a polygonal loop in Tu; such that yi~+0 in To;. Suppose yi bounds a polygonal
singular disc A; in B such that (1) A; s in general position relative to each
of BAT: and BA L1y and (2) each curve of intersection of A; with Ba T,
is trivial on BAT,. Then A; intersects Bd Toirry non-trivially.

Proof. Suppose that each curve of intersection of A; with Bd Togiryy
is trivial on Bd Tosry. If 4 is a curve of intersection of 4; with Bd T,
let §, be a singular dise on BT, with boundary u. For each such g,
replace the singular subdise of 4; bounded by u by 8,. It 1 is a curve
of intersection of 4 with Bd Ty, let 6, be a singular dise on Bd Togiv
bounded by i For each such 1, replace the singular subdisc of 4; bounded
by 2 by 4. There results a singular disc 4} with boundary y;, lying in 7,
and disjoint from IntT.uiq. Adjust 47 slightly into 7. and slightly
away fr_om Tair1y- If £2; denotes the resulting dise, then 2; hasg boundary y;,
Q;CIntT,, and Qs and Tuyey are disjoint.

Let T%; and T¥:41 be adjacent copies of 7,; and T4y, Tespectively,
in T%. By definition, T% and T34 are linked. Let Q¥ denote the copy
in T of Q; such that the boundary of QF lies in T%. Since yirre 0 in Ty
and O; has y; as its boundary, it follows that Q% intersects Ty Sinee £
and Touiyy arve disjoint, this is a contradiction. Hence Lemma 711 i8
established. .

Lmvwma 12. Suppose that o is an index, U is a simply connected open
set in B°, amd U 4s a union of elemenits of G. Buppose there exist an integer 1,
1 <4< ma, and -a polygonal 1oop yu; in To; ~ U such that YVaire 0 i Toy.
Then exisis a polygonal loop y, in To~ U such that Ya 0 in T,

) Proof. Let. 4; be a polyhedral singular disc bounded by v, lying
in U, and such that if 1 <j < May Ay Is in general position relative to
BAT. and BdT,;. If there exists a curve of intersection y of A; with

- ©
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Bd T, such that y has non-zero longitudinal component, then y is a polygo-
nal loop in T, ~ U such that y~0 in T,. If there exists no curve of inter-
section of 4; with BdT, having non-zero longitudinal component, but 4;
intersects Bd T, non-trivially, then by Lemma 9, there is a polygonal
loop y. in T4~ U such that y,~0 in T,.

Therefore we shall suppose that each curve of intersection of A;
with Bd T, is trivial on BdT,. Now consider 4; and Tyiiqy. Sinee yu+0
in T, then by Lemma 11, 4; intersects Bd Loy non-trivially, If some
curve of intersection of A; with BdZo4y has non-zero longitudinal
component on BdTyi1y, then there is a polygonal 100p yeuiy in
Tosrny » U such that yupy~0 in Tyupqy. Otherwise, by Lemma 9,
there is a polygonal 100D yepi+yy in Tieepy » U such that  yeiy~~0
in Ta(i—}-l)- ’

The argument above may be repeated using yui+1 and some singular
disc 4it1, lying in U and bounded by yuiy. After finitely many repe-
titions, we find that we need to consider only the following situation:
For each integer j, 1 <j < m,, there exists a polyhedral singular dise 4;
in U such that if y,; = Bdd;, then yo; C Toj ~ U and ye;~~0 in Ty, and
each curve of intersection of 4; with Bd 7, is trivial on BdT,. Then by
Lemma 10, there is a polygonal loop y, in T, ~ U such that y,~+0 in T,.
Hence Lemma 12 is established. :

8. The main result,

THEOREM 1. Suppose that G is a poinitlike simple toroidal decomposition
of B? as described in Section 3 and such that, in the notation of Section 3,
for each index a, my < 2m,. If ¢ is a point of B°|G belonging to CLP[Hg],
there is mo simply conmected open set W in EP|G such that ge W and W
C P[IntT):

Proof. Suppose there exists a point g of E*/G belonging to CLP[H¢]
and such that there exists a simply connected open set W in E®/G such
that g e W and W C P[IntT,). Let U denote P7[W]; since ¢ is a pointlike
decomposition of E®, then by ([12], Theorem 2.1), U is simply connected.
Clearly U C IntT,.

Since ¢ ¢ W, it follows that in B%, g C U. Further, since ¢ ¢ CLP[Hg],
then ¢ C ClHg. Now ClHg is

Ol(U {Tispngc JoJo o Jo 15 ram index}) .

Thus there exist a positive integer # and a torus Tys.:, such thab

9C Toignty, and Tyy4..4, C U
There exists, then, a polygonal loop yu in Tii.s » U such thfj\t
yu 0 in Tiy,.4, By Lemma. 12, there is a polygonal lo0p pn-1 in
Tivieipr ~ U such that yp-i0 in T4,y 16 follows by induction
3*


GUEST


36 : 8. Armentrout

and Lemmsa 12 that there is a polygonal loop v, in Ty~ U such that
0 in T, ‘

Since U is simply connected, y,~0 in U. However, U CInt7, and
yo+0 in T,. This is a contradiction and Theorem 1'is proved.

CoROLLARY 1. If @ is a decomposition of E® satisfying the hypothesis
of the theorem, then EP|G is not strongly locally simply connected. ‘

CORROLLARY 2. If m and n are positive integers, G is a pointlike simple
toroidal decomposition of B® such that E°|G is an (m, n)-space, and m < 2n,
then EP|G is mot strongly locally simply conmected.

CoroLLARY 3. Suppose that @ is the pointlike decomposition of B
described in Section 3 of [7). Then EP|G is not strongly locally simply
connected.

COROLLARY 4. Suppose that G is the poinilike decomposition described
in Section 2 of [4]. Then BP|G is not strongly locally simply connected.

9. Concluding remarks and questions. The condition, in the hypoth-
esis of the theorem above, that the decomposition G of H® he pointlike
is used only to insure that if W is a simply connected open set in H*/@,
then P[W] iy simply connected. It is known that such a proposition
holds for a larger class of decompositions than pointlike ones. In particular,
if each element of & is a compact absolute retract and W is a simply
connected open set in F'/¢, then P~'[W] is simply connected; see [3].
Therefore, by the proof of Theorem 1, we may establish the following
result. :

TeBOREM 2. Suppose G is a simple toroidal decomposition of B® imto
compact absolute retracts such that, in the notation' of Section 3, for each
index oy me < 2nq. Then FP|G is not strongly locally simply connected.

The following two question are suggested by the results of this paper.

QuEsTION 1. Suppose that G is a pointlike simple toroidal decompo-
sition of B® such that EP|G is strongly locally simply commected. Is Blg
homeomorphic to B*%

QUESTION 2. Suppose G is a toroidal decomposition of B such that B°|G
is strongly locally simply connected. Is B*|G homeomorphic to B*T
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