B. Bosbach

14

- [4] L. Fuchs, Teilweise geordnete algebraische Strukturen, Studia Mathematica, 1966.
- [5] I. Molinaro, Demigroupes residutifs, I-II, J. Math. Pures Appl. 39 (1960), S. 319-356, 40 (1961), S. 43-110.
- [6] R. Mc Fadden, Congruence relations on residuated semigroups, J. London Math. Soc. 37 (1962), S. 242-248.
- [7] K. Murata, On the quotient semigroup of noncommutative semigroup, Osaka Math. J. 2 (1950), S. 1-5.
- [8] K. L. N. Swamy, Dually residuated lattice ordered semigroups, Math. Ann. 159 (1965), S. 105-114, II Math. Ann. 160 (1965), S. 64-71, III Math. Ann. 167 (1966), S. 71-74.

Reçu par la Rédaction le 19. 3. 1968

On the strong local simple connectivity of the decomposition spaces of toroidal decompositions*

by

Steve Armentrout (Iowa City, Iowa)

1. Introduction. A topological space X is strongly locally simply connected if and only if each point of X has arbitrarily small simply connected open neighborhoods.

An upper semicontinuous decomposition G of E^3 is a toroidal decomposition of E^3 if and only if there is a sequence M_0, M_1, M_2, \ldots of compact 3-manifolds-with-boundary in E^3 such that (1) for each $i, M_{i+1} \subset \operatorname{Int} M_i$ and each component of M_i is a solid torus (cube with one handle) and (2) g is a non-degenerate element of G if and only if g is a non-degenerate component of $\bigcap_{i=0}^{\infty} M_i$.

The main result of this paper is that the decomposition spaces of a certain class of pointlike toroidal decompositions of E^3 are not strongly locally simply connected. We shall now state in greater detail the main result of this paper.

A toroidal decomposition G of E^3 is simple if and only if, in addition to the conditions described previously, (1) M_0 is a solid torus T_0 and (2) if i = 0, 1, 2, ... and T_a is any component of M_i , T_a is polyhedral and the components of M_{i+1} in T_a form a chain of solid tori circling T_a . We denote by m_a the number of solid tori in this chain, and by n_a the number of times the chain circles T_a .

Let G be a pointlike simple toroidal decomposition of E^3 such that for each index a, $m_a < 2n_a$. It follows from the results of [4] and essentially from [13] that in this case, the associated decomposition space is topologically distinct from E^3 . In this paper, we shall establish the following stronger result:

For each such decomposition G of E^3 , the associated decomposition space is not strongly locally simply connected.

In Section 3 of [7], Bing describes an interesting toroidal decomposition G of E^3 such that the associated decomposition space E^3/G is

^{*} This research was supported in part by National Science Foundation Grant.

icm[©]

topologically distinct from E^3 . One corollary of the main result of this paper is that E^3/G is not strongly locally simply connected. In [4] there is described a toroidal decomposition of E^3 into tame arcs and one-point sets such that the associated decomposition space is not homeomorphic to E^3 . It follows from the results of this paper that this decomposition space also fails to be strongly locally simply connected. Another corollary deals with the (m, n)-spaces studied by Sher [13]. An (m, n)-space is the decomposition space of a certain type of simple toroidal decomposition of E^3 . In the notation above, these have the property that for each index a, $m_a = m$ and $n_a = n$. Sher proved [13] that if m < 2n, an (m, n)-space is topologically distinct from E^3 . It follows from the main result of this paper that if X is an (m, n)-space associated with a pointlike decomposition and m < 2n, then X is not strongly locally simply connected.

There are now several results concerning local topological properties of decomposition spaces. It is shown in [1] that the dogbone decomposition space described by Bing [6] is not strongly locally simply connected.

We define a topological space X to be locally peripherally spherical provided each point of X has arbitrarily small neighborhoods whose boundaries are 2-spheres (Lambert [8] uses the term "locally spherical"). Bing proved that the toroidal decomposition of Section 3 of [7] was not locally peripherally spherical. Lambert [8] has studied locally peripherally spherical spaces of toroidal decompositions. Lambert [9] has shown that the dogbone decomposition space [6] is not locally peripherally spherical. In [2], we study decomposition spaces in which each point has arbitrarily small compact, locally connected, simply connected neighborhoods.

2. Terminology and notation. If G is an upper semicontinuous decomposition of E^3 , then E^3/G denotes the associated decomposition space and P denotes the projection map from E^3 onto E^3/G . The union of all the non-degenerate elements of G is denoted by H_G .

A continuum K in E^3 is pointlike if and only if E^3-K is homeomorphic to the complement in E^3 of any one-point subset. By a pointlike decomposition of E^3 is meant an upper semicontinuous decomposition of E^3 into pointlike continua.

Suppose that n is a positive integer. The statement that M is an n-manifold means that M is a separable metric space, each point of which has open n-cell neighborhood. The statement that M is an n-manifold-with-boundary means that M is a separable metric space, each point of which has an n-cell neighborhood. Suppose that M is an n-manifold-with-boundary. If x is a point of M, then x is an interior point of M if and only if x has an open n-cell neighborhood. The interior of M, de-

noted by Int M, is the set of all interior points. The boundary of M, Bd M, is M-Int M.

Suppose that T is a solid torus in E^3 , and J is a simple closed curve on $\operatorname{Bd} T$. J is trivial on $\operatorname{Bd} T$ if and only if J bounds a disc on $\operatorname{Bd} T$. J is meridional on $\operatorname{Bd} T$ if and only if J is non-trivial on $\operatorname{Bd} T$ but J bounds a disc in T. J has non-zero longitudinal component on $\operatorname{Bd} T$ if and only if J is neither trivial nor meridional on $\operatorname{Bd} T$. A meridional disc in T is a disc D such that $\operatorname{Bd} D$ is a meridional simple closed curve on $\operatorname{Bd} T$ and such that $\operatorname{Int} D \subset \operatorname{Int} T$.

Suppose that T is a polyhedral solid torus in E^3 and D is a polyhedral disc such that (1) $\operatorname{Bd} D$ and T are disjoint and (2) D and $\operatorname{Bd} T$ are in relative general position. Each component of $D \cap \operatorname{Bd} T$ is a simple closed curve. D intersects $\operatorname{Bd} T$ non-trivially if and only if some component of $D \cap \operatorname{Bd} T$ is non-trivial on $\operatorname{Bd} T$. D intersects $\operatorname{Bd} T$ meridionally if and only if some component of $D \cap \operatorname{Bd} T$ is meridional on $\operatorname{Bd} T$.

If T is a solid torus, then we denote the universal covering space of T by T^* , and the associated projection map by φ .

We use "~" to mean "is homotopic to". "Cl" denotes closure.

3. Toroidal decompositions. Suppose T is a solid torus. By a *chain* of solid tori in T we shall mean a set $\{T_1, T_2, ..., T_m\}$ of mutually disjoint solid tori in $\operatorname{Int} T$ such that (1) $m \geq 2$, (2) for each i, T_i lies in a 3-cell in T, and (3) for each i, if T_i^* and T_{i+1}^* are adjacent copies of T_i and T_{i+1} , respectively, in T^* , then T_i^* and T_{i+1}^* are linked (relative to the integers) in T^* .

If T is a polyhedral solid torus $\{T_1, T_2, ..., T_m\}$ is a chain of solid tori in T, it is possible to define a winding number of $\{T_1, T_2, ..., T_m\}$ in T. This was done for chains of a certain type by Sher in [13]. A treatment suitable for our purposes can be obtained by slight modifications of Sher's treatment, or by using the universal covering space T^* of T. In either case, one depends heavily on an extension of Theorem 3 of [6] to the case of linking relative to the integers.

If, in the notation of the preceding paragraph, the winding number of $\{T_1, T_2, ..., T_m\}$ is n, we shall say that $\{T_1, T_2, ..., T_m\}$ circles T n times.

The definitions of toroidal decomposition of E^3 and of *simple* toroidal decomposition of E^3 are given in Section 1. We remark that there is no loss in generality in assuming that, for any toroidal decomposition, the defining sets $M_0, M_1, M_2, ...$ are polyhedral. If they are not polyhedral, we may, by [5], replace them by polyhedral ones.

If G is any simple toroidal decomposition of E^3 , we adopt a notational scheme which we shall now describe and which will be followed from the beginning of Section 5 to the end of the paper. Suppose than that G is

a simple toroidal decomposition of E^3 . There is a sequence M_0 , M_1 , M_2 , ... of compact 3-manifolds-with-boundary as described in Section 1. Let T_0 denote M_0 ; T_0 is a polyhedral solid torus. Let T_1 , T_2 , ..., and T_{m_0} denote the components of M_1 . $\{T_1, T_2, ..., T_{m_0}\}$ is a chain of polyhedral solid tori in T_0 , and $m_0 \ge 2$. Let n_0 denote the number of times the chain $\{T_1, T_2, ..., T_{m_0}\}$ circles T_0 .

Suppose j is a positive integer. If t is a component of M_j , then t will be denoted by $T_{i_1i_2...i_j}$ where for certain positive integers $m_0, m_{i_1}, m_{i_1i_2}, ...,$ and $m_{i_1i_2...i_{j-1}}$, we have that $1 < i_1 < m_0, 1 < i_2 < m_{i_1}, 1 < i_3 < m_{i_1i_2}, ...,$ and $1 < i_{j-1} < m_{i_1i_2...i_{j-1}}$. The components of M_{j+1} in $T_{i_1i_2...i_j}$ will be denoted by $T_{i_1i_2...i_j}, T_{i_1i_2...i_j}, ...,$ and $T_{i_1i_2...i_jm_{i_1i_2...i_j}}$ where $\{T_{i_1i_2...i_j}, ..., T_{i_1i_2...i_ji_1}, ..., T_{i_1i_2...i_ji_1}, ..., T_{i_1i_2...i_j}\}$ is a chain of polyhedral solid tori in $T_{i_1i_2...i_j}$ and $m_{i_1i_2...i_j} \ge 2$. Let $n_{i_1i_2...i_j}$ denote the number of times this chain circles $T_{i_1i_2...i_j}$.

The statement that a is an index means that either a=0 or for some positive integer $n, a=i_1i_2...i_n$ where $1\leqslant i_1\leqslant m_0$ and for k=2,3,..., or $n-1,\ 1\leqslant i_k\leqslant m_{i_1i_2...i_{k-1}}$. If a is the index $i_1i_2...i_n$, then ai denotes $i_1i_2...i_ni$, aij denotes $i_1i_2...i_ni$, and so on. Hence, if a is any index, there is a solid torus T_a and a chain $\{T_{a1},T_{a2},...,T_{am_a}\}$ of solid tori circling T_a n_a times.

In [13], Sher defines (m,n)-spaces. There are the decomposition spaces of certain toroidal decompositions of E^3 . The decompositions of E^3 considered by Sher are simple toroidal decompositions satisfying certain additional conditions. If m and n are integers such that $m \ge 2$ and $n \ge 0$ then by an (m,n)-space is meant the decomposition space E^3/G of a simple toroidal decomposition G of E^3 satisfying additional conditions specificating [13] and such that for each index a, $m_a = m$ and $n_a = n$.

Sher proved in [13] that if X is an (m, n)-space for which m < 2n, then X is not homeomorphic to E^3 . It follows by the results of Section 3 of [4] that if G is any simple toroidal decomposition of E^3 such that for each index a, $m_a < 2n_a$, then E^3/G is not homeomorphic to E^3 .

Throughout this paper, indices are to be computed cyclically.

4. Preliminary lemmas on tori. We need the following slight extension of Theorem 1 of [7].

LEMMA 0. Suppose that, in E^3 , T is a polyhedral solid torus and D is a polyhedral disc such that (1) $\operatorname{Bd} D$ and $\operatorname{Bd} T$ are disjoint, and (2) D and $\operatorname{Bd} T$ are in relative general position. If J is a component of $D \cap \operatorname{Bd} T$, then either (1) J bounds a disc on $\operatorname{Bd} T$, (2) J circles $\operatorname{Bd} T$ exactly once meridionally and no times longitudinally, or (3) J circles $\operatorname{Bd} T$ exactly once longitudinally.

Proof. Suppose J is a component of $D \cap \operatorname{Bd} T$ such that J does not bound a disc on $\operatorname{Bd} T$. By an argument in the proof of Theorem 1

of [7], J bounds a polyhedral disc D' such that $\operatorname{Int} D'$ and $\operatorname{Bd} T$ are disjoint. If $\operatorname{Int} D' \subset \operatorname{Int} T$, then J circles $\operatorname{Bd} T$ exactly one time meridionally and no times longitudinally. If $\operatorname{Int} D' \subset E^3 - T$, then T has an unknotted centerline and hence T is unknotted. Consequently, J circles $\operatorname{Bd} T$ exactly one time longitudinally. Since each component of $D \cap \operatorname{Bd} T$ that does not bound a disc on $\operatorname{Bd} T$ is parallel to J, Lemma 0 follows.

LEMMA 1. Suppose that in E^s , T is a polyhedral solid torus and D is a polyhedral disc such that (1) $\operatorname{Bd}D$ and T are disjoint, (2) D and $\operatorname{Bd}T$ are in relative general position, and (3) there is a component J of $D \cap \operatorname{Bd}T$ such that J has non-zero longitudinal component. If U is a neighborhood of T, then there is a disc D' such that (1) $\operatorname{Bd}D' = \operatorname{Bd}D$, (2) D' - U = D - U, and (3) D' and T are disjoint.

Proof. By Lemma 0, if L is a component of $(\operatorname{Bd} T) \cap D$, either L bounds a disc on $\operatorname{Bd} T$, or L circles $\operatorname{Bd} T$ exactly once longitudinally, or L circles $\operatorname{Bd} T$ exactly once meridionally and no times longitudinally. Therefore J circles T exactly once longitudinally. Since the components of $(\operatorname{Bd} T) \cap D$ are either trivial on $\operatorname{Bd} T$ or parallel to J, there is a polygonal simple closed curve on $(\operatorname{Bd} T) - D$ and parallel to J. There is, therefore, a polygonal centerline J_0 of T lying in $\operatorname{Int} T$ and disjoint from D. Let T_0 be a polyhedral tubular neighborhood of J_0 lying in $\operatorname{Int} T$ and disjoint from D. There is a piecewise linear homeomorphism h from E^3 onto E^3 such that $(1) h[T_0] = T$ and (2) if either $x \in E^3 - U$, or $x \in \operatorname{Bd} D$, h(x) = x. Let D' denote h[D]. It is easy to see that D' satisfies the conclusion of Lemma 1.

LEMMA 2. Suppose that T is a polyhedral solid torus in E^3 , $m \ge 2$, $n \ge 0$, and $\{T_1, T_2, ..., T_m\}$ is a chain of polyhedral solid tori in Int T circling T n times. Suppose D is a polyhedral meridional disc in T such that if j=1,2,..., or m, D and BdT_j are in relative general position. Let T^* denote the universal covering space of T. If m < 2n, there exist an integer i such that i < i < m and consecutive copies D_1 and D_2 of D in T^* such that either (1) some copy T^*_i of T_i in T^* intersects both D_1 and D_2 meridionally or (2) there exist adjacent copies T^*_i of T_i and T^*_{i+1} of T_{i+1} , both in T^* , such that (a) T^*_i intersects D_1 meridionally and (b) T^*_{i+1} intersects D_2 meridionally.

Proof. First we shall show that there exists a polyhedral meridional disc E in T such that (1) $\operatorname{Bd} E = \operatorname{Bd} D$ and (2) if j = 1, 2, ..., or m, then (a) E and $\operatorname{Bd} T_j$ are in relative general position and (b) each component of $E \cap \operatorname{Bd} T_j$ is meridional on $\operatorname{Bd} T_j$ and is a component of $D \cap \operatorname{Bd} T_j$.

We first eliminate curves of intersection of D with $\operatorname{Bd} T_1$, $\operatorname{Bd} T_2$, ..., and $\operatorname{Bd} T_m$ that are trivial on $\operatorname{Bd} T_1$, $\operatorname{Bd} T_2$, ..., and $\operatorname{Bd} T_m$, respectively. Suppose there is a component L of $D \cap \operatorname{Bd} T_1$ such that $L \sim 0$ on $\operatorname{Bd} T_1$.

Then L bounds a disc on $\operatorname{Bd} T_1$ and there exists a component L_0 of $D \cap \operatorname{Bd} T_1$ such that L_0 bounds a disc Δ_0 on $\operatorname{Bd} T_1$ such that $\operatorname{Int} \Delta_0$ misses D. Let Δ'_0 be the disc on D bounded by L_0 . We can replace Δ'_0 by Δ_0 , adjust the resulting disc slightly, and obtain a polyhedral meridional disc $D^{\prime\prime}$ in T such that (1) $\operatorname{Bd} D'' = \operatorname{Bd} D$, (2) $D'' \cap \operatorname{Bd} T_1$ has fewer components than $D \cap \operatorname{Bd} T_1$, and (3) if j = 1, 2, ..., or m, each component of $D'' \cap \operatorname{Bd} T_j$ is a component of $D \cap \operatorname{Bd} T_j$. A continuation of this process yields a polyhedral meridional disc D^1 in T such that (1) $\mathrm{Bd}D^1=\mathrm{Bd}D$, (2) each component of $D^1 \cap \operatorname{Bd} T_1$ is non-trivial on $\operatorname{Bd} T_1$, and (3) if j=1,2,..., or m, each component of $D^1 \cap \operatorname{Bd} T_j$ is a component of $D \cap \operatorname{Bd} T_i$.

The process described above be repeated using D^1 and $\operatorname{Bd} T_2$, yielding a disc D^2 having properties analogous to those described above. Additional repetitions yield a polyhedral meridional disc E^0 in T such that (1) $\operatorname{Bd} E^0$ $=\operatorname{Bd} D$ and (2) if j=1,2,..., or m, each component of $E^0\cap\operatorname{Bd} T_1$ is non-trivial on $\operatorname{Bd} T_i$ and is a component of $D \cap \operatorname{Bd} T_i$.

We now eliminate curves of intersection of E^0 with $\operatorname{Bd} T_1$, $\operatorname{Bd} T_2$, ..., and $\operatorname{Bd} T_m$ that have non-zero longitudinal component on $\operatorname{Bd} T_1$, $\operatorname{Bd} T_2$, ..., and $\operatorname{Bd} T_m$, respectively. Suppose there is a component of $E^0 \cap \operatorname{Bd} T_1$ which has non-zero longitudinal component. By Lemma 1, there is a polyhedral disc E^1 such that $\operatorname{Bd} E^1 = \operatorname{Bd} E^0$, E^1 and T_1 are disjoint, and, except in a neighborhood of $T_2 \cup T_3 \cup ... \cup T_m$ that misses $T_1, E^1 = E^0$. Repetition of this process yields a polyhedral meridional disc E in T such that (1) Bd E = BdD, (2) if j = 1, 2, ..., or m, (a) E and Bd T_j are in relative general position and (b) each component of $E \cap \operatorname{Bd} T_j$ is a component of $D \cap \operatorname{Bd} T_i$ and is meridional on $\operatorname{Bd} T_i$.

Suppose now that E^* is a copy of E in T^* and for some $j, 1 \leq j \leq m$, T_i^* is a copy of T_i in T^* . If E^* and T_i^* intersect, each component of $E^* \cap T_i^*$ is meridional on T_i^* .

Suppose that Lemma 2 is false. Consider n+1 adjacent copies E_0, E_1, \ldots , and E_n of E in T^* . Let T_1^* be a copy of T_1 in T^* , T_2^* a copy of T_2 in T^* linked with T_1^* , T_3^* a copy of T_3 in T^* linked with T_2^* , ..., T_m^* a copy of T_m in T^* linked with T_{n-1}^* , and T_1^{**} a copy of T_1 in T^* linked with T_n^* . We regard T^* as a cylinder in E^3 and suppose that if $0 \le i < j$ $\leq n$, then E_i is to the left of E_j .

We note that if j = 0, 1, ..., or n, there is a copy D_j of D in T^* such that (1) $\operatorname{Bd} D_i = \operatorname{Bd} E_i$ and (2) if i = 1, 2, ..., or m, each component of $E_i \cap \operatorname{Bd} T_i^*$ is a component of $D_i \cap \operatorname{Bd} T_i^*$.

Case 1. T_1^* intersects E_0 . As we noted above, T_1^* intersects E_0 meridionally. First, T_1^* lies wholly to the left of E_1 . For if not, then T_1^* intersects E_1 . But this implies that T_1^* intersects both D_0 and D_1 meridionally. Since Lemma 2 is false, this is impossible. Second, T_2^* lies wholly to the left of E_1 . For if not, T_2^* intersects E_1 . This implies that T_1^* intersects D_0 meridionally and T_2^* intersects D_1 meridionally. Since Lemma 2 is false, this is impossible.

If T_3^* intersects E_1 , then it does not intersect E_2 and it follows, by an argument similar to that above, that T_4^* lies wholly to the left of E_2 . If T_3^* does not intersect E_1 , it lies wholly to the left of E_1 and T_4^* lies wholly to the left of E_2 . See Figure 1.

Fig. I

Let this process continue. Since m < 2n, it follows that either (a) T_m^* lies wholly to the left of E_{n-1} or (b) T_m^* intersects E_{n-1} . Now consider T_1^{**} . Since $\{T_1, T_2, ..., T_m\}$ circles T n times, T_1^{**} intersects E_n . Now if (a) above holds, then T_1^{**} intersects both E_{n-1} and E_n . This implies that T_1^{**} intersects both D_{n-1} and D_n meridionally, but since Lemma 2 is false, this is impossible. If (b) holds, then T_m^* intersects D_{n-1} meridionally and T_1^{**} intersects D_n meridionally, but this is also impossible. Hence Case 1 leads to a contradiction.

Case 2. T_1^* lies between E_0 and E_1 . By an argument similar to that used in Case 1, we find that T_1^* lies wholly to the left of E_1 , T_2^* either intersects E_1 or lies wholly to the left of E_1 , T_3^* lies wholly to the left of E_2 , T_4^* either intersects E_2 or lies wholly to the left of $E_2, \ldots,$ and,

Fig. 2

since m < 2n, T_m^* lies wholly to the left of E_n . See Figure 2. Now since $\{T_1, T_2, ..., T_m\}$ circles T n times, T_1^{**} lies to the right of E_n . This is impossible since T_m^* and T_1^{**} are linked. Hence Case 2 leads to a contradiction.

The remaining cases are similar to Cases 1 and 2. The supposition that Lemma 2 is false leads to a contradiction, and hence Lemma 2 holds.

5. Preliminary lemmas on toroidal decompositions. Throughout the remainder of the paper, we shall use the notation described in Section 3.

Suppose M is a solid torus. By a homotopy centerline of M we mean any loop in M homotopic in M to a core of M.

Lemma 3. Suppose that α is an index, Δ_1 and Δ_2 are disjoint polyhedral meridional discs in T_a , and for each index β , $m_{\beta} < 2n_{\beta}$. Then some element g of G lying in T_a intersects both Δ_1 and Δ_2 .

Proof. It is clear that each homotopy centerline of T_a intersects both Δ_1 and Δ_2 . By induction and the proof of Lemma 2 of [4], it follows that there is a sequence i_1, i_2, i_3, \ldots of integers such that for each j, each homotopy centerline of $T_{ai_1i_2...i_j}$ intersects both Δ_1 and Δ_2 . Hence for each j, $T_{ai_1i_2...i_j}$ intersects both Δ_1 and Δ_2 . It follows that if

$$g = \bigcap \{T_{ai_1i_2...i_j}: j = 1, 2, 3, ...\},$$

g is an element of G lying in T_a and intersecting both Δ_1 and Δ_2 .

Suppose that a is an index. T_a^* denotes the universal covering space of T_a . Each of T_{a1} , T_{a2} , ..., and T_{am_a} lifts homeomorphically into T_a^* . It follows that if g is an element of G lying in T_a , i is an integer such that $g \subset T_{ai}$, and T_{ai}^* is any copy of T_{ai} in T_a^* , then there is a copy g^* of g in T_{ai}^* .

ILEMMA 4. Suppose that a is an index, D is a polyhedral meridional disc in T_a , and if r=1,2,..., or m_a , Bd T_{ar} and D are in relative general position. Suppose that for some integer i, there are distinct copies D_1 and D_2 of D in the universal covering space T_a^* of T_a such that D_1 and D_2 intersect T_a^* meridionally. Suppose finally that for each index β , $m_{\beta} < 2n_{\beta}$. Then there is an element g of G in T_{ai} such that g^* intersects both D_1 and D_2 .

Proof. If j=1 or 2, let D_j^0 be a component of $T_{ai}^* \cap D_j$ such that one boundary curve μ_j of D_j^0 is meridional on Bd T_{ai}^* and every other boundary curve of D_j^0 is trivial on Bd T_{ai}^* . By filling in boundary curves of D_1^0 and D_2^0 distinct from μ_1 and μ_2 , respectively, with discs on Bd T_{ai}^* and adjusting slightly, we may construct disjoint polyhedral meridional discs Δ_1 and Δ_2 in T_{ai}^* such that if j=1 or 2, (1) Bd $\Delta_j = \text{Bd} D_j$ and (2) if k=1,2,..., or m_{ai} , and T_{aik}^* is a copy of T_{aik} in T_{ai}^* , then $T_{aik}^* \cap \Delta_j = T_{aik}^* \cap D_j$.

Since for each index β , $m_{\beta} < 2n_{\beta}$, it follows by Lemma 3 that there is an element g of G in T_{ai} such that g^* intersects both Δ_1 and Δ_2 . Hence g^* intersects both D_1 and D_2 .

LEMMA 5. Suppose that a is an index, U is an open set in E^3 which is a union of elements of G, and D is a polyhedral meridional disc in T_a such that (1) $D \cap (\bigcup_{i=1}^{m_a} T_{ai})$ lies in a punctured disc D_0 lying in $D \cap U$ and (2) for each i, D and $Bd T_{ai}$ are in relative general position. Suppose that, in the universal covering space T_a^* of T_a , there is an integer i such that T_{ai}^* intersects adjacent copies D_1 and D_2 of D in T_a^* meridionally. Then there is a loop γ_a in $T_a \cap U$ such that $\gamma_a \not\sim 0$ in T_a .

Proof. By Lemma 4, there is an element g of G in $T_{\alpha i}$ such that g^* intersects both D_1 and D_2 . Let x and y be points of $g^* \cap D_1$ and $g^* \cap D_2$, respectively. Notice that $\varphi(x)$ and $\varphi(y)$ belong to D_0 . Let x' be the point of D_2 that corresponds to x.

Observe that since g^* intersects D_1 , g intersects D. Further, since $D \cap T_{ai} \subset U$, g intersects U. Since U is a union of elements of G, $g \subset U$.

Fig. 3

There is, then, an arc β in T_a^* from x to y such that $\varphi[\beta] \subset U$. There is also an arc β' in D_2 such that β' joins x' and y, and $\varphi[\beta'] \subset D_0$. See Figure 3. It follows that if $\gamma = \varphi[\beta \cup \beta']$, then $\gamma \subset T_a \cap U$ and $\gamma \not\sim 0$ in T_a .

Suppose M is a polyhedral 2-manifold-with-boundary in E^3 and Δ is a polyhedral singular disc in E^3 such that (1) Δ and Bd M are disjoint, (2) Bd Δ and M are disjoint, and (3) Δ and M are in relative general position. Let Δ^0 be a 2-simplex. Since Δ is a polyhedral singular disc, there is a defining map f from Δ^0 onto Δ such that at each point of $-^1[\Delta \cap M]$, f is locally a homeomorphism. It follows that each component of $f^{-1}[\Delta \cap M]$ is a simple closed curve. The statement that γ is a curve of intersection of Δ with M means that for some component γ_0

of $f^{-1}[A \cap M]$, $\gamma = f[\gamma_0]$. If γ is a curve of intersection of Δ with M, then γ is trivial on M if and only if $f|\gamma_0$ is homotopic to 0 on M.

Suppose now that N is a polyhedral solid torus in E^3 , Δ is a polyhedral singular disc such that $\operatorname{Bd} \Delta$ and $\operatorname{Bd} N$ are disjoint, and Δ and $\operatorname{Bd} N$ are in relative general position. Suppose γ is a curve of intersection of Δ with $\operatorname{Bd} N$, let f be a defining map for Δ as above, and suppose γ_0 is a component of $f^{-1}[\Delta \cap \operatorname{Bd} N]$ such that $\gamma = f[\gamma_0]$. Then γ is meridional on $\operatorname{Bd} N$ if and only if $f|\gamma_0$ is homotopic on $\operatorname{Bd} N$, to a non-zero multiple of some meridional simple closed curve on $\operatorname{Bd} N$. We shall say that γ has non-zero longitudinal component on $\operatorname{Bd} N$ if and only if γ is homotopic, on $\operatorname{Bd} N$, to a curve which is a non-zero multiple of a longitude times some multiple of a meridian. Equivalently, γ has non-zero longitudinal component on $\operatorname{Bd} N$ if and only if γ is neither trivial on $\operatorname{Bd} N$ nor meridional on $\operatorname{Bd} N$.

LEMMA 6. Suppose that a is an index, U is a simply connected open set in E^3 , and D is a polyhedral meridional disc in T_a such that (1) $D \cap (\bigcup_{i=1}^{m_a} T_{ai})$ lies in a punctured disc D_0 lying in $D \cap U$ and (2) for each i, D and $Bd T_{ai}$ are in relative general position. Suppose that j is an integer such that there exist adjacent copies D_1 and D_2 of D in T^*_a , adjacent copies T^*_{ai} and $T^*_{a(j+1)}$ of T_{ai} and $T_{a(j+1)}$, respectively, in T^*_a , and loops γ_i and γ_{j+1} in T_{aj} and $T_{a(j+1)}$, respectively, such that (1) $\gamma_i \gamma \sim 0$ in T_{aj} and $\gamma_{j+1} \sim 0$ in $T_{a(j+1)}$, (2) D_1 intersects T^*_{ai} meridionally and D_2 intersects $T^*_{a(j+1)}$ meridionally, and (3) each of γ_i and γ_{j+1} lies in U. Then there is a loop γ in $T_a \cap U$ such that $\gamma \sim 0$ in T_a .

Proof. Let Δ be a polyhedral singular disc in U bounded by γ_{j} and in general position relative to $\operatorname{Bd} T_{a}$.

Suppose that there is a curve of intersection γ of Δ with $\operatorname{Bd} T_a$ such that γ has non-zero longitudinal component. Then $\gamma \subset U \cap T_a$ and $\gamma \not\sim 0$ in T_a .

Suppose then that each curve of intersection of Δ with $\operatorname{Bd} T_a$ is either trivial or meridional on $\operatorname{Bd} T_a$. Let Δ^0 be a 2-simplex and let f be defining map for Δ , from Δ^0 onto Δ , locally a homeomorphism at each point of $f^{-1}[\Delta \cap \operatorname{Bd} T_a]$. Let E^0 be the closure of the component of $\Delta^0 - f^{-1}[\Delta \cap \operatorname{Bd} T_a]$ that contains $\operatorname{Bd} \Delta^0$ and let E be $f[E^0]$; $f[E^0]$ is a singular punctured disc. Since each curve of intersection of Δ with $\operatorname{Bd} T_a$ is either trivial or meridional on $\operatorname{Bd} T_a$, there is a singular punctured disc E^* in T^*_a such that E^* has as boundary the copy γ^*_f of γ_f in T^*_{af} , and E^* covers E once. Let γ^*_{f+1} denote the copy of γ_{f+1} in T^*_{af+1} .

Now we shall prove that γ_{j+1}^* intersects E^* . Since γ_{j+1}^* is compact, there is a polyhedral disc F in T_a^* such that (1) $\operatorname{Bd} F \subset \operatorname{Bd} T_a^*$ and $\operatorname{Bd} F \sim 0$ on $\operatorname{Bd} T_a^*$, and (2) F and γ_{j+1}^* are disjoint. Construct a singular disc as

follows: If μ is a boundary curve of E^* such that $\mu \sim 0$ on $\operatorname{Bd} T_a^*$, then fill in μ with a singular disc δ_{μ} on $\operatorname{Bd} T_a^*$ and attach δ_{μ} to E^* . If μ is a boundary curve of E^* such that $\mu \sim 0$ on $\operatorname{Bd} T_a^*$, then μ is homotopic, on $\operatorname{Bd} T_a^*$, to some multiple of $\operatorname{Bd} F$. For such a curve μ , if $\mu \sim k \cdot (\operatorname{Bd} F)$ on $\operatorname{Bd} T_a^*$, construct a singular disc δ_{μ} from (1) a singular annulus on $\operatorname{Bd} T_a^*$ having as boundary curves μ and $k \cdot (\operatorname{Bd} F)$ and (2) a singular disc lying in F and having as boundary $k \cdot (\operatorname{Bd} F)$. Then fill in μ with δ_{μ} . This yields a singular disc lying in $E^* \cup (\operatorname{Bd} T_a^*) \cup F$ and a slight adjustment yields a polyhedral singular disc E' such that (1) $\operatorname{Bd} E' = \gamma_j^*$, (2) $E' \subset \operatorname{Int} T_a^*$, and (3) E' lies in E^* together with a small neighborhood of $F \cup \operatorname{Bd} T_a^*$ missing γ_{j+1}^* . In particular, since $\gamma_j \subset T_{aj}$ and $\gamma_j \sim 0$ in T_{aj} , and $\gamma_{j+1} \subset T_{a(j+1)}$ and $\gamma_{j+1} \sim 0$ in $T_{a(j+1)}$ then γ_j^* and γ_{j+1}^* are linked. It follows that γ_{j+1}^* intersects E^* .

Now we shall show that γ_j^* intersects D_1 . Since D_1 intersects T_{ai}^* meridionally, there is a component D_1' of $D_1 \cap T_{ai}^*$ such that D_1' is a punctured disc with one, and only one, boundary curve non-trivial on $\operatorname{Bd} T_{ai}^*$. The trivial boundary curves of D_1' can be filled in by singular disc on $\operatorname{Bd} T_{ai}^*$, yielding a singular disc D_1'' whose boundary is meridional on $\operatorname{Bd} T_{ai}^*$. Since $\gamma_i \sim 0$ in T_{ai} , γ_i^* intersects D_1'' . But $D_1'' \cap \operatorname{Int} T_{ai}^* \subset D_1$. Hence γ_i^* intersects D_1 . A similar argument shows that γ_{i+1}^* intersects D_2 .

Let x be a point of $\gamma_{j+1}^* \cap D_1$, x'' be the corresponding point of D_2 , and y be a point of $\gamma_{j+1}^* \cap D_2$. Let x' be a point of $E^* \cap \gamma_{j+1}^*$. There is a path λ_1 in E^* from x to x', and there is a path λ_2 in γ_{j+1}^* from x' to y. If D_0^1 and D_0^2 denote the copies of D_0 in D_1 and D_2 , respectively, then since $D \cap (T_{\alpha j} \cup T_{\alpha (j+1)}) \subset D_0$, $x \in D_0^1$ and $y \in D_0^2$. Hence $x'' \in D_0^2$ and there is an arc λ_2 in D_0^2 from y to x''. See Figure 4. If $\gamma = \varphi[\lambda_1 \cup \lambda_2 \cup \lambda_3]$, it follows that $\gamma \subset U$ since $E \subset U$, $\gamma_{j+1} \subset U$, and $D_0 \subset U$. Clearly $\gamma \subset T_\alpha$ and $\gamma \not\sim 0$ in T_α .

LEMMA 7. Suppose a is an index, Δ is a polyhedral singular disc such that (1) Δ and Bd T_a are in relative general position and (2) Δ intersects Bd T_a non-trivially but only in trivial and meridional curves of intersection, and V is an open set in E^3 such that $\Delta \subset V$. Then there is a polyhedral meridional disc D in T_a such that there is a punctured disc D_0 in $D \cap V$ containing $D \cap (\bigcup_{i=1}^m T_{ai})$.

Proof. Since Δ intersects $\operatorname{Bd} T_a$ non-trivially but in no curve with non-zero longitudinal component, there is a singular subdisc Δ' of Δ such that (1) $\operatorname{Bd} \Delta'$ is meridional on $\operatorname{Bd} T_a$ and (2) every curve of intersection of Δ' with $\operatorname{Bd} T_a$ distinct from $\operatorname{Bd} \Delta'$ is trivial on $\operatorname{Bd} T_a$. There is, therefore, a singular punctured disc Γ in Δ' such that $\operatorname{Bd} \Delta'$ is a boundary curve of Γ and every other boundary curve of Γ is trivial on $\operatorname{Bd} T_a$, and $\Gamma \subset T_a$.

There is a polyhedral solid torus T'_{α} concentric with T_{α} , lying in Int T_a , and such that $\bigcup_{i=1}^{n} T_{ai} \subset \operatorname{Int} T'_a$. Let W denote $(\operatorname{Int} T_a) - T'_a$.

For each boundary curve μ of Γ distinct from Bd Δ' , $\mu \sim 0$ on Bd T_a and hence μ bounds a singular disc δ_{μ} on Bd T_a . Let Γ' be a polyhedral

singular disc obtained by adding each such δ_{μ} to Γ and then pushing δ_{μ} slightly into Int T_a so that the adjusted δ_μ lies in W. We may assume Γ' has the following properties:

 $(1) \quad I'' \subset (\operatorname{Int} T_a) \cup (\operatorname{Bd} \Delta'), \qquad (2) \quad I'' - \Delta' \subset W, \qquad (3) \quad (\bigcup_{i=1}^{m_a} T_{\alpha i}) \cap I'' \subset \Delta'.$ Recall that $\Delta' \subset V$.

By the loop theorem and Dehn's lemma [10], [11], [14], there is a polyhedral disc E such that (1) $\operatorname{Bd} E \subset \operatorname{Bd} T_{\alpha}$, (2) $\operatorname{Bd} E \sim 0$ on $\operatorname{Bd} T_{\alpha}$, (3) Int $E \subset \operatorname{Int} T_{\alpha}$, and (4) E lies in the union of Γ' and a small neighborhood of the singularities of Γ' , the latter chosen so that $E \cap T'_a \subset V$. Clearly E is meridional in T_a , and we assume E and $\operatorname{Bd} T'_a$ are in relative general position.

Now it will be shown that there is a component γ' of $E \cap \operatorname{Bd} T_a'$ such that γ' is meridional on Bd T'_{α} . First, no component τ of $E \cap \operatorname{Bd} T'_{\alpha}$ has non-zero longitudinal component on $\operatorname{Bd} T'_a$. For if there is such a component τ , then by Lemma 1, there is a polyhedral disc R such that $\operatorname{Bd} R = \operatorname{Bd} E$, $\operatorname{Int} R \subset \operatorname{Int} T_a$, and R is disjoint from T'_a . Since T'_a and T_a are concentric, this is impossible. Hence each non-trivial component of $E \cap \operatorname{Bd} T'_a$ is meridional.

Suppose that there is no meridional component of $E \cap \operatorname{Bd} T'_a$. Then each component of $E \cap \operatorname{Bd} T'_a$ is trivial on $\operatorname{Bd} T'_a$, and it is easy to construct a singular disc E' such that $\operatorname{Bd} E' = \operatorname{Bd} E$ and $E' \subset T_a - \operatorname{Int} T'_a$. But since T_a and T'_a are concentric, this is impossible. Therefore, there is a component γ' of $E \cap \operatorname{Bd} T'_{\alpha}$ such that γ' is meridional on $\operatorname{Bd} T'_{\alpha}$.

Let ν be a component of $E \cap \operatorname{Bd} T'_a$ which is meridional on $\operatorname{Bd} T'_a$ and is an innermost component of $E \cap \operatorname{Bd} T'_{\alpha}$ which is meridional on $\operatorname{Bd} T'_{\alpha}$. Let E_0 denote the disc on E bounded by γ . Each component of $(\operatorname{Bd} T'_a)$ \cap (Int E_0) is trivial on Bd T'_a , and it follows that the component of $E_0 \cap T'_a$ containing γ is a punctured polyhedral disc having γ as a boundary curve and such that every other boundary curve of D_0 is trivial on $\operatorname{Bd} T'_a$. Hence each boundary curve of D_0 distinct from γ bounds a disc on Bd T'_{α} missing ν .

Let γ_1 be a boundary curve of D_0 distinct from γ such that if Q_1 is the disc on $(\operatorname{Bd} T_a) - \gamma$ bounded by γ_1 , $\operatorname{Int} Q_1$ does not intersect D_0 . Then add Q_1 to D_0 , adjust the result to get a polyhedral punctured disc by pushing Q_1 slightly into Int T'_a , and let D_1 denote the resulting punctured disc. The adjustment is to be made so that $D_1 \cap (\bigcup_{i=1}^{m-a} T_{\sigma i}) \subset D_0$. If D_1 has a boundary curve distinct from v, the process above is repeated. After finitely many repetitions, there results a polyhedral disc D' such that

 $\operatorname{Bd} D' = \gamma, \ \operatorname{Int} D' \subset \operatorname{Int} T'_a, \ D_0 \subset D', \ \operatorname{and} \ D' \smallfrown (\bigcup_{i=1}^{m_a} T_{ai}) \subset D_0.$

There is a polyhedral annulus A such that $BdA = (BdE) \cup \gamma$ and Int $A \subseteq W$. Let D denote $A \cup D'$. Then D satisfies the conclusion of Lemma 7.

6. Arrays. In order to handle a slightly complicated situation which occurs later, we introduce configurations we call arrays. In this section, we define them and establish an elementary property of arrays.

Suppose that α is an index, F_{α} is a polyhedral meridional disc in T_{α} and if $1 \le j \le m_a$, F_a and $\operatorname{Bd} T_{aj}$ are in relative general position.

(1) By a basic array of type I is meant a configuration of the form

$$(T_a, F_a)$$
 (T_{ai}, X_{ai})

where $1 \leqslant i \leqslant m_a$ and X_{ai} is either (i) a polygonal loop γ_{ai} in T_{ai} such that $\gamma_{ai} \not\sim 0$ in T_{ai} , or (ii) a polyhedral meridional disc F_{ai} in T_{ai} such that (a) there is a punctured disc F_{ai}^0 in F_{ai} such that $F_{ai} \cap (\bigcup_{j=1}^{m_{ai}} T_{aij}) \subset F_{ai}^0$ and (b) if $1 \leqslant j \leqslant m_{ai}$, F_{ai} and Bd T_{aij} are in relative general position. We call (T_a, F_a) and (T_{ai}, X_{ai}) the top and bottom pairs, respectively, of this array.

(2) By a basic array of type II is meant a configuration of the form

$$(T_a, F_a)$$
 (T_{ai}, X_{ai}) $(T_{a(i+1)}, X_{a(i+1)})$

where $1 \leq i \leq m_a$ and X_{ai} is either a polygonal loop γ_{ai} in T_{ai} as above or a polyhedral meridional disc F_{ai} in T_{ai} as above, and $X_{a(i+1)}$ satisfies analogous conditions relative to $T_{a(i+1)}$. We call (T_a, F_a) the top pair, and (T_{ai}, X_{ai}) and $(T_{a(i+1)}, X_{a(i+1)})$ the bottom pairs, respectively, of this array.

By a basic array is meant either a basic array of type I or one of type Π .

Suppose that

$$(T_a, F_a)$$

$$(T_{ai}, X_{ai})$$

is a basic array of type I. This array satisfies case I if and only if there exist adjacent copies F_a^1 and F_a^2 of F_a in T_a^* and a copy $T_{\alpha i}^*$ of $T_{\alpha i}$ in T_a^* such that $T_{\alpha i}^*$ intersects both F_a^1 and F_a^2 meridionally.

Suppose that

$$(T_lpha,F_a) \ (T_{ai},X_{ai}) \quad (T_{a(i+1)},X_{a(i+1)})$$

is a basic array of type II. This satisfies case II if and only if there exist adjacent copies F_a^1 and F_a^2 of F_a in T_a^* and adjacent copies T_{ai}^* and $T_{a(i+1)}^*$, respectively, such that T_{a1}^* intersects F_a^1 meridionally and $T_{a(i+1)}^*$ intersects F_a^2 meridionally.

Suppose that n is a positive integer. By an array of n+1 rows we mean a diagram of n+1 non-empty rows such that for some index a,

(1) the top row is

$$(T_a, F_a)$$

where F_{α} is a polyhedral meridional disc in T_{α} as above,

- (2) the first two rows form a basic array,
- (3) if $1 < k \le n+1$, each entry on the kth row is a bottom pair for some basic array whose top pair is an entry on row k-1,

- (5) if $1 \le k \le n$ and $(T_{ai_1i_2...i_k}, F_{ai_1i_2...i_k})$ is an entry on the kth row where $F_{ai_1i_2...i_k}$ is a meridional disc in $T_{ai_1i_2...i_k}$, then $(T_{ai_1i_2...i_k}, F_{ai_1i_2...i_k})$ is the top pair of some basic array whose bottom pair or pairs appear on row (k+1), and
- (6) each basic array of type I that appears in the diagram satisfies case I, and each basic array of type II that appears satisfies case II.

Suppose now that $\mathfrak A$ is an array of n+1 rows, with first row (T_a, F_a) , and U is an open set in E^3 . $\mathfrak A$ is admissible with respect to U if and only if the following conditions hold:

(1) If $(T_{\beta}, \gamma_{\beta})$ is an entry of \mathfrak{A} , then $\gamma_{\beta} \subset U$.

 $X_{ai_1i_2...i_{k-1}}$ is necessarily a meridional disc in $T_{ai_1i_2...i_{k-1}}$,

(2) If (T_{β}, F_{β}) is an entry of \mathfrak{A} , then the punctured disc F_{α}^{0} associated with F_{β} lies in U.

LEMMA 8. Suppose a is an index, U is a simply connected open set in E^3 , n is a positive integer, and $\mathfrak A$ is an array of n+1 rows, admissible with respect to U, with first row (T_a, F_a) . Suppose that if $T_{aj_1j_2...j_n}$ is a solid torus on row n+1 of $\mathfrak A$, there is a polygonal loop $\gamma_{aj_1j_2...j_n}$ in $T_{aj_1j_2...j_n} \cap U$ such that $\gamma_{j_1j_2...j_n} \not\sim 0$ in $T_{aj_1j_2...j_n}$. Then there is a polygonal loop γ_a in $T_a \cap U$ such that $\gamma_a \not\sim 0$ in T_a .

Proof. Suppose that

$$(T_{aj_1j_2...j_{n-1}},F_{aj_1j_2...j_{n-1}})$$

$$(T_{\alpha j_1 j_2 \dots j_{n-1} j_n}, X_{\alpha j_1 j_2 \dots j_{n-1} j_n}) \quad (T_{\alpha j_1 j_2 \dots j_{n-1} (j_n+1)}, X_{\alpha j_1 j_2 \dots j_{n-1} (j_n+1)})$$

is a subarray of $\mathfrak A$ of type Π . If $k=j_n$ or j_n+1 , there exists, by hypothesis, a polygonal loop $\gamma_{j_1j_2...j_{n-1}k}$ in $T_{aj_1j_2...j_{n-1}k} \cap U$ such that $\gamma_{aj_1j_2...j_{n-1}k} \sim 0$ in $T_{aj_1j_2...j_{n-1}k}$. Since $\mathfrak A$ is admissible with respect to U, there is a punctured

disc
$$F_0$$
 in $F_{aj_1j_2...j_{n-1}} \cap U$ that contains $F_{aj_1j_2...j_{n-1}} \cap (\bigcup_{i=1}^{m_{aj_1j_2...j_{n-1}}} T_{aj_1j_2...i})$. Since the basic array considered satisfies case II, then by Lemma 6, there is a polygonal loop $\gamma_{j_1j_2...j_{n-1}}$ in $T_{aj_1j_2...j_{n-1}} \cap U$ such that $\gamma_{j_1j_2...j_{n-1}} \sim 0$ in $T_{aj_1j_2...j_{n-1}}$.

Now suppose that

$$(T_{aj_1j_2...j_{n-1}}, F_{aj_1j_2...j_{n-1}})$$

 $(T_{aj_1j_2...j_{n-1}j_n}, X_{aj_1j_2...j_{n-1}j_n})$

is a subarray of $\mathfrak A$ of type I. Since $\mathfrak A$ is admissible with respect to U, there is a punctured disc F_0' in $F_{aj_1j_2...j_{n-1}}$ that contains $F_{aj_1j_2...j_{n-1}} \cap$

 $\bigcap_{i=1}^{m_{aj_1j_2...j_{n-1}}} T_{aj_1j_2...i_i}.$ Since the basic array considered satisfies case I, then by Lemma 5, there is a polygonal loop $\gamma_{j_1j_2...j_{n-1}}$ in $T_{aj_1j_2...j_{n-1}} \cap U$ such that $\gamma_{j_1j_2...j_{n-1}} \not\sim 0$ in $T_{aj_1j_2...j_{n-1}}$.

Hence, in either case considered, there is a polygonal loop $\gamma_{j_1j_2...j_{n-1}}$ in $T_{aj_1j_2...j_{n-1}} \sim U$ such that $\gamma_{j_1j_2...j_{n-1}} \sim 0$ in $T_{aj_1j_2...j_{n-1}}$. Now let $\mathfrak A'$ denote the array obtained from $\mathfrak A$ by deleting the last row of $\mathfrak A$. $\mathfrak A'$ satisfies hypotheses analogous to those assumed for $\mathfrak A$ so the process above may be repeated.

It follows by induction that there is a polygonal loop γ_a in $T_a \cap U$ such that $\gamma_a \sim 0$ in T_a .

7. The main lemmas. In this section we shall establish the main lemmas for the proof of Theorem 1.

LEMMA 9. Suppose that a is an index and U is a simply connected open set in E^3 such that U is a union of elements of G. Suppose that Δ is a polyhedral singular disc in U such that (1) $\operatorname{Bd}\Delta$ and T_a are disjoint, (2) Δ and $\operatorname{Bd}T_a$ are in relative general position, and (3) Δ intersects $\operatorname{Bd}T_a$ non-trivially. Then there is a polygonal loop γ_a in $T_a \cap U$ such that $\gamma_a \sim 0$ in T_a .

Proof. Suppose first that there is a curve of intersection γ of Δ with $\operatorname{Bd} T_a$ such that γ has non-zero longitudinal component. Then $\gamma \subseteq T_a \cap U$ and $\gamma \not\sim 0$ in T_a .

Hence, in the remainder of the proof, we shall suppose that each non-trivial curve of intersection of Δ with $\operatorname{Bd} T_{\alpha}$ is meridional. Let V be an open set such that $\Delta \subset V$, $\overline{V} \subset U$, \overline{V} is a union of elements of G, and \overline{V} is compact. Such an open set may be constructed as follows: P[U] is open in E^3/G since U is a union of elements of G. $P[\Delta]$ is compact and $P[\Delta] \subset P[U]$. Since $P[H_G]$ is a 0-dimensional set in E^3/G , there is an open set W such that $P[\Delta] \subset W$, $W \subset U$, \overline{W} is compact, and $\operatorname{Bd} W$ is disjoint from $P[H_G]$. Let V denote $P^{-1}[W]$; since $\overline{V} = P^{-1}[\overline{W}]$, it is easy to see that V has the properties stated above.

By Lemma 7, there is a polygonal meridional disc F_a in T_a such that there is a punctured disc F_a^0 in $F_a \cap V$ containing $F_a \cap \bigcup_{i=1}^{m_a} T_{ai}$.

Now there are two cases to be considered. By Lemma 2, either (1) for some $i_1, 1 \le i_1 \le m_a$, some copy $T^*_{ai_1}$ of T_{ai_1} in T^* intersects two adjacent copies F^1_a and F^2_a of F_a in T^* , or (2) for some $i_1, 1 \le i_1 \le m_a$, some adjacent copies $T^*_{ai_1}$ and $T^*_{a(i_1+1)}$ of T_{ai_1} and $T_{a(i_1+1)}$, respectively, in T^*_a , and some adjacent copies F^1_a and F^2_a of F_a in T^*_a , $T^*_{ai_1}$ intersects F^1_a meridionally and $T^*_{a(i_1+1)}$ intersects F^2_a meridionally. If (1) holds, then by Lemma 5,

there is a polygonal loop γ_a in $T_a \cap U$ such that $\gamma_a \sim 0$ in T_a . Hence we shall suppose (2) holds.

We have begun the construction of an array. At this point, we have only the first row:

$$(T_a, F_a)$$
.

Suppose $q=i_1$ or i_1+1 , and consider F_a and T_{aq} . Either (3) some curve of intersection of F_a and $\operatorname{Bd} T_{aq}$ has non-zero longitudinal component, or (4) each curve of intersection of F_a and $\operatorname{Bd} T_{aq}$ is either trivial or meridional. Suppose first that (4) holds. Recall that there is a punctured

disc F_a^0 in F_a such that $F_a^0 \subset V$ and $F_a \cap (\bigcup_{i=1}^{m_a} T_{ai}) \subset F_a^0$. It follows that $F_a \cap T_{aq} \subset V$. Hence by Lemma 7, there is a polyhedral meridional disc F_{aq} in T_{aq} such that (i) if i = 1, 2, ... or m_{aq} , F_{aq} and $\operatorname{Bd} T_{aqi}$ are in relative general position, and (ii) there is a punctured disc F_{aq}^0 in $F_{aq} \cap V$

containing $F_{aq} \cap (\bigcup_{i=1}^{n} T_{aqi})$. It follows that regardless of whether (3) or (4) holds, either (5) there is a polygonal loop γ_{aq} in $T_{aq} \cap U$ such that $\gamma_{aq} \sim 0$ in T_{aq} or (6) there is a disc F_{aq} as described above.

We may now construct the second row of the array. If there exist polygonal loops γ_{ai_1} and $\gamma_{a(i_1+1)}$, the second row is

$$(T_{ai_1}, \gamma_{ai_1})$$
 $(T_{a(i_1+1)}, \gamma_{a(i_1+1)})$.

If there exist a loop and a disc, it is the appropriate one of

 $(T_{ai_1}, \gamma_{ai_1})$ $(T_{a(i_1+1)}, F_{a(i_1+1)})$

and

$$(T_{ai_1}, F_{ai_1}) \quad (T_{a(i_1+1)}, \gamma_{a(i_1+1)})$$
.

In the remaining case, there exist two discs, and the second row is

$$(T_{ai_1}, F_{ai_1}) (T_{a(i_1+1)}, F_{a(i_1+1)})$$
.

If the first of the three alternatives described in the preceding paragraph holds, the process terminates. Otherwise, for each pair of the type (T_{aq}, F_{aq}) on the second row, we repeat the preceding procedure and construct a third row.

Suppose then that t is a positive integer and the (t+1)st row has been constructed and is non-void. Each pair on the (t+1)st row is either of the type $(T_{aq_1q_2...q_t}, \gamma_{aq_1q_2...q_t})$ where $\gamma_{aq_1q_2...q_t}$ is a polygonal loop in $T_{aq_1q_2...q_t} \cap U$, non-trivial in $T_{aq_1q_2...q_t}$, or of the type $(T_{aq_1q_2...q_t}, F_{aq_1q_2...q_t})$ where $F_{aq_1q_2...q_t}$ is a meridional disc in $T_{aq_1q_2...q_t}$ having certain properties. If for each pair on the (t+1)st row, the second term is a loop, the process terminates. Otherwise, for each pair whose second term is a disc, the process described previously is used to obtain entries for the (t+2)nd row.

On the strong local simple connectivity 33

Proof. Let Δ^0 be a 2-simplex. If i=1,2,..., or m_a , let f_i be a defining map for Δ_i such that f_i is a local homeomorphism at points of

contains $\operatorname{Bd} \Delta^0$. Let Δ'_i denote $f_i[\Delta^0_i]$. Now we shall show that if i=1,2,..., or m_a , Δ'_i and $\operatorname{Bd} \Delta_{i+1}$ intersect. Suppose that for some i, Δ'_i and $\operatorname{Bd} \Delta_{i+1}$ are disjoint. Let Δ''_i be a singular disc obtained as follows: If μ is a boundary curve of Δ'_i distinct from $\operatorname{Bd} \Delta_i$, then $\mu \subset \operatorname{Bd} T_a$ and $\mu \sim 0$ on $\operatorname{Bd} T_a$. For each such μ , add to Δ'_i a singular disc on $\operatorname{Bd} T_a$ bounded by μ . The resulting singular disc will be denoted by Δ''_i . Since Δ'_i and $\operatorname{Bd} \Delta_{i+1}$ are disjoint, it follows that Δ''_i and $\operatorname{Bd} \Delta_{i+1}$ are also disjoint. However, (1) $\operatorname{Bd} \Delta''_i = \operatorname{Bd} \Delta_i$, (2) $\operatorname{Bd} \Delta_i \subset T_{ai}$ and $\operatorname{Bd} \Delta_{i+1} \subset T_{a(i+1)}$ and $\operatorname{Bd} T_{a(i+1)} \sim 0$ in T_{ai} , and (3) $\operatorname{Bd} \Delta_{i+1} \subset T_{a(i+1)}$ and $\operatorname{Bd} T_{a(i+1)} \sim 0$ in $T_{a(i+1)}$.

 $f_i^{-1}[\Delta_i \cap \operatorname{Bd} T_a]$. Let Δ_i^0 be the component of $\Delta^0 - f_i^{-1}[\Delta_i \cap \operatorname{Bd} T_a]$ that

Let T_a^* denote the universal covering space of T_a , and let T_{ai}^* and $T_{a(i+1)}^*$ be adjacent copies of T_{ai} and $T_{a(i+1)}$, respectively, in T_a^* . Then T_{ai}^* and $T_{a(i+1)}^*$ are linked in T_a^* . Δ_i'' lifts to a singular disc Ω_i'' with $\mathrm{Bd}\Omega_i''$ the copy of $\mathrm{Bd}\Delta_i$ in T_{ai}^* . Since $\mathrm{Bd}\Delta_{i+1} \subset T_{a(i+1)}$, $\mathrm{Bd}\Delta_{i+1}$ lifts to a loop γ_{i+1}^* in $T_{a(i+1)}^*$ such that $\gamma_{i+1}^* \sim 0$ in $T_{a(i+1)}^*$. It then follows that Ω_i'' and γ_{i+1}^* intersect. Since γ_i'' and γ_{i+1}^* are disjoint, this is a contradiction. Hence if γ_{i+1}^* and γ_{i+1}^* and γ_{i+1}^* intersect.

Fig. 5

For each i, let p_i be a point of $\Delta'_i \cap \operatorname{Bd}\Delta_{i+1}$. Now for each i, $f_i^{-1}[\Delta'_i]$ is a punctured disc having $\operatorname{Bd}\Delta^0$ as one boundary component, $f_i^{-1}(p_{i-1})$ is a point of $\operatorname{Bd}\Delta^0$, and $f_i^{-1}(p_i) \in f_i^{-1}[\Delta'_i]$. There is an arc β_i^0 in $f_i^{-1}[\Delta'_i]$ joining $f_i^{-1}(p_{i-1})$ and $f_i^{-1}(p_i)$. Let β_i denote $f_i[\beta_i^0]$; β_i is a path on Δ'_i from p_{i-1} to p_i . See Figure 5.

Let γ denote $\beta_1 \cup \beta_2 \cup ... \cup \beta_{n_a}$; γ is to be regarded as a loop. We shall show that γ circles T_a n_a times. Since the chain $\{T_{a1}, T_{a2}, ..., T_{am_a}\}$

Either this construction terminates or it continues indefinitely. Suppose that it continues indefinitely. For each positive integer t, let K_t be the union of all the solid tori appearing on the t-th row. Then for each t, K_t is a compact non-empty set, and $K_{t+1} \subset K_t$. Let K denote $\bigcap_{t=1}^{\infty} K_t$; K is compact, non-empty, and is a union of sets of G. Further, $K \subset U$. To establish this, suppose that g is an element of G contained in K. There exists a sequence $T_a, T_{aj_1}, T_{aj_1j_2}, \ldots$ of solid tori such that (1) for each r, $T_{aj_1j_2...j_r}$ appears on row r+1 and (2) $g = \bigcap_{r=1}^{\infty} T_{aj_1j_2...j_r}$. Now for each r, the second term of the pair of row r+1 whose first term is $T_{aj_1j_2...j_r}$ is necessarily $F_{aj_1j_2...j_r}$, because if that second term is $\gamma_{aj_1j_2...j_r}$, then there are no tori on row r+2 that lie in $T_{aj_1j_2...j_r}$. Hence each of $T_a, T_{aj_1}, T_{aj_1j_2}, \ldots$ intersects V and therefore g intersects \overline{V} . Since $\overline{V} \subset U$ and U is a union of elements of G, then $g \subset U$. Consequently, $K \subset U$.

Since K is compact, there is a positive integer r such that $K_r \subset U$. Let us consider a solid torus T_β that appears on row r. If T_β intersects K, then $T_\beta \subset U$ and hence there is a polygonal loop γ_β in $T_\beta \cap U$ such that $\gamma_\beta \sim 0$ in T_β .

Now suppose T_{β} does not intersect K. Then there exists a positive integer s such that s > r and there is no solid torus in row s that lies in T_{β} . If not, then for each positive integer s, K_s intersects T_{β} and hence K intersects T_{β} . This is contrary to supposition, so such an s exists. Let k be the least positive integer s such that s > r and no solid torus on row s lies in T_{β} . It is necessarily true that if T_{λ} is a solid torus in row k-1 that lies in T_{β} , the second term of the pair of row k-1 whose first term is T_{λ} is a polygonal loop γ_{λ} in $T_{\lambda} \cap U$ such that $\gamma_{\lambda} \sim 0$ in T_{λ} . By Lemma 8, there is a polygonal loop γ_{β} in $T_{\beta} \cap U$ such that $\gamma_{\beta} \sim 0$ in T_{β} .

Suppose, on the other hand, that the construction above terminates, and let r be the positive integer such that it terminates on row r. If T_{β} is a solid torus on row r, then necessarily there exists a polygonal loop γ_{β} in $T_{\beta} \cap U$ such that $\gamma_{\beta} \sim 0$ in T_{β} .

In either case, consider the array consisting of the first r rows constructed above. This array satisfies the hypothesis of Lemma 8. Hence there exists a polygonal loop γ_a in $T_a \cap U$ such that $\gamma_a \sim 0$ in T_a .

LEMMA 10. Suppose that a is an index and if i=1,2,..., or m_a , Δ_i is a polyhedral singular disc in E^3 such that if i=1,2,..., or m_a , (1) $\operatorname{Bd} \Delta_i \subset T_{ai}$ and $(\operatorname{Bd} \Delta_i) \sim 0$ in T_{ai} , (2) Δ_i and $\operatorname{Bd} T_a$ are in relative general position and each curve of intersection of Δ_i with $\operatorname{Bd} T_a$ is trivial on $\operatorname{Bd} T_a$. Then there is a polygonal loop γ in T_a such that $\gamma \subset T_a \cap (\bigcup_{i=1}^m \Delta_i)$ and γ circles T_a n_a times.

 $\{\operatorname{Bd}\Delta_1,\operatorname{Bd}\Delta_2,\ldots,\operatorname{Bd}\Delta_{m_a}\}$ circles T_a n_a times. Now consider the universal covering space T_a^* of T_a . Recall that for each i,Δ_i' lies on a singular disc Δ_i'' in T_a . Let $\Delta_1^*,\Delta_2^*,\ldots$, and $\Delta_{m_a}^*$ denote adjacent copies, in T_a^* , of $\Delta_1'',\Delta_2'',\ldots$, and Δ_{m_a}'' , respectively. Let $p_{m_a}^*,p_1^*,p_2^*,\ldots$, and $p_{m_a-1}^*$ denote the copies of p_{m_a},p_1,p_2,\ldots , and p_{m_a-1},p_1,p_2,\ldots , and p_{m_a-1},p_1,p_2,\ldots , and $p_{m_a}^*$, respectively. Let $p_{m_a}^*$ denote the copy of p_{m_a} on $\Delta_{m_a}^*$.

If $1 < i < m_a$, β_i lies on Δ_i'' and hence β_i lifts to a path β_i^* from $p_{m_a}^*$ to p_i^* . Similarly, β_1 and $\beta_{m_a}^*$ lift to paths β_1^* from $p_{m_a}^*$ to p_i^* and $\beta_{m_a}^*$ from $p_{m_{a-1}}^*$ to $p_{m_a}^{**}$, respectively. Then $\beta_1^* \cup \beta_2^* \cup \ldots \cup \beta_{m_a}^*$ is a path in T_a^* from $p_{m_a}^*$ to $p_{m_a}^{**}$. Since $\{\mathrm{Bd}\Delta_1, \mathrm{Bd}\Delta_2, \ldots, \mathrm{Bd}\Delta_{m_a}\}$ circles T_a n_a times, it follows that if λ is any arc in T_a^* from $p_{m_a}^*$ to $p_{m_a}^{**}$, $\varphi[\lambda]$ circles T_a n_a times. Since $\varphi[\beta_1^* \cup \beta_2^* \cup \ldots \cup \beta_{m_a}^*] = \gamma$, γ circles T_a n_a times.

LEMMA 11. Suppose a is an index, i=1,2,..., or m_a , and γ_i is a polygonal loop in T_{ai} such that $\gamma_i \not\sim 0$ in T_{ai} . Suppose γ_i bounds a polygonal singular disc Δ_i in E^3 such that (1) Δ_i is in general position relative to each of Bd T_a and Bd $T_{a(i+1)}$ and (2) each curve of intersection of Δ_i with Bd T_a is trivial on Bd T_a . Then Δ_i intersects Bd $T_{a(i+1)}$ non-trivially.

Proof. Suppose that each curve of intersection of Δ_i with $\operatorname{Bd} T_{a(i+1)}$ is trivial on $\operatorname{Bd} T_{a(i+1)}$. If μ is a curve of intersection of Δ_i with $\operatorname{Bd} T_a$ let δ_μ be a singular disc on $\operatorname{Bd} T_a$ with boundary μ . For each such μ , replace the singular subdisc of Δ_i bounded by μ by δ_μ . If λ is a curve of intersection of Δ_i with $\operatorname{Bd} T_{a(i+1)}$, let δ_λ be a singular disc on $\operatorname{Bd} T_{a(i+1)}$ bounded by λ . For each such λ , replace the singular subdisc of Δ_i bounded by λ by δ_λ . There results a singular disc Δ_i' with boundary γ_i , lying in T_a and disjoint from $\operatorname{Int} T_{a(i+1)}$. Adjust Δ_i' slightly into T_a and slightly away from $T_{a(i+1)}$. If Ω_i denotes the resulting disc, then Ω_i has boundary γ_i , $\Omega_i \subset \operatorname{Int} T_a$, and Ω_i and $T_{a(i+1)}$ are disjoint.

Let T_{ai}^* and $T_{a(i+1)}^*$ be adjacent copies of T_{ai} and $T_{a(i+1)}$, respectively, in T_a^* . By definition, T_{ai}^* and $T_{a(i+1)}^*$ are linked. Let Ω_i^* denote the copy in T_a^* of Ω_i such that the boundary of Ω_i^* lies in T_{ai}^* . Since $\gamma_i \sim 0$ in T_{ai} and Ω_i has γ_i as its boundary, it follows that Ω_i^* intersects $T_{a(i+1)}^{**}$. Since Ω_i and $T_{a(i+1)}$ are disjoint, this is a contradiction. Hence Lemma 11 is established.

LEMMA 12. Suppose that α is an index, U is a simply connected open set in E^3 , and U is a union of elements of G. Suppose there exist an integer i, $1 \le i \le m_a$, and a polygonal loop γ_{ai} in $T_{ai} \cap U$ such that $\gamma_{ai} \sim 0$ in T_{ai} . Then exists a polygonal loop γ_a in $T_a \cap U$ such that $\gamma_a \sim 0$ in T_a .

Proof. Let Δ_i be a polyhedral singular disc bounded by γ_{ai} , lying in U, and such that if $1 \le j \le m_a$, Δ_i is in general position relative to $\operatorname{Bd} T_a$ and $\operatorname{Bd} T_{aj}$. If there exists a curve of intersection γ of Δ_i with

Bd T_a such that γ has non-zero longitudinal component, then γ is a polygonal loop in $T_a \cap U$ such that $\gamma \sim 0$ in T_a . If there exists no curve of intersection of Δ_t with Bd T_a having non-zero longitudinal component, but Δ_t intersects Bd T_a non-trivially, then by Lemma 9, there is a polygonal loop γ_a in $T_a \cap U$ such that $\gamma_a \sim 0$ in T_a .

Therefore we shall suppose that each curve of intersection of Δ_i with $\operatorname{Bd} T_a$ is trivial on $\operatorname{Bd} T_a$. Now consider Δ_i and $T_{a(i+1)}$. Since $\gamma_{ai} \sim 0$ in T_{ai} , then by Lemma 11, Δ_i intersects $\operatorname{Bd} T_{a(i+1)}$ non-trivially. If some curve of intersection of Δ_i with $\operatorname{Bd} T_{a(i+1)}$ has non-zero longitudinal component on $\operatorname{Bd} T_{a(i+1)}$, then there is a polygonal loop $\gamma_{a(i+1)}$ in $T_{a(i+1)} \cap U$ such that $\gamma_{a(i+1)} \sim 0$ in $T_{a(i+1)} \cap U$ such that $\gamma_{a(i+1)} \sim 0$ in $T_{a(i+1)} \cap U$ such that $\gamma_{a(i+1)} \sim 0$ in $T_{a(i+1)}$.

The argument above may be repeated using $\gamma_{a(i+1)}$ and some singular disc Δ_{i+1} , lying in U and bounded by $\gamma_{a(i+1)}$. After finitely many repetitions, we find that we need to consider only the following situation: For each integer j, $1 \le j \le m_a$, there exists a polyhedral singular disc Δ_j in U such that if $\gamma_{aj} = \operatorname{Bd} \Delta_j$, then $\gamma_{aj} \subset T_{aj} \cap U$ and $\gamma_{aj} \sim 0$ in T_{aj} , and each curve of intersection of Δ_j with $\operatorname{Bd} T_a$ is trivial on $\operatorname{Bd} T_a$. Then by Lemma 10, there is a polygonal loop γ_a in $T_a \cap U$ such that $\gamma_a \sim 0$ in T_a . Hence Lemma 12 is established.

8. The main result.

THEOREM 1. Suppose that G is a pointlike simple toroidal decomposition of E^3 as described in Section 3 and such that, in the notation of Section 3, for each index α , $m_{\alpha} < 2n_{\alpha}$. If g is a point of E^3/G belonging to $\mathrm{Cl}P[H_G]$, there is no simply connected open set W in E^3/G such that $g \in W$ and $W \subset P[\mathrm{Int}\,T_0]$.

Proof. Suppose there exists a point g of E^3/G belonging to $\operatorname{Cl} P[H_G]$ and such that there exists a simply connected open set W in E^3/G such that $g \in W$ and $W \subset P[\operatorname{Int} T_0]$. Let U denote $P^{-1}[W]$; since G is a pointlike decomposition of E^3 , then by ([12], Theorem 2.1), U is simply connected. Clearly $U \subset \operatorname{Int} T_0$.

Since $g \in W$, it follows that in E^3 , $g \subset U$. Further, since $g \in \mathrm{Cl}P[H_G]$, then $g \subset \mathrm{Cl}H_G$. Now $\mathrm{Cl}H_G$ is

$$\bigcap\limits_{i=1}^{\infty}\left(\,igcup\{T_{j_1j_2...j_i}\!\colon j_1j_2\,...\,j_i\,\,\, is\,\, an\,\,\, index\}
ight)$$
 .

Thus there exist a positive integer n and a torus $T_{i_1i_2...i_n}$ such that $g \subset T_{i_1i_2...i_n}$ and $T_{i_1i_2...i_n} \subset U$.

There exists, then, a polygonal loop γ_n in $T_{i_1i_2...i_n} \cap U$ such that $\gamma_n \not\sim 0$ in $T_{i_1i_2...i_n}$. By Lemma 12, there is a polygonal loop γ_{n-1} in $T_{i_1i_2...i_{n-1}} \cap U$ such that $\gamma_{n-1} \not\sim 0$ in $T_{i_1i_2...i_{n-1}}$. It follows by induction

and Lemma 12 that there is a polygonal loop γ_0 in $T_0 \cap U$ such that $\gamma_0 \sim 0$ in T_0 .

Since U is simply connected, $\gamma_0 \sim 0$ in U. However, $U \subset \text{Int } T_0$ and $\gamma_0 \sim 0$ in T_0 . This is a contradiction and Theorem 1 is proved.

COROLLARY 1. If G is a decomposition of E^3 satisfying the hypothesis of the theorem, then $E^3|G$ is not strongly locally simply connected.

CORROLLARY 2. If m and n are positive integers, G is a pointlike simple toroidal decomposition of E^3 such that E^3/G is an (m, n)-space, and m < 2n, then E^3/G is not strongly locally simply connected.

COROLLARY 3. Suppose that G is the pointlike decomposition of E^3 described in Section 3 of [7]. Then E^3/G is not strongly locally simply connected.

COROLLARY 4. Suppose that G is the pointlike decomposition described in Section 2 of [4]. Then E³|G is not strongly locally simply connected.

9. Concluding remarks and questions. The condition, in the hypothesis of the theorem above, that the decomposition G of E^3 be pointlike is used only to insure that if W is a simply connected open set in E^3/G , then $P^{-1}[W]$ is simply connected. It is known that such a proposition holds for a larger class of decompositions than pointlike ones. In particular, if each element of G is a compact absolute retract and W is a simply connected open set in E^3/G , then $P^{-1}[W]$ is simply connected; see [3]. Therefore, by the proof of Theorem 1, we may establish the following result.

Theorem 2. Suppose G is a simple toroidal decomposition of E^3 into compact absolute retracts such that, in the notation of Section 3, for each index a, $m_a < 2n_a$. Then E^3/G is not strongly locally simply connected.

The following two question are suggested by the results of this paper.

Question 1. Suppose that G is a pointlike simple toroidal decomposition of E^3 such that E^3/G is strongly locally simply connected. Is E^3/G homeomorphic to E^3 ?

Question 2. Suppose G is a toroidal decomposition of E^3 such that E^3/G is strongly locally simply connected. Is E^3/G homeomorphic to E^3 ?

References

- S. Armentrout, A property of a decomposition space described by Bing, Notices Amer. Math. Soc. 11 (1964), pp. 369-370.
- [2] Small compact simply connected neighborhoods in certain decomposition spaces (to appear).
- [3] Homotopy properties of decomposition spaces, Trans. Amer. Math. Soc. 143 (1969), pp. 499—507.
- [4] and R. H. Bing, A toroidal decomposition of E³, Fund. Math. 60 (1967), pp. 81-87.

- [5] R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. 65 (1957), pp. 456-483.
- [6] A decomposition of E³ into points and tame ares such that the decomposition space is topologically different from E³, Ann. of Math. 65 (1957), pp. 484-500.
- 7] Point-like decompositions of E³, Fund. Math. 50 (1962), pp. 431-453.
- [8] H. W. Lambert, A topological property of Bing's decomposition of E³ into points and tame arcs, Duke Math. J. 34 (1967), pp. 501-510.
- Toroidal decompositions of E³ which yield E³, Fund. Math. 61 (1967), pp. 121-132.
- [10] C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957), pp. 1-26.
- 111] On solid tori, Proc. London Math. Soc. (3) 7 (1957), pp. 281-299.
- [12] T. M. Price, A necessary condition that a cellular upper semicontinuous decomposition of Eⁿ yield Eⁿ, Trans. Amer. Math. Soc. 122 (1966), pp. 427-435.
- [13] R. B. Sher, Toroidal decompositions of E³, Thesis, University of Utah, 1966.
- [14] J. Stallings, On the loop theorem, Ann. of Math. 72 (1960), pp. 12-19.

UNIVERSITY OF IOWA UNIVERSITY OF WISCONSIN

Reçu par la Rédaction le 4. 8. 1968