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A large cardinal in the constructible universe*
by

Jack H. Silver (Berkeley, Calif.)

Tn the first section of this paper, I propose to show that one of the
large cardinal properties introduced by Erdds and his school, namely
x-—a—(a))<s", is consistent with the axiom of construetibility (called ‘V = L’
for short). More precisely, so our argument runs, if #— ()N in the real
world, then %—(w)® in the constructible universe, giving the desired
relative consistency result. For the proof, we adapt to our purpose the
familiar technique from descriptive set theory of expressing a IT; state-
ment in number theory as a statement about well-foundedness [61.

From Reinhardt—Silver [3], it is known that a cardinal » for which
s~ ()N must be quite large, exceeding as it does the first inaccessible
cardinal, the first weakly compact cardinal, and a host of other still
larger cardinals previously introduced. (On the other hand, as Rowbottom
and others have observed ([4], [7]), the first cardinal for which %—>(a})<“°
is vastly smaller than the first measurable cardinal.) Moreover, Row
bottom [4], refining Scott’s [5] celebrated result on measurability, showed
that x~>(w)™™ contradicts V =L and, indeed, he conjectured that the
same would prove true of %—>(w)™N, the conjecture which is refuted here.
Tt does not seem extravagant, then, to assert that, for all practical pur-
poses, n—(w) =™ i3 the strongest strong axiom of infinity known to be
consistent with V = L, and therein lies its chief interest (cf. also the
corollary of section 1 and the subsequent paragraph).

In the second section, we obtain a pseudo-algebraic characterization
of % ()X to the following effect: every algebra of cardinality x has
a subalgebra which admits a non-trivial menomorphism into itself. This
+will answer a question posed in my thesis [7]. The proof utilizes techniques
from model theory.

1. Let us begin by defining the Erdés notation [1]in rather distressing
generality. [XT® is always the set of finite subsets of X.

* This research was supported in part by an NSF Cooperative Graduate Fellowship
and by NSF GP 8746. The Tesults of Section 1 appeared in my Ph. D. Dissertation [7].
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DERNITION. (8) Tf f: [#]°%— 48 where § is any set and X C #, then X is
said to be a set of indiscernibles for f if any two members of [X]<% having
the same cardinality also have the same image under f. )

(b) We say that xe(a)f“" if any function f: [%] <2 has a set of
indiscernibles of order type a.

When the subscript is omitted, it is to be understood that 1= 2
is intended.

L will denote the constructible universe. If 6 is a formmula of set
theory, 6 is the result of relativizing all the quantifiers of 6 to I in the
customary way. The same will apply to terms ¢ built up using set-theoretic
formulas and {: }.

I propose to prove the following theorem, which will, in particnlar,
prove all the relevant claims made in the introduction.

THEOREM. If z->(a)™ and o < w?, then [x—(a) <%,

The significance of this more general form over and above the case
a= o I8 best pointed up by an immediate corollary.

COROLLARY. If x—(a)"™ for all couniable a, then the same is true
of » in L. :

Comparing this with the theorem of Rowhottom that s-s(w,)<¥
contradiets V = 1, we seem to be skating on the edge of a contradiction
when we have both V=1 and %—>{a)"® for all countable a. w,; is the
exact break-off point, (It should be noted that, by Rowbottom ([4], [7]),
zr{a+ o) i properly stronger than x—(a)<X, However, it seems
fair to regard x—(w)<™ ag entirely representative of the whole clags of
statements x—>(a)™™ where « is countably infinite, since none of them
is known to have any particularly distinctive consequences, as compared
with the others. In view of Martin [2], I would hesitate to say the same
of “for all countable a, x—(a)<¥,)

Pursuant to the proof of the theorem, this lemma is needed. )

Levma. Suppose f: [x]® 2, gis a 1-1 map of o onto a, and further
suppose that

8(f, 9) = {h: for some n ¢ ©, hmaps n onto a set of indiscernibles for f,
and, for any i, en, h(5) e h(j) iff g(s) € g(5)} .

Then f has a set of indiscernibles of order type o if and only if §
has an infinite ascending C chain, vIshe
Proof of the Izaemma;. If X is a set of indiscernibles or order
type a for f, sz?y k is an order preserving map of a onto X, then
{k = (gln): % € w} is an infinite ascending chain. On the other hand, if C is

1) R. L. - .
fonnd(ezlmees. Vaught suggested that I reformulate my original proof in terms of well-
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an infinite aseending chain in 8(f, g), then plainly |JC is a function,
say H, from o onto some subset ¥ of » By the definition of §(J, g),
H{#) e H(j) iff g(i) € g(j), whence ¥ also has order type a, H o g-1 being
an order preserving map of « onto Y. Moreover, ¥, an ascending union
of sets of indiscernibles for f, must itself be a set of indiscernibles for f.

Notice that the condition stated in the lemma can be recast in terms
of well-foundedness by reversing C. We can conclude, then, that “f has
a set of indiscernibles of order type o iff S(f,g) is not well-founded
under D”. The prima facie dependence on the axiom of choice involved
in passing from the absence of infinite descending chains to well-found-
edness ean easily be eliminated by noticing that S(f, ¢) can be effectively
well-ordered.

Regarding § as a formal term of ZF defined as in the lemma, we
are now in a position to prove the main theorem. Formally speaking,
we shall be making use of the fact that

() If f: [«1° =2 and ¢: 0=, then f has a set of indiscernibles
of order type o iff 8(f, g) is not well-founded under D.
is & theorem of ZF.

Suppose x—(a)"™ where « < o, Since « < ¥, there is a function
¢ e L such that g: =25 ¢a. By some very trivial absolubeness considera-
tions, [%—(a) ™ will be established once we show: for any feL such
that f: [#]—2, [f has a set of indiscernibles of order type a]®.

We now argue this claim. Suppose f: [»]“¥—2 and feL. Since
x—>(a)<“°, f has a seb of indiscernibles”of order type « in the real world,
80, in the real world, S(f, g) is not well-founded under D. But, manifestly,
8(f,9)% is equal to 8(,g). This is 50 because the definition of §(f, ¢)
involves only finite functions and thoroughly absolute notions.

Furthermore, it is well-known that well-foundedness is absolute,
since it can be defined on the one hand in terms of the absence of sets
with no minimal elements (universally) and on the other hand in terms
of the existence of an order-preserving map into the ordinals. The precise
statement needed here is: for any relation R, R is well-founded iff [R is

. well-founded]™. So 8(f, g) = 8(f, )™ is still not well-founded under D,

even in the sense of L. Thus
[8(f,9) is not well-founded under Q]"L’.
Since (#) is true in L, we conclude
[f has a set of indiscernibles of order type a](L).

This completes the proof of the theorem.
Several glosses should now be made on this section. The arguments
go over with negligible alteration to any transitive model Jf; of ZF in .


GUEST


96 J. H. 8ilver

place of L, whether J6 is an “inner model” containing all ordinaly or
just & common, garden-variety seb. For example, we have:

iﬂ’, and

THEOREM. If 6 is a transitive model of ZF, a,xe My a < o
n—s{a)<®, then J(»[zx»(a)q‘“.(e)

Nor would there have been any harm in retaining the subseript A
throughout our discussion. Sticking to 2 was purely a matter of ex-
pository felicity. \ .

Sticklers for generality will reproach me for not stating a general
theorem, corresponding to the IT; result, from which our particular
absoluteness result can be trivially derived. The following statement
falls somewhat short of this, but it is nonetheless of some small interest.
By way of preliminary definitions, let Ly, be the infinitary first-order
language having countably infinite conjunctions and countably infinite
homogeneous (i.e., non-alternating) blocks of quantifiers but only finitary
predicate and function symbols. A sentence of Lo, is called ewistential
conjunctive if it consists of an initial string of existential quantifiers followed
by a conjunction of atomic formulas and negations of atomic formulas.

THEOREM. Suppose [ is o transitive model of ZF + AC, U is a siructure
which is an clement of b, and o is a sentence such that J|=o is an
existential conjunctive semtence of Loyw,.(3) Then o 18 true in W if and only
if Mol=o is true in A

Finally, a word ig in order concerning the precise statements of our
consistency results. Of course they are all relative consistency results.
Thus, from the main theorem of this section, we conclude at once: if
ZF +Hx(x—>(0)™) is consistent, then ZF+V = L+4+8x(x—>(0)N) is
congistent. The same is true as regards the statement: there exists
a x such that, for all countable a, x —(a)<N,

2. In this section we shall investigate a property closely akin to
#—()"™ and shall in fact finally establish the equivalence of the two
properties (in ZF 4 AQC). )

DEFINITION. We say z-ﬁ;(w)f““ it the following condition holds: for
all f: [%]¥—1 there is an increasing sequence {o;: 4 € w) of ordinals such
that, for each n, f({ay, ..., tn1}) = f({a, -.., au}).

Transparently, =—(w);™ implies ;c?;(w)f“". As before, x— ()N

. X W
will mean x;-(m)f“" and will be the foeus of our discussion. Ultimately,

%ts-equivalence with x-—>‘(w)<x° will be demonstrated, after first restating
it in the pseudo-algebraic terms alluded to before. That the equivalence
(*) As msual, fG |=06 means that 6 is true in 4.
{*) @, is to be understood here ag a term of ZF.
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holds for general 1 is largely a curiosity whose proof does not warrant
the added pains. '

It is of some, though hardly compelling, interest that

Levmuma. For all x, x—r;(m)q{" iff xr;;(w)fx“ (where ¢ = 2¥).

Proof. This proof is closely modeled on Rowbottom’s proof of the
analogous statement for = —>(w)<“" ([7]). Suppose x;(w)q‘“. To prove

x;(w)f“", let f be an arbitrary function from [»]<* into ®2, the set of

" functions from o into 2 (there is no harm in replacing ¢ by “2, a set of

cardinality ¢). We wish to find a sequence {a;: ¢ € w)> with the property
mentioned above in the definition. Define a new function g as follows:
if m= 2"'(2.9-}1) and f§; < ... < pBm are elements of »x, let g({fy, ..., Bm})
= f{{Br, -, Bs})(D). (Recall that f({fi, ..., f}) maps o into 2.} Since g
maps [»]° into 2, x;(wf ° gives us a sequence <a;: %ew) With

gl{agy -y om—1}) = g{{ay, ..., am}) for all m. To see that f({ag,...; @s-1})
= f({ay, ..., @m}), We show that their ith coordinates are the same for
each 4. But, if m= 2i(2s+1) then g({ay, ..., am—1}), the ith coordinate
of f({agy -y @s-1}), and g{{ay, ..., am}), the ith coordinate of f({ay, ..., as}),
are indeed equal. Thus <ai: 7 € w) has the requisite property.

Much of the mathematical interest of the property x;(w)«“ derives

from the following characterization (in which an algebra is understood
to be a structure with countably many operations).
PROPOSITION. x;(w)q{“ if and only if, for every algebra W of cardi-

nality =, there is some subalgebra B of U such that there is a non-trivial
monomorphism of B into iiself.

Necessity. Suppose A = {4, gi)icn. We may assume 4 = » without
loss of generality. If B, < ... < Bu are elements of , let f({#;, ..., fa}) = the
set of open formulas in first-order logic satisfied by {Bi, ..., f»> in the
structure . (It will be understood throughout that we have a fixed
enumeration 2y, vy, ..., of variables. In the present context, , corresponds
to vy, f, to »,, ete.). The number of possible sets of formulas being ¢, we
may apply x;(w)i““ (invoking the lemma) to get an increasing sequence

{ai: iewd so that, for any =, f({og; .., ta-1})=Ff({oq; .., 0n}), Le.
Loy woy An_yy a0d {ay, ..., an) satisfy the same open formulas in A. Let B
be the subalgebra of 9% generated by {ai: 7 ¢ w}. We now claim that there
is & monomorphism F of B into itself defined by Flz(ay, ..., @-1))
= 7(ay, ..., &), Where T is any term of the relevant first-order language
and ‘where (g, ..., ay—3) i8 the result of evaluating, in the structure %,
the term v with o; assigned to the sth variable v; for each 7. For example
to see that the above equation defines a 1-1 function, notice that
(g, vy Anoy) = T(Ggy vuey Gna)  HE (G, eey an) = 7@y ory an), since
Fundamenta Mathematicae, T. LXIX 7
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{dgy vy Un1y satisfies the formula T(vy, ..., ¥a-1) = 7'(Vy, ..y Vpy) iff
{ay, oy 0y does. Of course, it is evident that every member of B can
be written in the form z(og, ..., tx-1). That F is a monomorphism is im-
mediate from the defining equation of F. F'is non-trivial because F (o) = o,.

Sufficiency. Suppose f: [¥]<
functions by setting

GilBrs ey B3) = F({Bry ooy Bi})

for each i€ and fi, ..., i e x. Let J be the characteristic function of
the e relation on = Consider the algebra A = (x,J, i, 0, 1>ien. Our
condition guarantees the existence of a subalgebra B of % having a non-
trivial monomorphism F into itself. Let ¢, be an element moved by F.
Define inductively op.1= F(an). I o, < g, then J(ay, ap) =1, so ap-
plying F successively, we would have J(ani1, ax) =1, giving us a de-
seending chain. Hence oy < @; < a, << ... This sequence has the desired
property because (since F preserves 0 and 1)

—>2. 8plit this into infinitely many

f({am ) a‘"*l}) = gﬂ(aﬂi vy 0tn—l) ZF(_(]n(ag, ., an_l))
= gn(ary ey ) = f({ar, oovy o)) .
TapORER, If #(0) %, then s> ()]

Proof. Assume x;;(w)(m’, and let f: [#]®~2 be arbitrary. We seek

an infinite set of indiscernibles for f. Consider the structure D
= {1, <, fidiew; < the usual ordering of », where f; is i-ary, defined by:

JilBus ooy Be) = F({Bry ey Bi}) Bry oy Brex.

In a standard way, we can endow this structure with Skolem functions 91,
so that any subalgebra of {x, g:)ic, is an elementary substructure of D
(for brevity, I am confounding structures with their universes). By the
proposition, x;(w)q“ guarantees the existence of a subalgebra B’ of

{x,g:» with a non-trivial monomorphism F of B’ into itself. Let B
= (B, <, fi> be the substructure of D with the same universe as B’
B is an elementary substructure of D, and F is an elementary mono-
morphizm of B into itself.

Let o, be the smallest element of B moved by F. Define inductively:
ani1=F(as). I 04>, then successively applying F to both sides,
@y > 0Oy, 0y > a3, efe. giving us a descending chain. Hence 0y < a; and,
successively applying P,y <, < a, < .. We intend o show that
{a1: i e ©} is a set of indiscernibles for I

This is done most aptly by proving, using induction on m, the
following statement: if 1 <m <n and 9 < w.o < iy, then '

flag, oy anad) = fl{as, ..

for

3 Bmy Ligt1y ey Aiptn—am)) 5
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ie.
Fnl@gy ooy @ng) = Faliyy ey Qigy Giprty wons Qiin—m) -

The case m = n directly implies the desired indiscernibility of the ;.
Turning to the proof, notice that F™, the result of iterating F' ¢; times,
is still an elementary monomorphism of B, from which we infer
that falagy -y @n—1) = 0 iff fo(as, agq1, ooy @in—1) = 0, 0 Deing definable
and hence fixed by elementary monomorphisms. Since f, assumes only
the values 0 and 1, the desired equality follows in case m = 1.

For the induction step, suppose the above statement is true for m
and suppose that m+1 <n. Let k= m+1. Tt will suffice, by induction
hypothesis, to see that

(%)

For the moment, we examine a situation which is ostensibly quite different.
Let p = ix—(im+1). If By, ..., Bn are elements of B less than a,, then

Sul@iry woey Qimy Cimrry -oe) = fal@yy eey Qipy Ty g1y eee)

fn(lgly seey ﬂmy Qpy -eny aﬂ—m—l) =0 iff fﬂ(ﬁm arey ﬁm, Apy aery ap+n—m—-l) =90 ’

since F” is an elementary monomorphism of B which fixes B, ..., fm.
Thus,

(Vi vy B < @) (Fal@1y ooy Ty Cay oovy Onemey)

= fal®1; ooy Bmy apy ooy ap+n—-m-1))

is true in B. Applying F™** to this sentence, we conclude that
(Vaty, ..oy o < aim+l)(fn(w17 vy Ty Lig 41y ony Rigtnm)

=fn(a71, eory Ty Aigy Ligy1y -“))
is also true in B. Setting @, = a4, ..., Tm = as, we obtain just the thing
we set out to prove, the equality (x).
The hard direction completed, the desired equivalence of x—(w)~¥
with n;(m)<No is now established. We conclude with a word on gener-

alizing to arbitrary 2 (i.e., x— ()5 iff z?y(w)fx“). The proof of the last

theorem must be modified slightly to insure that F preserves every
element less than A. This can be done by first improving the lemma to
assert the equivalence of x->(w)i™ with »~>(w)ja® and by then refining
the detinition of f in the proof of the proposition to deal with elements <1
(so that, under our revised definition of f, two sets of cardinality » will
have the same image if and only if, when viewed as increasing n-triples,
they satisfy the same open formulas in 9 and, for each term 7, give the
same values in U upon substitution in v, provided either value is less
than A). It should be stressed that we have replaced the existing propo-
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sition not by its full analogue for general A but rather by a modified form
in which the algebras still have countably many operations but the mono-
morphism is required to fix every element of A present in’®B. In the full
analogue, we would replace ‘algebra’ by ‘algebra having 1 operations’,
This full analogue does in fact hold, but its proof depends upon the
equivalence of %—(w)5™ with Kox (@)™ and uses vesults of [3], in par-

ticular the equivalence of %—»(@)7™ with x—(w)3%.
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