

Sur l'intégration directe des équations d'évolution

par

T. LEZAŃSKI (Lublin)

Faisons correspondre à tout nombre réel $t \in (0, \tau)$ un espace réel complet X_t de Banach, avec la norme $\|\cdot\|_t$. Pour $\varepsilon > 0$, $0 \le t \le \tau - \varepsilon$ soit définie l'opération linéaire $S(t, \varepsilon) \in X_t \to X_{t+\varepsilon}$. Admettons les hypothèses suivantes:

(A) Π existe des fonctions réelles $\varphi(t,\varepsilon)$ et $\psi(t), \varphi(t,\varepsilon) \geqslant 1, \psi(t)$ croissante et $\psi(0)=0$, telles que $0\leqslant t_1\leqslant t_2\leqslant \ldots\leqslant t_n\leqslant \tau, \ \delta_i=t_{i+1}-t_i$ entraı̂ne

(1)
$$\prod_{i=1}^{n-1} \varphi(t_i, \delta_i) \leqslant \psi(t_n - t_1),$$

(2)
$$||S(t,\varepsilon)x||_{t+\varepsilon} \leqslant \varphi(t,\varepsilon) ||x||_t (x \in X_t, 0 \leqslant \varepsilon \leqslant \varepsilon).$$

(B) Pour $t \in (0, \tau)$ il existe un ensemble $Z_t \subset X_t$ convexe, fermé et contenant 0, tel que

(3)
$$S(t, \varepsilon)x \in Z_{t+\varepsilon}$$
 si $x \in Z_t$,

(C) Il existe un nombre C>0 tel que pour $x\,\epsilon Z_t,\,\delta\,,\,\epsilon\geqslant 0$ l'inégalité (4) a lieu:

(4)
$$||S(t, \delta+\varepsilon)x - S(t+\delta, \varepsilon)S(t, \delta)x||_{t+\delta+\varepsilon} \leq C\delta\varepsilon.$$

Définissons les fonctions abstraites (f. ab.) comme les transformations de la forme $\langle 0, \tau \rangle illet t \to x(t) \epsilon X_t$, et posons

(5)
$$\frac{D}{Dt}x(t) = \lim_{\varepsilon \downarrow 0} \frac{1}{\varepsilon} [x(t) - S(t - \varepsilon, \varepsilon)x(t - \varepsilon)],$$

si la limite ci-dessus existe au sens fort dans X_i . Nous donnerons dans ce travail les conditions suffisantes pour que les équations

(6)
$$\frac{D}{Dt}x(t) = 0 \text{ (resp. } \frac{D}{Dt}x(t) = y(t)), \quad x(0) = a \in X_0$$

admettent des solutions uniques dans une certaine classe linéaire de fonctions abstraites. Nous donnerons aussi une application à l'équation

$$\frac{d}{dt}x(t) = A_t(x(t)),$$

où A_t sont fermées et linéaires. Nous construirons les solutions de (6) d'une manière effective, à l'aide d'un "produit-intégrale".

Soient $s \in \langle 0, \tau \rangle$, π une division de l'intervalle $\langle s, \tau \rangle$:

$$0 \leqslant s = t_0 \leqslant t_1 \leqslant \ldots \leqslant t_p = \tau, \quad \delta_i = t_{i+1} - t_i.$$

A toute division π on peut faire correspondre une opération linéaire $T(\pi,s,t)$ définie sur X_s et à valeurs dans X_t telle que

(7)
$$T(\pi, s, t)x = S(t_k, t-t_k)S(t_{k-1}, \delta_{k-1})...S(t_0, \delta_0)x,$$

si
$$x \in X_s = X_{t_0}$$
 et $t_k \leqslant t \leqslant t_{k+1}$.

Lemme 1. Pour $0 \leqslant s \leqslant t \leqslant \tau$, $x \in X_s$ on a

(8)
$$||T(\pi, s, t)x||_{t} \leq \psi(t-s)||x||_{s}.$$

Démonstration. En faisant usage des inégalités (2) et (1) de l'hypothèse (A), on obtient

$$\|T(\pi,s,t)x\|_t\leqslant \varphi(t,t-t_k)\prod_{i=0}^{[k-1}\varphi(t_i,\,\delta_i)\|x\|_s\leqslant \psi(t-s)\|x\|_s,\quad \text{ c.q.f.d.}$$

LEMME 2. Avec les notations précédentes on a, pour $x \in Z_{t_0}$,

(9)
$$\|S(t_n, \delta_n)S(t_{n-1}, \delta_{n-1}) \dots S(t_0, \delta_0)x - S(t_0, \delta_0 + \dots + \delta_n)x\|t_{n+1} \le C\psi(t_{n+1} - t_0)(t_{n+1} - t_0)^2.$$

Démonstration. En vertu de (4) et de (1), on a

$$\begin{split} & \|S(t_n,\,\delta_n)\,S(t_{n-1},\,\delta_{n-1})\,\ldots\,S(t_0,\,\delta_0)\,x - S(t_0,\,\delta_0 + \ldots + \delta_n)\,x\|_{l_{n+1}} \\ & \leqslant \|S(t_n,\,\delta_n)\,[S(t_{n-1},\,\delta_{n-1})\,\ldots\,S(t_0,\,\delta_0) - S(t_0,\,\delta_0 + \ldots + \delta_{n-1})]\,x\|_{l_{n+1}} + \\ & + \|S(t_n,\,\delta_n)\,S(t_0,\,\delta_0 + \ldots + \delta_{n-1})\,x - S(t_0,\,\delta_0 + \ldots + \delta_n)\,x\|_{l_{n+1}} + \\ & \leqslant \varphi(t_n,\,\delta_n)\,\|S(t_{n-1},\,\delta_{n-1})\,\ldots\,S(t_0,\,\delta_0)\,x - S(t_0,\,\delta_0 + \ldots + \delta_{n-1})\,x\|_{l_{n+1}} + \\ & + C\cdot(\delta_0 + \delta_1 + \ldots + \delta_{n-1})\cdot\delta_n, \end{split}$$

d'où, en désignant par r_n le premier membre de (9), et en posant $\gamma_n = \delta_0 + \ldots + \delta_n = t_{n+1} - t_n$, $\alpha_n = \varphi(t_n, \delta_n)$ on obtient $r_n \leqslant \alpha_n \cdot r_{n-1} + C\gamma_{n-1} \delta_n$, $r_0 = 0$. Or, une induction facile donne, vu que $\gamma_i > 0$, $\alpha_i \ge 1$,

$$\begin{split} r_n &\leqslant C \cdot a_0 \dots a_n \cdot (\delta_0 + \dots + \delta_n) \gamma_{n-1} \\ &= C \prod_{i=0}^n \varphi(t_i, \, \delta_i) (t_{n+1} - t_0) (t_n - t_0) \leqslant C \psi(t_{n+1} - t_0) (t_{n+1} - t_0)^2, \end{split}$$

c.q.f.d.

LEMME 3. Soient $t_0 \in \langle 0, \tau \rangle \pi$, $t_0 \leqslant t_1 \leqslant \ldots \leqslant t_p = \tau$ une division de l'intervalle $\langle t_0, \tau \rangle$ et σ_n : $t_n = s_1^n \leqslant s_2^n \leqslant \ldots \leqslant s_{r_n}^n = t_{n+1}$ une division de l'intervalle $\langle t_n, t_{n+1} \rangle$. Posons: $\delta_i = t_{i+1} - t_i$, $\delta_i^n = s_{i+1}^n - s_i^n$, $\Delta = \max \delta_i$. Posons enfin, pour $x_0 \in Z_t$.

$$x_{n+1} = S(t_n, \, \delta_n) \dots S(t_0, \, \delta_0) x_0,$$

$$y_{n+1} = S(s_{r_{n-1}}^n, \, \delta_{r_{n-1}}^n) \dots S(s_1^n, \, \delta_1^n) y_n.$$

On a a

(10)
$$||x_n - y_n||_{t_n} \leqslant C \psi(\Delta) \Delta \cdot \psi(t_n - t_0)(t_n - t_0).$$

Démonstration. Remarquons d'abord que les éléments x_n et y_n appartiennent, d'après (3), hypothèse (B), à l'ensemble Z_{t_n} , de sorte que l'inégalité (4), hypothèse (C), est applicable. En remplaçant alors dans (9), lemme 2, t_0 par t_n , x par y_n et δ_i par δ_i^n , on obtient

$$\begin{split} \|y_{n+1} - S(t_n, \ \delta_n) \, y_n\|_{t_{n+1}} \\ &= \|S(s^n_{r_{n-1}}, \ \delta^n_{r_{n-1}}) \, \dots \, S(s^n_1, \ \delta^n_1) \, y_n - S\left(s^n_1, \sum_{i=1}^{r_n-1} \ \delta^n_i\right) y_n\|_{t_{n+1}} \\ &\leqslant C \psi(t_{n+1} - t_n) (t_{n+1} - t_n)^2 = C \psi(\delta_n) (\delta_n)^2, \end{split}$$

ayant égard à

$$\delta_n = t_{n+1} - t_n = \sum_{i=1}^{r_n-1} \delta_i^n.$$

Vu que $x_{n+1} = S(t_n, \delta_n)x_n$, on tire de l'inégalité obtenue:

$$\begin{split} \|x_{n+1} - y_{n+1}\|_{t_{n+1}} & \leq \|y_{n+1} - S(t_n, \ \delta_n) x_n\|_{t_{n+1}} \\ & \leq \|y_{n+1} - S(t_n, \ \delta_n) y_n\|_{t_{n+1}} + \|S(t_n, \ \delta_n) (y_n - x_n)\|_{t_{n+1}} \\ & \leq C \psi(\delta_n) \, \delta_n^2 + \varphi(t_n, \ \delta_n) \, \|x_n - y_n\|_{t_{n+1}}. \end{split}$$

Nous obtenons par induction, en tenant compte du fait que $y_0 = x_0$ et que la fonction ψ est croissante,

$$\begin{split} \|x_n - y_n\|_{t_n} &\leqslant C \max \psi(\delta_i) \prod_{i=0}^{n-1} \varphi(t_i, \, \delta_i) \sum_{i=0}^{n-1} \delta_i^2 \\ &\leqslant C \psi(\varDelta) \, \psi(\delta_0 + \ldots + \delta_{n-1}) (\delta_0 + \ldots + \delta_{n-1}) \, \varDelta \\ &\leqslant C \psi(\varDelta) \, \varDelta \cdot \psi(t_n - t_0) (t_n - t_0), \end{split}$$

c.q.f.d.

En conservant les notations du lemme 3, définissons par σ la division de l'intervalle $\langle t_0, \tau \rangle$ engendrée par l'union de toutes les divisions σ_n des intervalles $\langle t_n, t_{n+1} \rangle$. Considérons les opérations $T(\pi, t_0, t)$ et $T(\sigma, t_0, t)$, définies par (7). Or nous avons, d'après (7), pour $x \in Z_{t_0}$,

(11)
$$T(\bar{x}, t_0, t)x = S(t_n, t-t_n)S(t_{n-1}, \delta_{n-1}) \dots S(t_0, \delta_0),$$

(12)
$$T(\sigma, t_0, t)x = S(s_k^n, t - s_k^n) S(s_{k-1}^n, \delta_{k-1}^n) \dots S(s_1^n, \delta_1^n) y_n,$$

si $t_n \leqslant s_k^n \leqslant t \leqslant s_{k+1}^n \leqslant t_{n+1}$; or, remplaçant dans (10) n par n+1, et puis en y identifiant t avec t_{n+1} on obtient de (10)

Lemme 4. Soient $0 \leqslant s \leqslant \tau, \pi$ une division de l'intervalle $\langle s, \tau \rangle, \sigma$ une subdivision de π, Δ le diamètre de π . On a alors pour $x \in Z_s$

(13)
$$||T(\pi, s, t)x - T(\sigma, s, t)x||_{t} \leqslant C\Delta\psi(\Delta)(t-s)\psi(t-s).$$

Soit maintenant π_n une suite croissant de divisions (c.-à-d. telles que $\pi_{n+1} \supset \pi_n$), et telles que $\Delta(\pi_n) \to 0$. Pour $x \in Z_s$ la suite $T(\pi_n, s, t)x$ est alors fondamentale, car, en vertu du lemme 4, inégalité (13), on a

$$\|T(\pi_n, s, t)x - T(\pi_m, s, t)x\|_t \leq 2C\Delta(\pi_n)\psi(\Delta(\pi_n))(t-s)\psi(t-s).$$

Or, l'espace X_t étant complet, la suite $T(x_n, s, t)x$ converge en norme $\|\cdot\|_t$ vers un élément que nous désignons par T(s, t)x. On a alors par définition

(14)
$$T(s,t)x = \lim_{n} T(\pi_{n}, s, t)x \quad \text{pour } x \in Z_{s}.$$

Il est évident que cette limite de dépend pas de la suite π_n , pourvu qu'on ait $\Delta(\pi_n) \to 0$. En effet, π et π' étant deux divisions arbitraires, leur union σ est une subdivision de π et de π' , de sorte que le lemme 4 donne, pour $x \in Z_s$,

$$||T(\pi, s, t)x - T(\pi', s, t)x||_{t} \leq 2C\psi(\Delta) \cdot \Delta \cdot (t-s)\psi(t-s),$$

où $\Delta = \max[\Delta(\pi), \Delta(\pi')]$, ce qui prouve notre assertion.

De même, l'hypothèse $\pi_{n+1} \supset \pi_n$ n'est pas essentielle, car, $\pi_1, \pi_2, \ldots, \pi_n$ étant une suite arbitraire de divisions, on a pour $\sigma_n =$ union de π_1, \ldots, π_n : $\sigma_{n+1} \supset \sigma_n$ et $\Delta(\sigma_n) \leqslant \Delta(\pi_n)$. Enfin, la condition $x \in Z_s$ peut évidemment être remplacée par $x \in \text{lin}(Z_s)$, de sorte que

$$T(s,t)x = \lim_{n} T(\pi_n, s, t)x \quad (x \in \lim_{n} (Z_s)).$$

On a de plus

(15)
$$T(s,t) \in \mathbb{Z}_s \to \mathbb{Z}_t.$$

En effet, si $x \in Z_s$, chacun des éléments $T(\pi_n, s, t) x \in Z_t$, en vertu de (3), hyp. (B). Or, Z_t étant fermé, (14) entraı̂ne (15).

Notons encore:

(16)
$$||T(s,t)x||_t \leqslant \psi(t-s) ||x||_s \quad (x \in \operatorname{lin}(Z_s), \ 0 \leqslant s \leqslant t \leqslant \tau).$$

Pour $x \in \mathbb{Z}_s$ c'est une simple conséquence de (8) et (14); le passage au cas $x \in \text{lin}(\mathbb{Z}_s)$ est évident. On a évidemment T(s, s) x = x pour $x \in \text{lin}(\mathbb{Z}_s)$.

LEMME 5. Pour $0 \leqslant s \leqslant t \leqslant \tau - \varepsilon$, $x \in \mathbb{Z}_s$ et $\varepsilon \geqslant 0$ on a

(17)
$$||S(t,\varepsilon)T(s,t)x-T(s,t+\varepsilon)x||_{t+\varepsilon} \leqslant C\psi(\varepsilon)\varepsilon^2.$$

Démonstration. Soit $0 \leqslant s = s_1 \leqslant s_2 \leqslant \ldots \leqslant s_{p+1} = t = t_1 \leqslant t_2 \ldots \leqslant t_{n+1} = t + \varepsilon \leqslant t_{n+2} \leqslant \ldots \leqslant t_r = \tau$ une division de l'intervalle $\langle s, \tau \rangle$ contenant les points $s, t, t + \varepsilon$. En vertu de (3), $T(\pi, s, t)x \in Z_t$, de sorte que (9) donne

$$\begin{split} \|S(t,\varepsilon)T(\pi,s,t)x - T(\pi,s,t+\varepsilon)x\|_{t+\varepsilon} \\ &= \|S(t_n,\delta_1 + \ldots + \delta_n)T(\pi,s,t)x - \\ &- S(t_n,\delta_n)S(t_{n-1},\delta_{n-1})\ldots S(t_1,\delta_1)T(\pi,s,t)x\|_{t+\varepsilon} \\ &\leqslant C\psi(t_{n+1}-t_1)(t_{n+1}-t_2)^2 = C\psi(\varepsilon)\varepsilon^2. \end{split}$$

Soit maintenant π_n une suite de divisions contenant les points $s,t,t+\varepsilon$ et telles que $\Delta(\pi_n) \to 0$. Or, (17) étant vraie pour $T(\pi_n,s,t)x$ $(n=1,2,\ldots)$, il en est de même pour $T(s,t)x = \lim T(\pi_n,s,t)x$ vu que l'opération $S(t,\varepsilon)$ est linéaire et bornée, c.q.f.d.

Définition. Une fonction abstraite $x(\cdot)$, $x(t) \in X_t$, sera dite uniformément différentiable (un. diff.) si pour tout $\delta > 0$ il existe un $\varepsilon(\delta)$ tel que $0 < \varepsilon \le \varepsilon(\delta)$ entraı̂ne (pour la définition de D(x/(t))/Dt voir (5))

$$\left\| \frac{D}{Dt} x(t) - \varepsilon^{-1} [x(t) - S(t - \varepsilon, \varepsilon) x(t - \varepsilon)] \right\|_{t} \leq \delta.$$

Les f.ab.un. diff. forment évidemment un ensemble linéaire.

Lemme 6. Si $x(\cdot)$ est une f.ab.un. diff. et si $D\big(x(t)\big)/Dt=0$ pour $t_1\leqslant t\leqslant t_2,\ alors$

$$||x(t_2)||_{t_2} \leqslant \psi(t_2 - t_1) ||x(t_1)||_{t_1}.$$

Démonstration. Soit $\delta>0$ arbitraire; choisissons un nombre naturel n suffisamment grand pour que $0<\varepsilon\leqslant n^{-1}(t_2-t_1)$ entraîne

$$\left\|\frac{1}{\varepsilon}\left[S(t-\varepsilon,\varepsilon)x(t-\varepsilon)-x(t)\right]\right\|_{t} \leqslant \delta.$$

Posons $s_i=t_1+(i/n)(t_2-t_1), i=1,\,2,\,...,\,n,\,\delta_i=s_{i+1}-s_i=(1/n)(t_2-t_1).$ On obtiendra alors de (2) et (1)

$$\begin{split} \|x(s_{i+1})\|_{s_{i+1}} - \varphi(s_i, \ \delta_i) \|x(s_i)\|_{s_i} &\leqslant \|x(s_{i+1})\|_{s_{i+1}} - \|S(s_i, \ \delta_i) x(s_i)\|_{s_{i+1}} \\ &\leqslant \|S(s_i, \ \delta_i) x(s_i) - x(s_{i+1})\|_{s_{i+1}} \leqslant \delta_i \, \delta = \frac{1}{n} \, (t_2 - t_1) \, \delta, \end{split}$$

d'où l'on tire par induction

$$\begin{split} \|x(t_2)\|_{t_2} &= \|x(s_n)\|_{s_n} \leqslant \prod_{i=0}^{n-1} \varphi(s_i, \ \delta_i) \|x(t_1)\|_{t_1} + (n-1) \, n^{-1} (t_2 - t_1) \, \delta \\ &\leqslant \psi(t_2 - t_1) \, \|x(t_1)\|_{t_1} + (t_2 - t_1) \, \delta, \end{split}$$

ce qui prouve (18), δ étant arbitrairement petit, c.q.f.d.

Théorème 1. Soient $0 \le s < \tau$, a $\epsilon \lim(Z_s)$. Alors laf. ab. x(t) = T(s,t)a est une solution de l'équation

$$\frac{D}{Dt}x(t) = 0, \quad s < t \leqslant \tau, \quad x(s) = a,$$

unique dans la classe des f. ab. uniformément différentiables.

Demonstration. Soit d'abord $a \in Z_s$; alors $T(s, t) a \in Z_t$, de sorte que le lemme 5 est applicable. Alors (17) montre que

$$\frac{D}{Dt}T(s,t)a=0$$

et que, de plus, T(s,t)a est une f. ab. un. diff., ce qui prouve la première partie du théorème. L'unicité découle immédiatement de (18), lemme 6. Le passage de Z_s à $\lim(Z_s)$ est évident, c.q.f.d.

Théorème 2. Soient $0 \leqslant t_1 \leqslant t_2 \leqslant t_3 < \tau$, $x \in \lim(Z_{t_1})$. On a alors

(20)
$$T(t_2, t_3)T(t_1, t_2)x = T(t_1, t_3)x.$$

Démonstration. Posons $x(t) = T(t_1, t)x, y(s) = T(t_2, s)x(t_2)$. On a alors

$$\frac{D}{Dt} x(t) = 0, \quad \frac{D}{Ds} y(s) = 0,$$

$$y(t_2) = T(t_2, t_2)x(t_2) = x(t_2),$$

de sorte que le théorème 1 donne y(t) = x(t) pour $t_2 \leqslant t < \sigma$, c.-à-d.

$$T(t_2, t)T(t_1, t_2)x = T(t_1, t)x.$$

Le passage au cas $\lim_{t \to 0} (Z_{t_1})$ est évident, c.q.f.d.

THÉORÈME 3. Soient $t_1 \in (0, \tau)$, $y(t) \in Z_{t_1}(t \ge 0)$. Si la dérivée

$$d^{+}y(t) = \lim_{\varepsilon \downarrow 0} \frac{1}{\varepsilon} \left[y(t+\varepsilon) - y(t) \right]$$

existe dans X_{t_1} en norme $\| \|_{t_1}$, alors $D(T(t_1, t)y(t))/Dt$ existe aussi et on a

(21)
$$\frac{D}{Dt}T(t_1, t)y(t) = T(t_1, t)d^+y(t).$$

Démonstration. En vertu de (20) on a pour $\varepsilon > 0$

$$\begin{split} \left\| \frac{1}{\varepsilon} \left[S(t-\varepsilon,\,\varepsilon) T(t_1,t-\varepsilon) y(t-\varepsilon) - T(t_1t) y(t) \right] - T(t_1,t) \left\{ \frac{1}{\varepsilon} \left[y(t-\varepsilon) - y(t) \right] \right\} \right\| \\ = \left\| \frac{1}{\varepsilon} \left[S(t-\varepsilon,\,\varepsilon) - T(t-\varepsilon,\,t) \right] T(t_1,\,t-\varepsilon) y(t-\varepsilon) \right\|_t \leqslant C_{\boldsymbol{\psi}}(\varepsilon) \,\varepsilon. \end{split}$$

On obtient cette inégalité de la formule (17), lemme 5, en y posant $T(t_1, t-\varepsilon)y(t-\varepsilon)$ pour x et $t-\varepsilon$ pour t. Le lemme 5 est applicable, car $y(t) \in Z_t$, entraîne, en vertu de (16), que

$$T(t_1, t-\varepsilon)y(t-\varepsilon)\epsilon Z_{t-\varepsilon}$$
.

L'inégalité obtenue établit notre conclusion, vu que $T(t_1,t)$ est bornée en vertu de (15), c.q.f.d.

Définition. Une f. ab. $x(\cdot)$: $x(t) \in X_t$ sera dite uniformément T-continue (un. T-con.), si pour tout $\delta > 0$ il existe un $\vartheta > 0$ tel que $0 \le \varepsilon \le \vartheta$ entraîne

(22)
$$||x(t+\varepsilon)-T(t,t+\varepsilon)x(t)||_{t+\varepsilon} \leqslant \delta.$$

Définissons \mathfrak{M} comme l'ensemble des fonctions ab. $x(\cdot)$ un. T-con., telles que $x(t) \in \mathbb{Z}_t$ pour $0 \le t \le \tau$. Soit $y(\cdot) \in \mathfrak{M}$. En vertu du lemme 7 la f. ab. z(s) = T(s,t)y(s) considérée, pour t fixé comme fonction de la variable s, a ses valeurs dans l'espace fixé X_t , et elle y est continue en norme $\|\cdot\|_t$, de sorte que l'intégrale $\int\limits_t^t T(s,t)y(s)ds$ existe.

THÉORÈME 4. Si la f.ab. $y(\cdot) \in \mathfrak{M}$, alors la f.ab. $\int\limits_0^t T(s,t)y(s)\,ds$ est un. diff., et on a

(23)
$$\frac{D}{Dt} \int_{0}^{t} T(s,t) y(s) ds = y(t).$$

Démonstration. Soit $\delta > 0$; $y(\cdot)$ étant supposée un. T-con., il existe un nombre $\vartheta > 0$ tel qu'on a, pour $t - \varepsilon \leqslant s \leqslant t$,

$$||T(s,t)y(s)-y(t)||_t \leqslant 2^{-1}\delta \quad (0 \leqslant \varepsilon \leqslant \vartheta).$$

Posons $\varepsilon_1 = \min\left(\vartheta, \left(2C\tau\psi(\tau)\right)^{-1}\delta\right)$. Or, comme l'hypothèse $y(\cdot) \in \mathfrak{M}$ entraı̂ne $y(s) \in Z_s$, on a, en vertu de (15), $T(s, t-\varepsilon)y(s) \in Z_{t-\varepsilon}$, de sorte qu'on tire de (17), lemme 5, en y posant $T(s, t-\varepsilon)y(s)$ au lieu de x, l'inégalité suivante, vraie pour $0 < \varepsilon \leqslant \varepsilon_1$:

$$\begin{split} \left\| \frac{1}{\varepsilon} \left\{ \int_{0}^{t} T(s,t) y(s) ds - S(t-\varepsilon,\varepsilon) \int_{0}^{t-\varepsilon} T(s,t-\varepsilon) y(s) ds \right\} - y(t) \right\|_{t} \\ & \leq \left\| \frac{1}{\varepsilon} \int_{0}^{t-\varepsilon} \left[T(t-\varepsilon,t) - S(t-\varepsilon,\varepsilon) \right] T(s,t-\varepsilon) y(s) ds \right\|_{t} + \\ & + \left\| \frac{1}{\varepsilon} \int_{t-\varepsilon}^{t} \left[T(s,t) y(s) - y(t) \right] ds \right\|_{t} \\ & \leq \varepsilon^{-1} (t-\varepsilon) C \psi(\varepsilon) \varepsilon^{2} + \frac{\delta}{2} \leq \tau C \psi(\tau) \varepsilon_{1} + \frac{\delta}{2} \leq \delta, \end{split}$$

ce qui prouve la conclusion, c.q.f.d.

THÉORÈME 5. Soient $y(\cdot) \in \mathfrak{M}$, $a \in \mathbb{Z}_0$. Alors la f. ab.

$$x(t) = \int_{0}^{t} T(s, t) y(s) ds + T(0, t) a$$

est une solution de l'équation

(24)
$$\frac{D}{Dt}x(t) = y(t), \quad x(0) = a,$$

unique dans la classe des fonctions uniformément différentiables.

Démonstration. La première partie de notre conclusion découle du théorème 4; l'unicité est une conséquence du lemme 6, vu que la f. ab. $x(\cdot)$ définie plus haut est uniformément différentiable, en vertu du théorème 4 et du lemme 5, c.q.f.d.

Nous donnerons une application de la théorie développée ci-dessus à l'équation $d(x(t))/dt = A_t x(t)$.

Soient X un espace réel de Banach avec la norme $\|\cdot\|$, M un sousensemble linéaire dense de X, A_t une famille d'opérations linéaires, A_t : $M \to X$, chacune d'elles définie sur M et fermée dans M, remplissantes les conditions suivantes: pour $0 \le \varepsilon \le \overline{\varepsilon}$ on a $(I - \varepsilon A_t)(M) = X$

$$||A_tx-A_sx||\leqslant \mu\,|t-s|\;||A_tx||\quad (x\in M)\,,$$

où α et μ sont des constantes positives. On déduit de (26) l'existence de $\lambda_1,\,\lambda_2>0$ telles que

(27)
$$\lambda_1 \|A_t x\| \leqslant \|A_0 x\| \leqslant \lambda_2 \|A_t x\| \quad (0 \leqslant t \leqslant \tau, x \in M).$$

Les hypothèses énumérées ici sont suffisantes pour l'existence de $\exp(\varepsilon A_t)$, pour $\varepsilon > 0$, t fixé. On a de plus, en vertu de (25)

(28)
$$\|\exp(\varepsilon A_t)x\| \leqslant e^{\alpha \varepsilon} \|x\|.$$

Posons pour $0 \leqslant t \leqslant \tau, \varepsilon > 0$:

(29)
$$S(t,\varepsilon) = \exp(\varepsilon A_t),$$

(30)
$$\varphi(t,\varepsilon) = e^{a\varepsilon}, \quad \psi(t) = e^{at},$$

$$(31) x \in Z_t^* = \{x \in M ||A_t x|| \leqslant e^{(\mu + a)t}; Z_t = \overline{Z}_t^* = \text{fermeture } Z_t\}.$$

Montrons que les hypothèses (A), (B) et (C) sont satisfaites. Vérifions (A). Or (1) découle de (30), (2) équivaut à (28). Afin de vérifier (B) il suffit de montrer que $S(t, \varepsilon) \in \mathbb{Z}_t^* \to \mathbb{Z}_{t+\varepsilon}$ vu que $S(t, \varepsilon)$ est linéaire, bornée. Or, soit $x \in \mathbb{Z}_t^*$, c.-à-d. $x \in M$, $||A_t w|| \le e^{(\alpha+\mu)t}$, et soit $\varepsilon > 0$. Nous

Equation

avons

$$\begin{split} \|A_{t+\varepsilon}S(t,\,\varepsilon)x\| &= \|A_{t+\varepsilon}\mathrm{exp}\,(\varepsilon A_t)x\| \leqslant (1+\mu\varepsilon)\,\|A_t\mathrm{exp}\,(\varepsilon A_t)x\| \\ &= (1+\mu\varepsilon)\|\mathrm{exp}\,(\varepsilon A_t)A_tx\| \leqslant (1+\mu\varepsilon)(1+\alpha\varepsilon)\,\|A_tx\| \\ &\leqslant e^{(\alpha+\mu)(t+\varepsilon)}, \quad \mathrm{c.q.f.d.} \end{split}$$

Nous avons profité de (26) et du fait que $\exp(A) \in \mathcal{D}(A) \to \mathcal{D}(A)$. Pour démontrer (C) nous aurons besoin de quelques lemmes.

LEMME 7. Il existe un nombre $K_1 > 0$ tel que, pour $\varepsilon > 0$ $(x \in M)$,

(32)
$$\|[(I - \varepsilon A_t)^{-1} - (I - \varepsilon A_s)^{-1}]x\| \leqslant K_1 |t - s| \varepsilon \|A_t x\|.$$

En effet, on a pour $x \in M$

$$\begin{split} \|[(I-\varepsilon A_t)^{-1}-(I-\varepsilon A_s)^{-1}]x\| &= \|(I-\varepsilon A_s)^{-1}\varepsilon(A_s-A_t)(I-\varepsilon A_t)^{-1}x\| \\ &\leqslant \varepsilon(1+a\varepsilon)\cdot \|(A_s-A_t)(I-\varepsilon A_t)^{-1}x\| \\ &\leqslant \varepsilon(1+a\varepsilon)\mu\,|t-s|\; \|A_t(I-\varepsilon A_t)^{-1}x\| \\ &= \varepsilon(1+a\varepsilon)\mu\,|t-s|\; \|(I-\varepsilon A_t)^{-1}A_tx\| \\ &\leqslant (1+a\tau)^2\mu\,|t-s|\,\varepsilon\,\|A_tx\|. \end{split}$$

LEMME 8. Si les opérations linéaires $a,B\colon \mathscr{D}(A)=\mathscr{D}(B)=M$ sont fermées et satisfont aux inégalités

(33)
$$\|(I-\varepsilon A)^{-1}\| \leq (1+\alpha\varepsilon), \quad \|(I-\alpha B)^{-1}\| \leq (1+\alpha\varepsilon) \quad (\varepsilon > 0).$$

$$\|[(I-\varepsilon A)^{-1}-(I-\varepsilon B)^{-1}]x\|\leqslant K\varepsilon\|Ax\| \quad (x\,\epsilon\,M),$$

alors on a, pour $x \in M$,

(35)
$$\|\exp(A)x - \exp(B)x\| \le Ke^{\alpha} \cdot (e^{\alpha} - 1)a^{-1} \cdot \|Ax\|$$

Démonstration. Posons pour n naturel, fixé, i=1,2,...,n, $x_0=y_0=x \quad (x \epsilon M),$ $x_i=(I-n^{-1}A)^{-i}x,$ $y_i=(I-n^{-1}B)^{-i}x.$

On a (voir [1], p. 269.)

$$\lim x_n = \exp(A)x$$
, $\lim y_n = \exp(B)x$.

De plus,

$$||Ax_i|| = ||(I - n^{-1}A)^{-1}Ax|| \le (1 + \alpha n^{-1})^n ||Ax|| \le e^{\alpha} ||Ax||.$$

Par conséquent

$$\begin{split} \|x_{i+1} - y_{i+1}\| &= \|(I - n^{-1}A)^{-1}x_i - (I - n^{-1}B)^{-1}y_i\| \\ &\leq \|[(I - n^{-1}A)^{-1} - (I - n^{-1}B)^{-1}]x_i\| + \|(I - n^{-1}B)^{-1}(x_i - y_i)\| \\ &\leq Kn^{-1}\|Ax_i\| + (1 + an^{-1})\|x_i - y_i\| \\ &\leq Kn^{-1}e^a\|Ax\| + (1 + an^{-1})\|x_i - y_i\|, \end{split}$$

d'où l'on tire par induction

$$||x_n - y_n|| \le Ka^{-1} \cdot e^a [(1 + an^{-1})^n - 1] ||Ax||.$$

En effet, en posant pour l'instant

$$|\xi_i| = ||x_i - y_i||, \quad \vartheta = K n^{-1} e^{\alpha} ||Ax||, \quad \eta = (1 + \alpha n^{-1}),$$

on obtient de ce qui a été dit que $\xi_{i+1} \leq \eta \xi_i + \vartheta$ et $\xi_0 = ||x_0 - y_0|| = 0$, d'où l'on tire par induction que

$$\begin{split} \xi_n &\leqslant \vartheta(1 + \eta + \eta^2 + \ldots + \eta^{n-1}) = \vartheta(\eta^n - 1)(\eta - 1)^{-1} \\ &= Ke^a \cdot \alpha^{-1} [(1 + an^{-1})^n - 1] ||Ax||, \end{split}$$

d'où l'on obtient (35) par un passage à limite, c.q.f.d. On voit aussitôt de (25) et (32) que les hypothèses (33) et (34) du lemme 8 restent valables, si l'on y remplace, avec t et s fixés, $0 < \delta < \tau$, A, B, α , K respectivement par δA_t , δA_s , $\alpha \delta$, $K_1 | t - s |$, où K_1 est la constante du lemme 7. Alors, l'inégalité (35) convenablement modifiée fournit

$$\begin{split} \|\exp\left(\delta A_{t}\right)x - \exp\left(\delta A_{s}\right)x\| &\leqslant K_{1}|t-s|\,e^{a\delta}\left[e^{a\delta}-1\right](a\delta)^{-1}\|\delta A_{t}x\| \\ &\leqslant K_{1}|t-s|\,e^{a\tau}\left(e^{a\delta}-1\right)\delta^{-1}a^{-1}\,\delta\,\|A_{t}x\| \\ &\leqslant K_{1}e^{2a\tau}\left|t-s\right|\delta\,\|A_{t}x\|, \end{split}$$

d'où l'on obtient, en posant $K_2 = K_1 e^{2\alpha \tau}$, et en remplaçant δ par ε

$$(36) \qquad \|\exp\left(\varepsilon A_{t}\right)x - \exp\left(\varepsilon A_{s}\right)x\| \leqslant K_{2}\varepsilon \left|t - s\right| \left\|A_{t}x\right\| \quad (x \in M).$$

Il suffit maintenant pour démontrer (C) de poser, pour la constante C figurant dans (4), $C = K_2 e^{a\tau} e^{(a+\mu)\tau}$.

Soient $\varepsilon, \delta > 0, x \in \mathbb{Z}_t^*$; on a en vertu de la définition de $S(t, \varepsilon)$ et \mathbb{Z}_t^*

$$\begin{split} \|S(t,\,\delta+\varepsilon)x - S(t+\delta,\,\varepsilon)S(t,\,\delta)x\|_{t+\delta+\varepsilon} \\ &= \|[\exp\left(\delta+\varepsilon\right)A_t - \exp\left(\varepsilon A_{t+\delta}\right)]\exp\left(\delta A_t\right)\|x \\ &= \|[\exp\left(\varepsilon A_t\right) - \exp\left(\varepsilon A_{t+\delta}\right)]\exp\left(\delta A_t\right)x\| \\ &\leqslant K_2\varepsilon\delta \|A_t\exp\left(\delta A_t\right)x\| \leqslant K_2\varepsilon\delta e^{a\delta}\|A_tx\| \\ &\leqslant K_2e^{a\tau}e^{(a+\mu)\tau}\varepsilon\delta = G\varepsilon\delta, \quad \text{e.g.f.d.} \end{split}$$

Les hypothèses sont ainsi vérifiées.

Il s'ensuit qu'en posant $x(t) = T(0,t)x_0$, où $x_0 \in M$, et T(0,t) est définie par (14) (cette formule est valable, vu que $M = \ln(Z_0)$), on obtient de (17), lemme 5,

$$\lim_{\varepsilon \downarrow 0} \frac{1}{\varepsilon} \left[S(t,\varepsilon) x(t) - x(t+\varepsilon) \right] = 0,$$

c.-à-d., dans notre cas,

(37)
$$\lim_{\varepsilon \downarrow 0} \frac{1}{\varepsilon} \left[\exp(\varepsilon A_t) x(t) - x(t+\varepsilon) \right] = 0.$$

Si $x(t) \in \mathcal{D}(A_t) = M$, on obtient alors

(38)
$$\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} [x(t+\epsilon) - x(t)] = A_t x(t),$$

vu qu'on a

$$\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} \left[\exp(\epsilon A_t) x - x \right] = A_t x \quad \text{pour } x \in \mathscr{D}(A_t).$$

Remarquons que conformément à (14) la f. ab. $(T(0,t)x_0)$ est dans notre cas la limite d'expressions de la forme

$$\prod_{i=0}^{n} \exp(t_{i+1} - t_i) A_{t_i} x_0$$

(comp. [2]), où $t_i < t_{i+1}$.

Pour assurer l'inclusion $T(0,t)x \in M$ si $x \in M$, admettons les hypothèses supplémentaires suivantes:

$$\mathscr{D}(A_t^2) = \text{const} = M_2,$$

$$(40) \qquad \|(A_t^2-A_s^2)x\|\leqslant \varkappa\,|t-s|\;\|A_t^2x\| \qquad \text{avec une constante } \varkappa>0\,.$$

On tire de (40) et de (26):

$$(41) ||A_t(A_t - A_s)x|| \leq \lambda |t-s| ||A_s^2 x||, \quad \text{où } \lambda = \mu + \kappa.$$

Admettons les nouvelles définitions:

(42)
$$X_t = M \ (0 \leqslant t \leqslant \tau), \quad ||x||_t = ||x|| + ||A_t x||,$$

(43)
$$\varphi(t,\varepsilon) = e^{(\alpha+\mu)\varepsilon}, \quad \psi(t) = e^{(\alpha+\mu)t},$$

$$x \in \mathbb{Z}_{+}^{*} \equiv x \in M, \quad \text{et} \quad ||A_{t}x||_{s} \leq e^{(\alpha+\lambda)t}.$$

On définit Z_t comme la frermeture de Z_t^* en norme $\| \cdot \|_t$.

Comme auparavant, $S(t, \varepsilon) = \exp(\varepsilon A_t)$. Vérifions que les hypothèses (A), (B) et (C) sont remplies. Remarquons d'abord que $M = \mathscr{D}(A_t)$ est complet en norme $\| \ \|_t$; cela découle du fait que A_t est supposée fermée en norme $\| \ \|_t$. De plus, l'ensemble M_2 est dense dans M en norme $\| \ \|_t$, car, si $x \in M_2 = \mathscr{D}(A_t^2)$, on a

$$(I-n^{-1}A_t)^{-1}x \in M_2$$

Δŧ

$$\begin{aligned} & \|(I-n^{-1}A_t)^{-1}x - x\|_t \\ & = \|(I-n^{-1}A_t)^{-1}x - x\| + \|(I-n^{-1}A_t)^{-1}A_tx - A_tx\| \to 0 & (n \to \infty). \end{aligned}$$

Il est évident que $A_t x \in M$ si $x \in M_2$, et que A_t , considérée sur M_2 , est fermée en norme $\|\cdot\|_t$. De plus, on a, pour $\varepsilon > 0$,

$$(I - \varepsilon A_t)^{-1}(M_2) = M,$$

 $_{
m et}$

(44)
$$||(I - \varepsilon A_t)^{-1}x||_t \leqslant (1 + a\varepsilon) ||x||_t,$$

en vertu de (25). Il découle des propriétés de l'opération A_t démontrées ci-dessus qu'on a, pour $\varepsilon>0,$

(45)
$$||\exp(\varepsilon A_t)x||_t \leqslant e^{a\varepsilon}||x||_t,$$

(46)
$$||(I - \varepsilon n^{-1} A_t)^{-n}(x) - \exp(\varepsilon A_t)(x)||_t \to 0 \quad (n \to \infty).$$

Cela posé, vérifions (A). Or, on a, pour $x \in M_2 = X_t$, en vertu de (26),

$$\begin{split} \|S(t,\varepsilon)x\|_{t+\varepsilon} &= \|\exp\left(\varepsilon A_{t}\right)x\| + \|A_{t+\varepsilon}(\exp\left(\varepsilon A_{t}\right)x\| \\ &\leqslant e^{a\varepsilon}\|x\| + (1+\mu\varepsilon)\|A_{t}\exp\left(\varepsilon A_{t}\right)x\| \\ &\leqslant e^{a\varepsilon}\|x\| + (1+\mu\varepsilon)\|\exp\left(\varepsilon A_{t}\right)A_{t}x\| \\ &\leqslant e^{(\alpha+\mu)\varepsilon}\{\|x\| + \|A_{t}x\|\} = \varphi\left(t,\varepsilon\right)\|x\|_{t}, \quad \text{c.q.f.d.} \end{split}$$

Pour vérifier (B), il suffit qu'on ait $S(t,\varepsilon)\epsilon Z_t^* \to Z_{t+\varepsilon}^*$, vu que $S(t,\varepsilon)$ est linéaire et bornée en norme $\| \|_t$, en vertu de (A). Soit alors $x\epsilon Z_t^*$, c.-à-d. $x\epsilon M_2$ et $\|A_t x\|_t \leqslant e^{(a+\lambda)t}$. On a, d'après (40) et (26),

$$\begin{split} \|A_{t+\epsilon}S(t,\varepsilon)x\|_{t+\epsilon} &= \|A_{t+\epsilon}\exp\left(\varepsilon A_{t}\right)x\| + \|A_{t+\epsilon}^{2}\exp\left(\varepsilon A_{t}\right)x\| \\ &\leqslant (1+\alpha\varepsilon)\|A_{t}\exp\left(\varepsilon A_{t}\right)x\| + (1+\varkappa\varepsilon)\|A_{t}^{2}\exp\left(\varepsilon A_{t}\right)x\| \\ &\leqslant (1+\alpha\varepsilon)\left(1+(\varkappa+\mu)\varepsilon\right)\{\|A_{t}x\| + \|A_{t}^{2}x\|\} \\ &= (1+\alpha\varepsilon)(1+\lambda\varepsilon)\|A_{t}x\|_{t} \leqslant e^{(\alpha+\lambda)\varepsilon}\|A_{t}x\|_{t} \leqslant e^{(\alpha+\lambda)(t+\varepsilon)}. \end{split}$$

Comme, de plus,

$$S(t, \varepsilon) = \exp(\varepsilon A_t) \in M_2 \to M_2$$

l'hypothèse (B) est ainsi remplie. Pour vérifier (C), montrons LEMME 9. Il existe un nombre $K_4 > 0$ tel qu'on a, pour $\varepsilon > 0$, $z \in M_2$,

(47)
$$\|[(I - \varepsilon A_t)^{-1} - (I - \varepsilon A_s)^{-1}]z\|_t \leq K_4 |t - s|\varepsilon| |A_t z|_t.$$

Démonstration. En nous appuyant sur (40) et (41), nous avons

$$\begin{split} \|A_t[(I-\varepsilon A_t)^{-1}-(I-\varepsilon A_s)^{-1}]z\| &= \|A_t(I-\varepsilon A_t)^{-1}\varepsilon(A_s-A_t)(I-\varepsilon A_s)^{-1}z\| \\ &\leqslant \varepsilon\cdot (1+\alpha\varepsilon)\cdot \|A_t(A_s-A_t)(I-\varepsilon A_s)^{-1}z\| \\ &\leqslant \varepsilon(1+\alpha\varepsilon)\lambda|t-s|\ \|A_s^2(I-\varepsilon A_s)^{-1}z\| \\ &\leqslant \varepsilon(1+\alpha\varepsilon)^2|t-s|\ \|A_s^2z\|\cdot\varepsilon\lambda \\ &\leqslant \varepsilon\lambda(1+\alpha\varepsilon)^2|t-s|\ (1+\varkappa|t-s|)\ \|A_t^2z\| \\ &\leqslant \varepsilon\lambda(1+\alpha\tau)^2(1+\varkappa\tau)|t-s|\ \|A_t^2z\| \\ &= K_3\,\varepsilon|t-s|\ \|A_t^2z\| \end{split}$$

si l'on pose $K_3=(1+\alpha\tau)^2\,(1+\alpha\tau)\lambda$. Or, on obtient facilement la conclusion (47) de l'inégalité démontrée ci-dessus, et de (32), lemme 7, en posant $K_3=\max(K_1,K_3)$, c.q.f.d.

LEMME 10. Il existe un nombre $K_6 > 0$ tel qu'on a, pour $z \in M_2$,

(48)
$$\|\exp(\varepsilon A_t)z - \exp(\varepsilon A_s)z\|_t \leqslant K_6 \varepsilon |t-s| \|A_t z\|_t.$$

Démonstration. Posons pour n naturel, i = 0, 1, ..., n,

$$x_i = (I - \varepsilon n^{-1} A_i)^{-i}(z), \quad y_i = (I - \varepsilon n^{-1} A_i)^{-i}(z).$$

Il existe alors un nombre $K_5 > 0$ tel que

$$||A_t(y_i)||_t \leqslant K_5 ||A_t z||_t.$$

En effet, on a

$$egin{aligned} \|A_t(y_i)\|_t &= \|A_t(I - arepsilon n^{-1}A_s)^{-i}(z)\| + \|A_t^2(I - arepsilon n^{-1}A_s)^{-i}(z)\| \ &\leqslant (1 + \mu |t - s|) \|A_s(I - arepsilon n^{-1}A_s)^{-i}(z)\| + \ &+ (1 + arepsilon |t - s|) \|A_s^2(I - arepsilon n^{-1}A_s)^{-1}(z)\| \ &\leqslant (1 + \lambda au) (1 + lpha au^{-1})^n \{ \|A_s z\| + \|A_s^2 z\| \} \ &\leqslant e^{a t} (1 + \lambda au)^2 \{ \|A_t z\| + \|A_s^2 z\| \} \leqslant K_t \cdot \|A_t z\|_t. \end{aligned}$$

si l'on pose $K_5 = e^{at}(1+a\tau)^2$, $\lambda = \mu + \varkappa$.

En s'appuyant sur (44), (47) lemme 9, et (49), on montre

$$\begin{split} \|x_{i+1} - y_{i+1}\|_t &= \|(I - \varepsilon n^{-1} A_t)^{-1} (x_i) - (I - \varepsilon n^{-1} A_s)^{-1} (y_i)\|_t \\ &\leqslant \|[(I - \varepsilon n^{-1} A_t)^{-1} - (I - \varepsilon n^{-1} A_s)^{-1}] (y_i)\|_t + \\ &+ \|(I - \varepsilon n^{-1} A_t)^{-1} (x_i - y_i)\|_t \\ &\leqslant K_4 \varepsilon n^{-1} |t - s| \ \|A_t (y_i)\|_t + (1 + a\varepsilon) \|x_i - y_i\|_t \\ &\leqslant K_4 K_5 \varepsilon n^{-1} |t - s| \ \|A_t z\|_t + (1 + a\varepsilon) \|x_i - y_i\|_t . \end{split}$$

d'où l'on tire par induction:

$$\|x_n - y_n\|_t \le K_4 K_5 |t - s| [(1 + a\varepsilon n^{-1})^n - 1] a^{-1} \|A_t z\|_t$$

 $\le K_4 K_5 |t - s| [e^{a\varepsilon} - 1] a^{-1} \|A_t z\|_t \le K_6 |t - s| \|A_t z\|_t$

en posant $K_6 = K_4 K_5 e^{\alpha r}$. Il suffit alors de poser $C = K_6 \cdot e^{\alpha r} e^{(\alpha + \lambda)r}$, pour vérifier (4), hypothèse (C). En effet, soient $x \in Z_t^*$, c.-à-d. $x \in M_2$, $||A_t x_t|| \le e^{(\alpha + \lambda)t}$, $\delta, \varepsilon > 0$. Nous avons, en vertu de (48) et (45)

$$\begin{split} \|S(t, \delta + \varepsilon)x - S(t + \delta, \varepsilon)S(t, \delta)x\|_{t} \\ &= \|\exp((\delta + \varepsilon)A_{t}x - \exp(\varepsilon A_{t+\delta})\exp(\delta A_{t})x\|_{t} \\ &= \|[\exp(\varepsilon A_{t}) - \exp(\varepsilon A_{t+\delta})]\exp(\delta A_{t})x\|_{t} \\ &\leq K_{6}\varepsilon\delta\|A_{t}\exp(\delta A_{t})x\|_{t} \\ &= K_{6}\varepsilon\delta\|\exp(\delta A_{t})A_{t}x\|_{t} \leq K_{6}\varepsilon\delta\epsilon^{a\delta}\|A_{t}x\|_{t} \\ &\leq K_{6}\varepsilon\delta\epsilon^{(a+\lambda)t}\cdot\epsilon^{a\delta} \leq K_{6}\epsilon^{(a+\lambda)\tau}\cdot\epsilon^{a\tau}\cdot\epsilon\delta = C\delta\varepsilon, \quad \text{c. a.t.} \end{split}$$

Ainsi les hypothèses (A), (B) et (C) sont vérifiées. Il s'ensuit, en vertu de (15), que si $x_0 \epsilon {\rm lin}(Z_0^*) = M_2$, alors

$$T(0,t)x_0\epsilon ext{lin}(Z_t) = \bigcup_{n=1}^{\infty} n\overline{Z_t^*} \subset \overline{\bigcup_{n=1}^{\infty} nZ_t^*} = M,$$

la fermeture étant prise en norme $\|\cdot\|_t$. On a alors $T(0,t) \in M_2 \to M$; mais, comme l'opération T(0,t) satisfait d'après (16) à

$$||T(0,t)x||_t \leq \psi(T)||x||_0 \quad \text{pour } x \in X_0 = M,$$

on a $T(0, t)x \in M$; si $x \in M$, l'ensemble M_2 étant dense dans M en norme $\|\cdot\|_t$. Nous avons ainsi démontré le

THÉORÈME 6. Soient X un espace de Banach, M un sous-ensemble linéaire, dense dans X; A_t une famille d'opérations linéaires, fermées, définies sur M, $\mathscr{D}(A_t) = M$ ($0 \le t \le \tau$), satisfaisant aux conditions suivantes:

1° pour $\varepsilon > 0$ l'inverse $(I - \varepsilon A_t)^{-1}$ est partout définie et on a $\|(I - \varepsilon A_t)^{-1}x\| \leqslant (1 + a\varepsilon)\|x\|$;

 $2^{\circ} \|A_t(x) - A_s(x)\| \le \mu |t-s| \|A_t(x)\| \text{ avec } \mu = \text{const.}$

Alors il existe une famille d'opérations linéaires T(0,t) partout définies et bornées dans leur ensemble, telles qu'on a, pour $x_n \in M$

$$\lim_{\varepsilon\downarrow 0}\frac{1}{\varepsilon}\left[\exp(\varepsilon A_t)T(0,t)x_0-T(0,t+\varepsilon)x_0\right]=0.$$

Si, de plus, les opérations A_t^2 ont un domaine commun M_2 , et si

 $3^{o} \ \|A_{t}^{2}(x) - A_{s}^{2}(x)\| \leqslant \varkappa |t-s| \ \|A_{t}^{2}(x)\| \ pour \ x \in M_{2}, \ alors \ T(0 \ , t)x_{0} \in M,$ chaque fois que $x_{0} \in M$, de sorte que l'on a pour $x_{0} \in M$

$$\lim_{arepsilon \downarrow 0} rac{1}{arepsilon} \left[T(0, t + arepsilon) x_0 - T(0, t) x_0
ight] = A_t T(0, t) x_0.$$

Il s'en suit que $x(t) = T(0\,,\,t)x_0$ est la solution du probléme de Cauchy,

$$\frac{d}{dt}x(t) = A_tx(t), \quad x_0 \in M = D(A_0),$$

unique, grâce au théorème 1, dans la classe de fonctions uniformément différentiables, c.-à-d. remplissant la condition suivante:

Pour tout $\delta > 0$ il existe un $\bar{\varepsilon} > 0$ tel que $0 < \varepsilon \leqslant \bar{\varepsilon}$ entraîne

$$\|\varepsilon^{-1}[\exp(\varepsilon A_t)x(t)-x(t+\varepsilon)\|_t \leq \delta$$

conformément à la définition de la p. 8, et vu que

$$\frac{D}{Dt}x(t) = \frac{d}{dt}x(t) - A_tx(t) = 0.$$

La notion de "produit-intégrale" a été considérée par d'autres auteurs, comme Birkhoff [1] et Kato qui a démontré dans [2] la convergence du produit

$$\prod_{j=n-1}^{0} \exp(t_{j+1} - t_j) A_{t_j} x_0 \quad (\max|t_{j+1} - t_j| \to 0)$$

pour tout $x_0 \in X$, mais sous des hypothèses plus fortes que 1° et 2° du théorème 6 de ce travail.

Travaux cités

- [1] G. D. Birkhoff, J. Math. Phys. 16.
- [2] T. Kato, Integration of the equation of evolution in Banach spaces J. Math. Soc. Japan 5 (1953), p. 208-234.
- [3] K. Yoshida, Functional analysis, Berlin 1966.

Reçu par la Rédaction le 16. 12. 1968