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A remark on Berezanskii version of spectral theorem
by

K. MAURIN (Warszawa)

We will show in this short note that a spectral theorem of Bere-
zanskil is an immediate corollary of our nuclear theorém. ;

Preliminaries. Let & be a commutative (*-algebra of mnormal
operators in a separable Hilbert space H. If the family (A4.)..x generates
the algebra =, then, as it is well known (Gelfand theory E), the maximal

ideal-space A of &7 is homeomorphic with A =’ [1sp(4z), where sp(4;)
- " AL

denotes the spectrum of the operator 4,. We shall identify 4 with. zf
More explicitely: the Gelfand isomorphism has now the canonical form

> Apes Ao(1)e0(4), A [[Ax(4),  An(4) = sp(4a).

But the identity map. id4 has the form

M52 > (Ag(W))ouxed..

This means that A(z) = Jix(}.) for all 2eX,led. We can now re-
formulate our

- NUCLEAR SPECTRATL THEOREM [2]. Lef (Ay).x be a oommutmg famzly
of normal operators in a separable Hilbert space H. Let & = H be a-nuclear.
space such that @ is dense in H and the imbedding & — H is contmuous.

If 4,(P)c @ fo7 every meX then there exwists the direct infegral decompo-
sition

H= fH(Z)d,u(l), A< [[spdnce CF,

TeX

- where u is a Radon measure on the compact space A, such that:

1° there ewists a subset-Agc A of measure 0, u(dy) = 0, such tha
H(A)c @' for all Aed—Ay and H(A) are generalized common ezgenspaces
of Ay, 2eX; .

@) {dzp; 0(/1)> = w)<p, 0(1)>
for each g<®, e(2) e H(4), Aed— Ay
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2° takmg in each H(A), Aed—Ay, an orthonormal basis ex(2),
k=1,2,...,dimH((1), one oblains a complete set of linear continuous
Sfumctions of (15 to each 0 # pe® there ewisis ex(1)e®’ such that

2) {p,e(A)y #0, Aed—4,,

and e;(2) satisfies equation (1).

Remark. This version of the complete spectral theorem shows
that the elements of the (compact) measure space A = (A4, u) are
functions X2 — A(x)eSp(4s) © C, and that all AeA— 4, are of the form

(Aap, (1))

® ) = (W)

y  @eX, u(dy) =0

Identity (3) allows immediately to prove a

SPECTRAL THEOREM OF BEREZANSKI TYPE. Lot the family (Ay)zex from
the preceding theorem satisfy the following reqularity condition:

X is a topological space (resp. a differentiable manifold). For each
ped, ¢ ed', the function

(4) Xz > (Agp, p'>eC

18 continuous (resp. differentiablé).
Then the measure u in the dirvect integral decomposiiions

H= [H@®p, A=C,
. A

is concentrated on continuous (resp. differentiable) functions, i.e. there ewists
a subset Ay, c A, u(4y) =0 such that for all AeA—A,y AeC(X) (résp.
Ae0°(X)). ‘ :

Proof. Obvious, since from (3) and (4) it follows that for A¢A4,

Aoy 6(A))

Do =T oy

is continuous (differentiable).

Concluding remarks. The theorem suggests that the Wiener measure
could be considered as a spectral measure for an adequately chosen family
(Az)zx OFf operators. ‘

I express my gratitude to Professor Berezanskil for giving to my
disposition (during the V Winter School of Theoretical Physics at Kar-
pacz 1968) the manusecript of his magnificent paper [1].
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