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A new approach in interpolation spaces
) by

JAAK PEETRE (Lund)

0. Introduction. In several previous publications (see Peetre [14]-[18];
see also Butzer-Behrens [2], chap. 3, Krée [10], Holmstedt [6] and [7],
Oklander [13], Golovkin [4]) we have developed an approach to the
theory of interpolation spaces (“K-method”) based on the functional

(0.1) K(t,a; Z_) = a=in-fa (laollay+thalla,) s

where 0 < £ < co and (I,EZ( Ao—.-Al, = {4,, 4,} being any Banach
or more generally quasi-Banach couple (see Section 1). More specifically,

we can define interpolation spaces EGQ.K by
(0.2) aneq;Ké(f(t_sK(t a; 4)) ‘“) < oo

Here 0 < < 1,0 < ¢ < oo with the usual interpretation if ¢ = co.
In certain problems, notably the case A, = Lp(uo), A1 = Ly(p,) (see
Peetre [19]-[21], Goullaouic [5]) it is more advantageous to use the modified
functional

(0.3) Ky(t, a;d) — inf ol )™

d=0y+-
where p thus can be adjusted to the special problem in question. Since
a—>K(,a;4) and a — K (t”-a), when t is fixed, define uniformly in %
equivalent quasi-norms in E(A) we obtain the same space, up to a.n

equivalence of quasi-norm, if we in (0.2) replace K (t, a; ) by Ky (¢, @; A)
In the present paper the basic underlying idea is to work with the new
functional :
(0.4) L(t, a; A) = inf ([lagld+tlayl2).
ll—llo ll1
In doing so we loose the property of homogenelty in ¢ and in particular
we will not get a quasi-norm. And it is not at the start at least clear what
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is the relation of the new space Aguz to the original Agr. However,
when applied to specific problems, this allows a much greater degree of
flexibility. A typical case is Ao = Ly (#), 41 = Ly, () or, more generally,
ever A, = Ly, (fto), 41 = Ly, (py), which thus contains the previous
gpecial case p, = Py = P.

The plan of the paper is as follows. In Section 1 part of the terminology
is explamed In Section 2 we study the relation between the spaces
(Agy Aoz and (Ao, Aq)egr- The main device 1s lemma 2.1 which gives

a connection between K(f, a; A) and L(t, a; A (cf Holmstedt- Peetre

[8], where the corresponding problem for K(?, a; A) and K,(t, a; jl)
ig studied). Sections. 4-6 -are devoted to a.pphca.tlons to various spaces
of measurable functions on a measure space. In Section 3 we treat a very
general form of the classical theorem of M. Riesz including the case of
“field valued” functions. For sunphclty we have only treated the so-called
diagonal case. But of course the same methods can also be used, at leait
to some extent, in the geheral:off-diagonal case. The same remark applies
to Section 4 where we consider the theorem of Marcinkiewicz (concerning
these -classical 1nterpolat10n theorems, cf. Zygmund [28], chap. 12.) In
Section b we generahze some of the results of Seetion 3 in such a direction
that as a result of our interpolation we get Orlicz spaces. Interpolation
in relation to Orlicz spaces has previously been studied by other authors
(Simonenko [16] and [17], Rao [24] and [2B]) but it is not clear what
the connection is with our work. In Section}6 we vary also the endpoints
allowing them to be so-called modular function spaces. In doing this we
actually leave the domain of -quasi-Banach spaces to which case most
of the presentation otherwise is adjusted. Tndeed the natural, domain
of the present approach seems to be much -broader. Probably not even
the abstract modular spaces (see Musielak and Orlicz [12]) put a limit.
(Note also that we could likewise have treated the case of a more general
field of scalars than R (real numbers), allowing not even the rather trivial
cage of 0 (complex numbers) but also the case of local fields (cf. Krée [10],
p. 138.) Section 7 contains some remarks on:the limiting case when p,
or p; — oo. In Section 8 we return to the general abstract gituation and
apply our ideas to give a mew simple proof of the so-called parameter
theorem (see Peetre [14], [15], and [23]).

' Certainly, the ideas of this paper could be developped still further
in several direetions so this is really just a first announcement and
we do intend to pursue the subject in fortheoming publications. This
is the reason why we have here cut down many details to a mini-
mum and why certain portions, especially Section 7, are presented
in a merely heuristic way, with most of .the formal argument left to
the reader. :
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1. Perritinology. Let .4 be & vector space over the real numbers R.
By a quasi-norm.in- A we mean a mapping-4»a — |afjeR;. (ncrn—nega,twe
real numbers) such that " N n

ruau>0 it a0, [0]=0,
laa] = 1al-lall i AR, i
lla+ 3l < ¥ (llali+ 1211

for some y =1 mdependent of ¢ and b (guasz—trwnyle mequal'»ty )

By a quasi-normed space we mean & vector space A in W]uch one
quasi-norm e} = |la]4 has been singled out. If the space is complete
in the uniform structure indiced by that quasi-norm, we speak of a quasi-
Banach space. By ‘a quasi-normed couple we mean the entity consisting
of two quasi-normed. spaces 4, and A,; together with corresponding
continuous embeddings ¢, and 4, into one and the same Hausdorff topolo-
gical vector space «. If the spaces are eomplete we speak of a guam-Banaoh

couple. We shall use the notation 4= {4,, 4,}; the embeddings %, and’ iy
and the space .saf need not be counted for in'general. Often one can identify

o/ with Z’(A Ag-+A,, the sum of 4, and 4,. The couple R= {R, R},
where R is taken with ||A]|z = 4| (absolute value), will play a special role.
If y =1 in the quasi-triangle inequality we shall drop the suffix
“quasi” and say-simply “norm”, “normed”, “Banach”.
Lett A and B be quasi-normed spaces. If T is a continuous linear
mapping from A into B, which we write symbollca]ly as 7: 4 - B,
we denote its quasi-norm by .

1715 = sup[|Talz/llal-

Let A — {A.,,Al} and B — {B,, B,} be quasi-normed couples. If
both T: A, - B, and T: 4, -~ B, hold true (where it is assumed that

T is defined in a space containing both Ao and. Al,‘ and thus Z’(A)

= A4,+4,), we use the symbol T: A —>B

Let U be a “measure space” and u a measure on U. Let {E(uY}uer
be a field of quasi-Banach spaces attached to U. We denote by
Lp(,u; {E(u)}), where 0 < p < oo, the quasi-Banach spaces corresponding
to the quasi-norm

: ip
Nl gy = [ o0 By s )}
72
with the usual interpretation of p = co. If we have a constant field, i.e.

E(u) = B, we write simply Ly(u, B) and if B =R just L,(x). We also
agree to drop the argument u whenever possible.
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The notation of field often leads to considerable meagurability difficul- -

ties, which must be treated with great care. Here we adopt the purely
formal point of view and disregard all such complications.

Finally we point out that on some occagions (in particular, throughout
Section 6) we use [a| = [lalls also to denote functionals which are not
quagi-norms. We gtill keep some of the above conventions. Notably we
use freely the notation |74z in such situations.

The symbol f = ¢ (‘‘equivalence”) means that f= O(g) and g = 0 (),
ie. f<(Og and g< Cf for some C.

2. The spaces Z,,q;x and qu;n. Let 4 = {4,, A,} be any quasi-Banach
couple. Let p, and p, be given numbers, 0 < p,, p; < oo, fixed throughout
most of the discussion. Ag in the Introduction ((0.1) and (0.4)) we define

K(t,a;4) = int

a=ay+a;

= inf (flag|&+1llalE2),
a=agtay

(2.1) (lletollay =+ tllena]la,) 5

2.2) L(t, a; 4)
where 0 < < co and an‘(z-f) = A¢+A4,. Whenever possible we shall
drop the last or the two last arguments writing thus K (¢, a), L(t, a)
or K(1), L(t). Let us also define

. ~ dr\1e

2.3) aeAﬂq;KMlallme:(of (t—BK(t,a))aT) < oo,
. s dg\1"

(2.4) aeAq;Lé\laHgoq;L=( 0f (t="L(, o)) t) < oo,

where 0 << << 1,0 <g< oo Itis clear that. Zoq;K is a gquasi-normed
space, with ||a||_> L defined by (2.3), and it is possible to show that it

is complete, i.e. a quas1—Banach space. As for Aoq .z the matter iy mnot
obvious at all and below (theorem 2.2) we ghall see that only a suitable

power p of ||a[|_, - is equivalent to a quasi-norm. It is nevertheless con-
venient, from the nota,tmnal point of view, to treat ]|a\|., ag if it were
oq;.L

& norm. First we consider however the interpolation properties of the
two spaces.

TEEOREM 2.1, Let T: A—>B Then T: Aoqg—ngqK and T A
-—>B,,q,L and, moreover, there hold the imequalities

(2.5)
(2.6)

gL

P12 e < 1 T, 5,

T, 3, , < ITIESCS A,
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Proof. Write M, =
we readily see that

1T1l45,50» M1 = ||T.4,,5,- Using (2.1) and (2.2)

- M.t -
(2.7) K(t, Ta;B)gM‘,K( M‘ ,a;A),
o
M¥i
(2.8)-- L(t, Ta; B) < M”OL( TR A)

From (2.3) and (2.7) it follows now that

Mg \\d\e
ITaly, < Mo( f (t—vK( 7 a;A)) T)

M\ e Sood\ie
-_M.,( M)( [ &, a;A))ﬂT) = M Mol

which clearly implies (2.5). In exactly the same way, using (2.4) and (2.8),
we. prove (2.6).
‘We now state the main result of this section.

THEHEOREM 2.2. For all ¢ and q holds

(2.9) Appor = Angz,
where
6 1—96
n= op (or 1y = ( )P)
D1 Do
and
(1— ) pot ( 1 1—0 6 )
= (1— or — = —
p M) PoT NP1 ) 7o 7

1/p

and the quasi-norm []a,][j is -equivalent to Ha“
8,0 K

Proof. For the proosx‘ it is convenient to mtroduce

B t) — E*(t, 0; 4) =

(2.10) inf max (|lagllys tleullay)s
A=0+0y
(@11) L) = I*(t,0; 4) = int max(lael%, tlia3)
A=+
Since
E*() < K() <2K*(1), L*() < L() <2L*(v),

it is clear that the definition of the spaces is not affected if in (2.3) and
(2.4) we introduce K*(t) and L*(?) in place of K (t) and L(f). The proof
follows now easily from the following
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Lewmg 2.1, If s is defined by . S T
(2.12) § = LK (1))Po="1, .
then B ‘ ! (ot
(2.13) I*(s) = (E* ().

Indeed, differentiation of (2.12) yields

' ‘ , oy I (D)
s = (a7 (2 0 o (2 e S

or

ds AR () jay @b
(2.14) 5= {10: F{Po—21) —W}T

It is easily seen -that N
*
?
0<t Mdt( ) < E*(1).

Therefore the expression within parenthesis in (2.14) is a point of the
interval [p,, p,]. Applying (2.12), (2.13) and (2.14) we now get (if ¢.< oo,
the limiting case g = oo can be treated directly-in a similar way)

0

[l B @S = [ femim)ree i o)

)

R
0

X — -
{Z’ﬁ“(,’l’o 1) adt) 1
and from this formula the assertion of the theorem clearly follows.

Proofof lemma 2.1. With Gagliardo (cf. e.g. [3]) we introduce the sef
I' =I'(a, A) of points 7 — (@9, ;) in the positive quadrant of the plane
such that there exists a decomposition & = G-t Gy With * {lag]la, < @,
l@slla, < #,. Then we may write (2.10) and (2.11) as

(2.15) K* () = infmax (s, to,),
Tel
(2.16) L*(s) = infmax (80, saf1),
el

The inf in both (2.15) and (2.16) is assumed at the point @ if @, = o,
= K*(1), #f% = gaf1 = L*(s). Therefore {(E* (1) = &y = L*(s) which
is (2.13). Similaxly ‘

’ (B (@)1 = #1af1 = s L*(s) = P17 (B (1)),
which yields (2.12).
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-1 " 3. The theorem of M. Riesz. In this section we first take A, i Lyys
A, = Lz,l'or A= Ly (with P = (Po, p1)) and we shall prove
TeroREM 8.1 (Lyyy Ly )y, 110 = Ly, where p = py(1— )+ p;7. The quasi-
norm n Ly is apart from a multiplicative factor. equal to ]]a]]}i’;
. Broof. We have
(ERVE L(t, a5 Iy) = inf (a5 + )
— = inf J (1@ (u) P04ty (w)P3) dp(u) -

o Lodn, L.

= [int (oo (w) P+ tlay (u)) d(u)
U

- JL(t,a(u);fB)dy(u).

Now it is readily seen that L(t, a; R) = [a[PF (t|a[’1~?) where
F(t) ~ min(1, t) s0 ;tha.t ‘

3 4
¢ = ft""lf’(t)—%—< oo
[] i \

(Note a,lso that
(32) 1 L(t, 63 Lp) ' [minla(u)P tla(w)P)da(w).)
e U .

Therefore
(3.3)

I{t, a3 Ly) = [ la(@)F {tla(w)" ") du(u).
‘ v ,

Using Fubini’s theorem we. thus get,

R A
t ”L(t,a;Lz-;)-t—‘

Bt

(34 oy, ., =

i
i

dt
t

I
.,

al J (0P (tla () P50 2 ()

It

S S S,

3 o
|a<u)|"°( / r”F(tja(u)l”l'p")Tt)dmu)
P

. !

It

. . “ \., o0 . dt o
@ ()P () 5 du ) [ () S = ol
o N . [

COROLLARY 3.1 (M. Riesz). Let Tt {Lpys In,} = {Ly, Lp;}- Lot
S e N

; 6 0 L ).
N
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Proof. This follows easily if we use (the L-part of) theorem 2.1.

COROLLARY 3.2. (LpO,LpI)MK = L,, where 1/ = (1—0)/po+ 0/p,.

This quasi-norm in Ly is equivalent 1o ||a,[|(Lp0 LpJopx”

Proof. This follows at once from theorem 2.2.

Remark 3.1. Note that corollary 3.1 comprises also-the truly quasi-
normed case (p, or p; < 1) not contained in the original formulation of
the theorem of M. Riesz. As explained in the Introduction we treat here
only the diagonal case. Corollary 3.2 follows also from a result by Lions-
Peetre [11], chap. VII, combined with the ‘parameter theorem’ of
Peetre [14], [15] (see Section 8).

The method of theorem, 3.1 can also immediately be extended to the '

‘“field valued” case even with change of measure. Thus we take now
4y = I’po(l‘o’ {Eo(“)})y 4 =‘L;{(/‘7 {E(u)}),

) By(w)}

Ay = Ly (ps, {B1(w)}) or

where B = (Do, 21), # = (oy ), Blw) = {By(u
THEOREM 3.2. We have

(Zoo {10y {Bo()})y Ly (a2 {BL(w)}),, .z
=1L (M(ll—"/"’b {(Eo(“)7 El(u))n.l;L}) .

Proof. The change of measure is indeed illusoric, for we may replace
. o and uy by a measure x with respect to it both are absolutely con-
tintous, and at the same time modify the quasi-norms of Ey(w) and E, (&)
by suitable multiplicative factors, without changing the situation at all
Assuming this that p, = p, = 4 we obtain now as in (3.1)

(3.5) L(t, 0; I3 ({B(w)}) = J (8, a(u); B(w))du(u),

which is the substitute of (3.3), from which again follows (cf. (3.4))
. c - at
”a‘”(L;((E(u)}))ml;L = f t L(t: a; L;,’({E(’“)})) 3
0
. a > it
=fr"(fL(t,a(u);E(u))dy(u))T
b )

=J(ofwr"1;(t, a(u); i‘(u)) %) e (u)

= [ 10y, (0

CorOLLARY 3,3. Analogous to corollary 3.1.

= lallzy (@, 23 -

icm°
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COROLLARY 3.4. We have
‘(Lpu(l‘oa {Eo(’“)})prl (Mla {8 (w) }))MJ p:d
=7 (

where = 0p[py and p = (1—n)po-+np,.
Proof. Same as for corollary 3.2.

The case of only change of measure diserves nevertheless special

"5 (o), Buai)y ),

attention.

COROLLARY 3.8. (Lp(#0)y Lp(pn)omz = Ly (4 1““;;’;)

Remark 3.2. Exactly as in the case of corollary.3.2 also corollary
3.4 can be obtained from Lions-Peetre [11], chap. VII, in combination
with the parameter theorem. The same applies to corollary 3.5. Note
that the present treatment should more properly be considered as the
development of technigue of Peetre [20].

4. The theorem of Marcinkiewicz. Along with the couple Lz,__{ o3 Lip,}
we now also consider the couple Lj = {L;, Ly }. Here L; denotes the
space corresponding to the quasi-norm _

lall 3 = supo( [ du(u)” < oo.
7>0  Yullagi)izc)
(Recall that [[aHL* is equivalent to a norm if p > 1.) Hence T: L, » L,
means that
(4.1) \a ‘7(

o>0  uliTa(u)iz0}

dpp () < M*|ailz,,

*
where M~ = []T“Lp,L;.

THEOREM 4.1 (Marcinkiewicz). Let T:{Ly, Ly} —{Ly, Lj}. Let

1
(42) 11,2, < WHTHMO, NI

where O depends only on p, and p,, and 1[p = (1— 6)[p,+ 0/p,.

Proof. We shall base the proof on the following lemma where (4.3)
should be compared to (2.8):

LeMMA 4.1. Let T be as in theorem 41 Then there holds

(4.3) -

*p d
L{t, Ta; Ly) < 0] mm(l —)WeL(M s,a) s

75 AP

* : T = T *
My = || My =Pl 2

*
LPO’L?O

with C depending only on p, and p,.
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Indeed, using (4.3) and theorem 3.1 (cf. notably(3.4)), we obtain
F @
1Zal, = o™ f £ I(t, Ta) =
v 0 .
o« ' oo %P7
— . 1 *Pg M], K ds\ di
<0‘10ft I(Bfmm(l,—s-)Mo l?(M:”“ ,“)'j; 3

*1’1

- +Po § w——n i iﬂt_)ﬂi
—clofM L( ,w)(ft mm-(l, 8)% .

0

M\ ds
e e "’L( a)——
° On(l n)f w0 s
=c'(C oy )M*?°(M:‘)”l”(M:)‘”°" f _s—"Lcs,a)%i
. Ty
—— 9 yme-ryag
n(l—m) TR
where we have used the relations '
| g, a0
o Doy

These relations also show that 17(1' -f) '~ 0(1— 0). Thus (4.2) follows.
Proof of lemma 4.1. It suffices to prove for j =0, 41, +2,.
the estimate

(4.4) f mm(lTa(u) |’°o t[Ta(u)F’l) A (u)

3 M*mzv(po-w)
Omm(l tzj(”!‘”'l)) "L (~————-—— ) )

I e
with U; = {u 2f |Ta(u)| T asy
Indeed, taking the sum in (4.4) we geﬁ

(4.5) f min (|Ta ()P, ¢ Ta(w) ) dja ()

M*ﬂx i(g—py !
G’ Z mln(l 127(111-100))];[*’”01;(_.1__2._._, )

mPe

But in view of {3.2) the left-hand side of (4.5) is equivalent to L(t, Ta)
and, moreover, as iy readily seen, the right-hand .is‘equivalent to the

f=ro0

icm°®
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integral in (4.3). Thus (4.3) follows. It remains to prove (4.4). Consider
to this end any decomposﬂ:lon 0 = ay+a,. Since Ta = Ta,+ Ta,, it
follows that

U; = (] |Tay(w)] = 2771} © {u| ]Tal(u)] =21,
Hence using also (4.2) we get
[ min ( ITa,(u)I”O t]Ta(u)l’”l)d,u(u)
Uj EA ' .;
Omm(z’”o 721) du(u)+ [ au()

] lTau(u)Dzrl)
<0mm(2“’° 1271 (43702 g 0

L @Y
e g
M2 a2 )

) +01 o7 (05— P1)
< Cmin(1, 12/P1=20) 31370 (Hao[lzpo ~ IIMH?;,I)

and this in view of (2.2) clearly implies (4.4).

Remark 4.1. We believe that the above is the “abstract’” proof which
comes closest to the classical proofs of the theorem of Marcinkiewicz
(see Zygmund [28], chap. 12). We do not consider the problem to which
extént the method can be carried over to the “field valued” case.

5. The Orlicz case. Let again A, = Ly, 4, = L, or A L.

‘We shall try to extend the proof of theorem 3.1 so that it can be
applied to more general cases than I,, namely ‘Orlicz elasses” Oz and
“Qrlicz spaces” Og (cf. notably Krasnoselskij-Rutitskij [9]). From the
abstract point of view this means that we have to replace the spaces
(4o, Ay)gz by more general interpolation spaces. Let H be any increasing
mapping from R, into B, vanishing at 0 only. We define:

(5.1) = [ H(la(w))du(w) < oo,
U

ae0p < |lalls, = inf{a| fH (-Iof%‘ll-) dp(u) < 1}.
U

Here |lalo, cannot be expected to be a qﬁasi-norm (and indeed
Oz need not even be a vector space). However [allg, is a.quasi-norm
under suitable assumptions on H,e.g. if H is quasi-convex in the sense
that

405 < |lalloy

(5.2)

H{(1—

for some y >

Nz 2y) < AH (yx)+ (1— A H (yy)

1 independent of z, v, and 1. In particular, it y =1, H is
convex and we get a norm. Note that Oy = Oy = L, if H(a)=4o"
{0 < p < oo).

Studia Mathematica XXXIV 3

(0<a<l)
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Let us thus return to the proof of theorem 3.1. More specifically,
let us in (3.4) replace the special measure ¢ "di/¢ by a general measure
dz(t). We obtain

(5.3) f L, a; L) dé (i) = Uf la(w)?o ( f B(t]a(w)P"0) 45 (1)) du (v)

~ [lati [ min(1, tia ) 7)) au(u)

f @ () PO () P270) dps o) f H(|a(u)) dp(u),

where we have get

(5.4) ho) = [ min(L, w)d (1),

(5.5) H () = aPoh(z"P0),
Now the equivalence in (5.3) is of course still valid if we replace
h by any equivalent function. There arises the question which are the
functions h, which are equivalent to a function admitting the represen-
tation (5.4). This problem is solved in Peetre [20], [21] (cf. Peetre [22]).
It is shown there that a necessary and sufficient condition is that & satisfies

the inequality

(5.6) h(Az) < Omax (1, A)h(x).
‘We call such functions -pseudo-concave. We can now ea,sﬂy complete
the proof of
TemorEM 5.1. Let T {Ly, Ly} ~ {Lmo, Ly} Let H be any funotwn
of the form (8.8) with h pseudo-concave. Then T: Og — On, T O0n — Og
and

(5.7 < O.M’

<0,

T i
oon 1Tl 64

F
where M = max (M,, M,), M, = ||fZ'|[,:,1007 M, =
independent of T.

Proof (end). As in the proof of theorsm 2.1 (cf. notably (2.8)) we
have

HTlle and C is a constant

(.8) L(t, Ta) < MPo L(MP~%01, g).

icm
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From (5.8) and (5.3) it follows that

Ta l_’l’a(u)l') -
| = [F[—=")q
- Uf ( ) ™

® Ta - _» a
gaof L»(,T)df(t)goof WOL(WI 0f, Ff) Ak ()

(5.9)

=o [ It Mt <o JE (100 ds(w) = olalog,

whieh proves the first inequality in (5.7). For the second one we note that
in view of (5.6) A
lAallog < emax (2%, ™) |alloy, -

Thereforé (5.9) ean also expressed in the form

|5

Then there holds also for every a

< llallog -

Ta a
CMa 0 a OH’
which by (5:2) implies
ITals,, < O ljall,,

establishing thus the second inequality of (5.7).

Next we investigate to whieh extent the condition on H is necessary.

THEOREM 5.2. Assume that the conclusions of theorem 5.1 hold for all
measure spaces U and all measures p. Then H must. be of the form (5.5)
with h pseudo-concave.

Proof. We clearly may take U = (0, oo), du(%) = du. We define T
by Ta(u) = a(ow). Then My = o~ "%, M, = ¢~ "1, M = max (o~ V%, g~1P1),
50 that by the first inequality of (5.7) we get

la(ou)|

fﬂ(mm)dugoJ H(ia(u)l)d“

]

Let I be any interval of length 1. Choose a(u) = 2 on I and a(#) = 0
elsewhere. Then we get

H(min(o"™, 6"71)5) < CoH ().
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1 we now set A = min('”, ¢*”1) we clearly have o = max (AP0, AP1).,
Therefore we get H(Az) < COmax (A7, JP*)H (x), which of course in view

of (B.5) is equivalent to (5.6).
Finally, we consider in some greater detail the cage where the asso-
ciated h satisfies (5.6) with ¢ = 1. The latter restriction is equivalent to

(5.10) 0 < ol (@) < h(@).

Now solving (B.8) for h we get
h(x) = g Pol@1=P0) JT (g5 P1=Paly

and upon differentiating this expression

W(z) = — Do m—pol(ﬂl—”o)—lﬂ(mll(Pri@o)H_
Pi— Do :
_‘_w—f’o/(ﬁx—?o)ﬂ’ (wlmn—ro)) A « gt/ P1=Pp)—1
P— Do

or
(5.11)

wh’ (1) = P m—pﬂl(pl—po){_pOH(mll(pl“po))+ M P1=P0) I (! P1=Po)y}

1— Yo
Inserting (5.11) in (5.10) we get (after replacing by 21~70)

(8.12) poH (2) < oH'(2) < p1H ()

(if po < py; otherwise the reverse inequalities) which is thus equivalent
to (5.6) with # = 1. When summing up we arrive at the following useful
criterion: :

TEEOREM 5.3. Assume that (5.12) 4s fulfilled. Then the conclusions of
theorem 5.1 hold true. :

Proof. Apply theorem 5.1.

6. \The modular case. Tn Section B we obtained in' comparison to
Section 3 more general spaces than I, as interpolation spaces but we
kept the endpoint space Ly, and Ly, fixed. Now we replace also the latter
by more general ones. Namely we let

Ay = O(H0}7 Ay = O(Hl} or A = 0('1:?1).

Here Oy, generally speaking denotes & “modular function space”,
i.e. H denotes & mapping from U xR, into B, such that for each wel
the mapping @ — H(u, ) is decreasing and we have

(6.1) a0 allog, = [ H(u, la(u))dp(w) < oo.
U
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Tf the “sections” @ — H(u, #) are independent of weU, we clearly
get an Orliez clags which we as in Section 5 might denote by Oy simply.
Of course, [|a| = llalloy; isnota quasi-norm in general butit is a “modular”
in the sense of Musielak-Orlicz [12], ie. in place of the gquasi-norm
properties (see Section 1) we have [lAa+ wb] < ]|+ Pl if A p =1,220
and x> 0.

We have to modify the definition of L(t, a) ((0.4) or (2.2)). Thus in
the rest of this section we seb

(6.2) Lty @) = inf (ladlogy +tladog,)
Corresponding to (3.3) we theﬁ obtain
63) Lit, a) = [H(t, u, la(w)])du(w),
U

where we have set

(6.4) H(t,u, %) = inf (Ho(u,o)+1H.(u, z)).
LT+ Ty

As in the proof of theorem 3.1 or theorem 5.1 we obtain subsequently
corresponding to (3.4) or (5.3)

(6.5) [ Lt, )ac) = [Elu, la(w))dulw)
0 U

with

(6.6) Hu, @) = [ H(i,u, 2)dE).

And this again leads to .
TamoreM 6.1. Let T: {Omgy; Omp} — {Omgs Oy} Let H be any
function of the form (6.6). Then T': Oz, — Oy and

(6.7) ITlog, 0, < s

where N = max(No, ¥1), No=[Tllogry,00mys Fr=1Tlogzy.00m; -

Proof (end). We easily find
(6.8) L(t, Ta) < NL(t, a).

Using (6.5) and (6.8) we then get llTa[]o(H} <N llano{ﬂ}, which implies
formula (6.7).

7. On the limiting case p, or p; - co. Hitherto we have agsumed
that p, and p, were finite. Now we say 2 few words, mostly of formal

nature, about the limiting case when one of them, say p,, tends to
infinity. ]
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Let us first consider any couple 4 = {4,, 4,}. We have the formula

(cf. (2.16))

(1.1) L(t) = I{t, a; A) = inf (2§04 11).

xel’

Let also temporarily assume { = 1. Then if p; — oo, the term. within
parentheges in (7.1) tends to 4§ or co according to if #,< 1 or @, > 1.
(It is convenient to disregard the possibility @; = 1, which would give
the contribution «f°+1.) Thus we get as a 11m1tmg form of (7.1) (with
t=1)

M@1) = lim L(1) = infado

Preo el

Nothing essential changes if we pass from the special case =1

to the case of general {. However, if we first in (7.1) replace ¢ by 1 and
then apply the above limiting procedure, we get

(7.2) M(t) = M(t, a5 4) = lim L(#) = inf oo,
Pyo0 el
tm1<1

which gives the limiting form of L(#) we are looking for.

Now ninimizing problems of the type appearing in (7.2) are quite
familiar in many contexts, e.g. in problems of statistical estimations.
Indeed, if we specialize to the case A4, = Li(po), Ay = Ly(p,) taking
also p, = 1, our methods for evaluating I (¢) when modified to the limiting
case M (%) 1educe essentially to a proof of the Neyman-Pearson lemma
(see the discussion in Beckenbach-Bellman [1], p. 121-123).

Another special case deserves attention, namely 4, = Ly, Ay = Ly,
It is, however, convenient to perform the passage to the limit in a somewham
different fashion. We start instead of (7.1) with the formula

(7:8)  Llt, a5 {Lyy, L)) = it ([ lag(w)P0dpu(u)+1 J im0 duw).

a=ao+a1

Starting again with the case t =1, a formal passage to the limit
yields

lim L(1, a; {Zy,, L

D10

nt f | (10) PO dps () +- ().

“‘“0 Fo {1 lag(e)|=e1)

Generalizing this formula to general % in analogous manner as above,
we then get

(7.4)
Jm L(, a5 {L,,, L,,}) = int ( [1a0 (w)Podu () + du(w)).
10 “-“n+ﬂ1 oy ()| =t 1}

Jay (W <t—1

icm
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Now it is not hard to see that the inf in (7.4) is assumed if

a(w) .., -1
ao<u>=[“‘“)‘m’ o=t
0 if Ja(u) <t

+-1
/-;o\(\l:N ay(u) >

Therefore we get
Hm L (™, a; {Lyy, Lp}) =
1]1—)50

(1.5) [ la(u)Podu(u)

a1

.y . *
or, introducing the positive decreasing rearrangement a of a,

Ly}) = [ la*(o)"do
0

(1.6) lim L(#, a; {Ly,,
P10
with 7 = dp(u).

o)t~ t

This should be compared with the formula (due to Peetre [14], [18]
if p, = 1, Krée [107 if p, general)

z -
(7.7) Ky, @; Lpyy L) = ( [ 0 (o)P0do) "™,

0
on which a great deal of the theory of interpolation in the case A, = Ly,
Ay = Ly, can be based (see In particular also Holmstedt [6], [7]). Thus
we have found a eonnection between (7.7) and the formulas for L(t, a)

given in the previous sections (see notably (3.2)).

8. On the parameter theorem. Let A= {4,, A4,} be any Banach
couple. Let us introduce the following space (cf. Lions-Peetre [11]):
(8.1) Ao, =T D = {0, 01}: @ = v5(t) +0:(8),

olil = Hoolllo+ l1oalll2

= (f e a9

1
(f (0" oa ()]s, ﬂ) <oo (0<B<1).
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This is a quasi-Banach space if we set

(82) . lall = llalky,, , = it 1ol

The purpose of this section is to provide a new proof of the following
theorem of which several proofs are known (Peetre [14], [15], {237, Holm-
stedt [6], [7]). Our argument is particularly close to the one of Holmsteds.

THEOREM 8.1 (parameter theorem). We have Zapo,,l = ng;g, where
1/p = (1—0)[poy+ 0/p, or, in view of theorem 2.2, Zopopl = Xm:m where
7 = 0p/p;.

The following result is known (Lions-Peetre [11], chap. I, lemma 3.1):

Lmia 8.1 fafl & inf]]1o, 157 [[]0y 13-

’l)

However with the same proof we also obtain
Lemva 8.2. [laf| ~ igf(lllvolH%’“r [loy 11547
v

For completeness we indicate the argument.

Proof of lemma 8.1. By the inequality between the arithmetic
and the geometric means we get

mlEAILES (1“0)|“’”o||| aAICHIPES
Therefore, by (8.2), we obtain

HIESNR Hopll[2~+ o112

in || o |11 1o 111° < Jals

which is one of the inequalities needed. For the proof of the other one
let us note the inequa.lity

(8.3) llall < H[volllo+ |H?1H|1< 2max (|[|vglllo, [lloalll1),

where ? = 3(t) is any function satisfying the relation a = w,(2)+v4(f).
Let us now with such a given v associate the funetion ﬁ(t) = '1_5(“), where

A is any real number > 0. The crucial relation a == w,(¢)--w,(t) is still
satisfied. Therefore (8.3) yields

 llall < 2m0ax ({[lwo[lo, [1lwa [ll) < 2max (2°[[1wg]]1o; 2104 ]]1).

But if we choose 1 so that 2°|||v,||, = 2""||v.1|ly, We have
lali<211]9ol1[5~° I[}ol[]¢. Therefore follows upon making 5
llafl < 2int[[[oy1]157°|[ |0, 1/11,

which is precisely what is desired.

icm
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Proof of lemma 8.2. The inequality between the arithmetic and
the geometric means now yields

=0
Do

1/n
oo lHs =" ea 115 < IH%III”‘”r“——JH?JllH”l) ,

< o[l I8+ Hllo, 117D,
where we have used the definition of p. Therefore by lemma 8.1 we obtain
llall < Cinf([llmo 1150+ I1lo 1),

which is one of the inequalities needed. The other one is proved exactly
a8 in the proof of lemma 8.1 by means of the function EE(z) = E(At), but
the parameter 2 of course has to be chosen differently, namely so that

270 log||[0 = A=Y {{lo, ||[21.

It is now easy to prove theorem 8.1.

Proof of theorem 8.1. By lemma 8.2 we get using also (2.2) and
(2.4) and the definition of

llalf® ~ inf [}log 1110+ {Tlvs 11T

- s dat
= int f ({67 o (8)Lag) ™+~ lhoa ()L™ -
= [ ming o 01 + -0 o ) 5

0
— ft—"POL(t(l—e)Pl-i-"po’ a).d_t
t

~ dt
= f 1L (s, @) - = ollaly -
[
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The main triangle projection in matrix spaces and its applications
. o ‘ ,
S. EWAPIEN and A. PEERCZYNSKI (Warszawa)

Introduction. The origin of this paper are the following three, at
first appearance unrelated, problems:

L. Ts the operator 8: I, -1, given by 8(a(n)) = Y'a{i) (p,q)-absolu-
i<n

tely summing for p > ¢ >1% ([8], Problem 5).

2. Does there exist an unconditional basis in the space of all compact
linear operators in an infinite-dimensional Hilbert space?

3. Is every unconditionally convergent series in 1, of the form
%’P”x, where P"(a(i)) = (a(i+n)), absolutely convergent? (S. Mazur,

Secottish Book, Problem 89).

It became clear that all these problems reduce to estimation of nerms
of “the main triangle projections” in corresponding matrix spaces. Let
us consider, for example, the linear space of all matrices a = (a(4, j))
with the norm

Jaa(@) = sup Ys(i)u(j)ai, ),

where the supremum is taken over all sequences (s(¢)), (t(j)) of ‘scalars
such that 3'1s2(2)] <1, J#() <1 (A(a) is equal to the norm of the
1 7 .

operator in I, given by the matrix ). The main triangle projection is
defined by
a(i, jy i i+j<n+1,

Tu(a)(i, j) =
)3, 9) 0 otherwige.

‘We prove that the norms of these projections grow the same as
Inn when % becomes large. This order of growth is attained for the Hilbert
matrices hy, ha(i,j) = (nt+l—i—j)~t if i+js#nt+1 and i,j<n,
hn(i, j) = 0 otherwise.

In the first section the concept of a matrix norm is introduced, and the
norms of the main triangle projections with respect to some special matrix
norms are estimated. The results of this section applied to the matrix
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