

A remark on Berezanskii version of spectral theorem

. .

777

K. MAURIN (Warszawa)

We will show in this short note that a spectral theorem of Berezanskii is an immediate corollary of our nuclear theorem.

Preliminaries. Let \mathscr{A} be a commutative C^* -algebra of normal operators in a separable Hilbert space H. If the family $(A_x)_{x\in X}$ generates the algebra \mathscr{A} , then, as it is well known (Gelfand theory E), the maximal ideal-space Λ of \mathscr{A} is homeomorphic with $\hat{\Lambda} \subset \prod \operatorname{sp}(A_x)$, where $\operatorname{sp}(A_x)$

denotes the spectrum of the operator A_x . We shall identify Λ with \hat{A} . More explicitely: the Gelfand isomorphism has now the canonical form

$$\mathscr{A}
ilde{\mathcal{A}} A_x \leftrightarrow \hat{A_x}(\cdot) \epsilon C(\Lambda), \quad \hat{A} \subset \prod_{x \in X} \hat{A_x}(\Lambda), \quad \hat{A_x}(\Lambda) = \operatorname{sp}(A_x).$$

But the identity map id, has the form

$$\Lambda \ni \lambda \to (\hat{A}_x(\lambda))_{x \in X} \in \Lambda$$
.

This means that $\lambda(x)=\hat{A}_x(\lambda)$ for all $x\in X$, $\lambda\in A$. We can now reformulate our

Nuclear spectral theorem [2]. Let $(A_x)_{x\in X}$ be a commuting family of normal operators in a separable Hilbert space H. Let $\Phi\subset H$ be a nuclear space such that Φ is dense in H and the imbedding $\Phi\to H$ is continuous. If $A_x(\Phi)\subset \Phi$ for every $x\in X$, then there exists the direct integral decomposition

$$H \cong \int\limits_{\Lambda} H(\lambda) d\mu(\lambda), \quad \Lambda \subset \prod_{x \in X} \operatorname{sp} A_n \subset C^X,$$

where μ is a Radon measure on the compact space Λ , such that:

1° there exists a subset $\Lambda_0 \subset \Lambda$ of measure 0, $\mu(\Lambda_0) = 0$, such tha $H(\lambda) \subset \Phi'$ for all $\lambda \in \Lambda - \Lambda_0$ and $H(\lambda)$ are generalized common eigenspaces of $A_x, x \in X$;

$$\langle A_x \varphi, e(\lambda) \rangle = \lambda(x) \langle \varphi, e(\lambda) \rangle$$

for each $\varphi \in \Phi$, $e(\lambda) \in H(\lambda)$, $\lambda \in \Lambda - \Lambda_0$;

2° taking in each $H(\lambda)$, $\lambda \in \Lambda - \Lambda_0$, an orthonormal basis $e_k(\lambda)$, $k = 1, 2, ..., \dim H(\lambda)$, one obtains a complete set of linear continuous functions of Φ : to each $0 \neq \varphi \in \Phi$ there exists $e_k(\lambda) \in \Phi'$ such that

(2)
$$\langle \varphi, e_k(\lambda) \rangle \neq 0, \quad \lambda \in \Lambda - \Lambda_0,$$

and $e_k(\lambda)$ satisfies equation (1).

Remark. This version of the complete spectral theorem shows that the elements of the (compact) measure space $\Lambda=(\Lambda,\mu)$ are functions $X \ni x \to \lambda(x) \in \operatorname{Sp}(A_x) \subset C$, and that all $\lambda \in \Lambda - \Lambda_0$ are of the form

(3)
$$\lambda(x) = \frac{\langle A_x \varphi, e_k(\lambda) \rangle}{\langle \varphi, e_k(\lambda) \rangle}, \quad x \in X, \, \mu(\Lambda_0) = 0.$$

Identity (3) allows immediately to prove a

SPECTRAL THEOREM OF BEREZANSKII TYPE. Let the family $(A_x)_{x\in X}$ from the preceding theorem satisfy the following regularity condition:

X is a topological space (resp. a differentiable manifold). For each $\varphi \in \Phi$, $\psi' \in \Phi'$, the function

(4)
$$X \ni x \to \langle A_x \varphi, \psi' \rangle \epsilon C$$

is continuous (resp. differentiable).

Then the measure μ in the direct integral decompositions

$$H = \int_{\Lambda} H(\lambda) d\mu, \quad \Lambda \subset C^{X},$$

is concentrated on continuous (resp. differentiable) functions, i.e. there exists a subset $\Lambda_0 \subset \Lambda$, $\mu(\Lambda_0) = 0$ such that for all $\lambda \in \Lambda - \Lambda_0$, $\lambda \in C(X)$ (resp. $\lambda \in C^{\infty}(X)$).

Proof. Obvious, since from (3) and (4) it follows that for $\lambda \notin \Lambda_0$

$$X \ni x \to \lambda(x) = \frac{\langle A_x \varphi, e(\lambda) \rangle}{\langle \varphi, e(\lambda) \rangle} \in C$$

is continuous (differentiable).

Concluding remarks. The theorem suggests that the Wiener measure could be considered as a spectral measure for an adequately chosen family $(A_x)_{x \in X}$ of operators.

I express my gratitude to Professor Berezanskii for giving to my disposition (during the V Winter School of Theoretical Physics at Karpacz 1968) the manuscript of his magnificent paper [1].

References

- [1] Yu. M. Berezanskii, Trudy Moskovskogo Matem. Ob. 1969 (to appear).
- [2] K. Maurin, Allgemeine Eigenfunktionsentwicklungen. Spektraldarstellung abstrakter Kerne, Bull. Acad. Pol. Sc., Série sc. math., astr. et phys., 7 (1959), p. 471-475.
- [3] Methods of Hilbert spaces, Monografie Matematyczne 45, Warszawa 1967.
- General eigenfunction expansions and unitary representation of topological groups, Monografie Matematyczne 48, Warszawa 1968.

Reçu par la Rédaction le 21. 1. 1969