42 J. Peetre

[6] T. Holmsteds, Interpolation d'espaces quasi-normés, C. R. Acad. Sei. Paris
264 (1967), p. 242-244.
(7] ~— Interpolation of quasi-normed spaces, Math, Scand.
[8] — and J. Peectre, On certain functionals arising in the theory of interpolation
spaces, J. Funetional Anal. 4 (1969), p. 88-94.
[9] M.A.Krasnoselskij and J. B. Rutitskij, Convew functions and Orlicz spaces,
Moscow 1958.
[10] P. Krée, Inlerpolation d’espaces qui me sont ni normés, mi complets, Ann. Ingt.
Fourier 17 (1968), p. 137-174 (& Séminaire Lions-Schwartz, seméstre 1964-1965).
[11] J.L.Lions et J. Peetre, Sur une classe d’espaces & imterpolation, Publ. Math.
Inst. Hautes Etudes Sci. 19 (1964), p. 5-68.
[12] J.Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), p. 49-65.
[18] T.Oklander, Ly interpolators and the theorem of Marcinliewics. Bull. Amer.
Math. Soe. 72 (1966), p. 40-53.
[14] J.Peetre, Nouvelles propriftés &espaces d'interpolation, C. R. Acad. Sei. 256
(1963), p. 54-55.

[15] — Sur le mombre de parumeires dans la définition de certains espaces & interpola-
tion, Ricerche Mat. 12 (1963), p. 248-261.
[16] — Espaces dinterpolations, généralisations, applications, Rend. Sem. Mat. Fis.

Milapo 34 (1964), p. 133-164.
[17] — On the theory of interpolation spaces, Revista Un. Mat. Argentina 23 (1967),
D. 49-66.
[18] — A theory of interpolation of mormed spaces, Notas de matematica 39 (1968)
(~ Lecture notes, Brasilia 1963).

[19] — On an interpolation theorem of Foiag and Lions, Acta Szeged 25 (1964), 13

255-261.
[20] — On interpolation functions, ibidem 27 (1966), p. 167-171.
[21] — On interpolation functions, II, ibidem 29 (1968), p. 91-92.
[22] — COoncave majoranis of positive functions, Acta Math. Acad. Sei Hung.
[28] — On the theory of K-spaces.

[24] J. Rao, Interpolation, ergodicily, and martingales, J. Math. Mech. 16 (1966),

D. 543-567. .

[25] — Ewxtensions of the Hausdorff-Young theorem, Israel J. Math. 6 (1968), p.
133-149.

[26] I.B.Simonenko, Interpolation and extrapolation in Orlics space, Mat. Sbornik
63 (1964), p. 536-553.

[27]1 — Boundedness of singular operators in Orlicz spaces, Dokl. Akad. Nauk SSSR
130 (1960), p. 984-987.

[28] A. Zygmund, Trigonomelrical series, Cambridge 19568.

Regw par la Rédaction le 29. 10. 1968

STUDIA MATHEMATICA, T. XXXIV. (1970)

The main triangle projection in matrix spaces and its applications
. o ‘ ,
S. EWAPIEN and A. PEERCZYNSKI (Warszawa)

Introduction. The origin of this paper are the following three, at
first appearance unrelated, problems:

L. Ts the operator 8: I, -1, given by 8(a(n)) = Y'a{i) (p,q)-absolu-
i<n

tely summing for p > ¢ >1% ([8], Problem 5).

2. Does there exist an unconditional basis in the space of all compact
linear operators in an infinite-dimensional Hilbert space?

3. Is every unconditionally convergent series in 1, of the form
%’P”x, where P"(a(i)) = (a(i+n)), absolutely convergent? (S. Mazur,

Secottish Book, Problem 89).

It became clear that all these problems reduce to estimation of nerms
of “the main triangle projections” in corresponding matrix spaces. Let
us consider, for example, the linear space of all matrices a = (a(4, j))
with the norm

Jaa(@) = sup Ys(i)u(j)ai, ),

where the supremum is taken over all sequences (s(¢)), (t(j)) of ‘scalars
such that 3'1s2(2)] <1, J#() <1 (A(a) is equal to the norm of the
1 7 .

operator in I, given by the matrix ). The main triangle projection is
defined by
a(i, jy i i+j<n+1,

Tu(a)(i, j) =
)3, 9) 0 otherwige.

‘We prove that the norms of these projections grow the same as
Inn when % becomes large. This order of growth is attained for the Hilbert
matrices hy, ha(i,j) = (nt+l—i—j)~t if i+js#nt+1 and i,j<n,
hn(i, j) = 0 otherwise.

In the first section the concept of a matrix norm is introduced, and the
norms of the main triangle projections with respect to some special matrix
norms are estimated. The results of this section applied to the matrix
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norms ¢, and o, are very closed to some theorems of I. 0. Gochberg and
M. G. Krein concerning the Brodski integrals (cf. [4]). )

In the second section the problem. of the existence of unconditional
bases in the matrix spaces is congidered. The non-existence of unconditional
bases in the gpace of compact operators om I, is proved. It is worth of
mentioning that all important examples of matrix spaces can be
constructed by means of tensor products in the sense of some cross-norm
of Banach spaces with bases. For details see Section 3. Positive answer
to Problem 1 is given in Section 4. In Section 5 we exhibit some
relationships between the unconditional convergence of series in I, and
the convergence almost everywhere. These results generalize the clagsical
results on orthogonal series due to Menchoff and Rademacher (cf. [1]).
Af last, Section 6 contains the negative answer to Mazur's problem and
a geometric interpretation of the main theorem of Section 1.

We would like to express our gratitude to Professor B. 8. Mitjagin
who brought to our notice the relationship between the boundedness
of the main triangle projection and the existence of Brodski’s integral
in unitary ideals. .

1. Matrix norm and the main triangle projections. Let M denote the
linear space of all scalar-valued (real or complex) matrices a = a(i, J)
(¢, =1,2,...) such that a(é,j) = 0 for all but finitely many i, §. By
a we denote the adjoint matrix of a, ie. a*(¢,5) = a(j, ). For ae M
we put

tr(a) = D a(i, ).

i

For a,b in M, acb denotes the matrix defined by
(aob)(2,]) =2a(i,70)b(70,j) (6, =1,2,..).

For m,m =1,2,... we define the matrix Unm DY Unm(i,§) =1
fori=mn, j=m and u,,m(@,y) = 0 otherwise.

Let Pom(a) = 3 a(i, j)ug; for ae M.

i<n

A non-negative function « on M is called a matriz norm if it satisties
the following conditions:

(i) a(a) =0 iff a = 0; a(ta) = [¢|a(a); a(a-+b) < a(a)+a(b) for
a,be M and any scalar t. ) :

(i) a(tnm) =1 for n,m=1,2,

(i) o(Pp,m(a) < a(d) for aeM('n m=1,2,..)

A matrix norm is called wnconditional if .

(V) a(e) = a(s(@)i(j)a(i,j)) for aeM and for [s(i) = [i(j)| =

(i,i=1,2,
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An unconditional matrix norm is called symmetric if
(v) a(a) = a( {(9), w(j))) for a¢ M and for all permutations g, »
of positive mtegers
If o is & matrix norm, then the conyugate norm o is defmed by
a*(a) = sup | 2 a(6,d)b(G,9)| =, smp _ftr(actl.
beM, a(b)<<1
We have o (a) = a(a):
Definition 1.1. Let us put for aeM(n=1,2,..)
Tu(a)= D afs,j)uy.
i<+l
The operator.T,, is called the n-th main triangle projection.
In this section .we are mainly interested in computing the quantities
tn(@) = sup a(ln(@) =Tl (n=1,2,..),

a(a)<1,a
i.e. the norms of T, with respect to a given matrix norm a.
For arbitrary matrix norm o we have
(1.1) t(a) = f(c*) (n=1,82,...).
If o is symmetric, then
(1.2) <tha) <t(a) <
Less trivial is the following fact:
ProposITioN 1.1: If a is an unconditional matriz norm, then

(1.3) t(a) < log,2n.

Proof. Call a chain any set C of pairs of positive integers guch that
7(C)
0= 4:XB,,

r=1
where (4,) and (B,) are finite sequences of sets of positive integers such
that if 7, = r,, then
A,.I ~ A,.2 =@ and B,l ~ B’z =0.
Let us put '
Po(a) = D ali,jlu; for ae M.
(i,j)sC’
Observe that for each ae M and n = n(a, C) 5o large that P, ,(a) = a
and » > max(maxi, maxj) we have the identity
r<r(C) ded, jeB,
Pola) =27 31 P,.{(al, )s()s(5),
(sth)eS(C,m) - .
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where S(C, n) is the set of all sequences (s(j)) such that s(j) = -1 for

j=1,2,...; s(j) =11%or j=mn;if jicd, and jyeB,, then s(j,)-s(j,) =1
for r=1,2,...,7(C). Since « is unconditional matrix norm, the last
identity implies
(1.4)

Next put

a(Po(a)) < afa) for ae M.

My = {(5,4): i+j<k+1} (B=1,2,..).

We shall show that ([#] denotes the ‘‘entire” of u)

(1.5) 4y is a nnion of §(k) = [log,2%k] chains.
Assume that we have done this. Then combining (1.4) and (1.5)

with the obvious identities T(a) =(_j2‘ a(i, flu; we get (1.3).
) Li)edy
We prove (1.5) by induction. For % = 1 it is trivial. Suppose that
’ S((¢+1)/2])
(1.5) holds for 1<%k<l Let 4, ="(J O(n) for some chains C(n)
n=1

(n=1,2,...,[(I1+1)/2]). Let F; and G; be the ‘‘translations” defined
by Fif(i, )) = (i+[(14+2)/2],5) and Gy((i,5)) = (i, j+[(1+2)/2]). )

Put 0*(n) = Fy(0(n)) v G,(0(n)) for n =1,2,...,[(I+1)/2]. Since
each C(n} is a chain contained in 4;, one can easily see that C*(n) is
also a chain. Moreover, we have

SCE-+1)/21) *
MGy =LoR(M)wG(d)y=Lo U ),

n=1

where I ={(i,4): 1<4,j<[(1+2)/2]}. Hence Ay is a union of

1+1
S([—j;——])-u = §(1+1)
chains. This completes the induction and the préof of (1.3).
Next we shall gshow that, in general, inequality (1.3) cannot he
improved. We begin with the standard notation.
If & = ((4)) is a sequence of scalars, then

(Sl
Jleelly [

for 1< p < oo,

v
sup | (4)] for p = oo.
%
Let us set

Qo for p =1,
p(p—1)"!

1 for p = oo.

*

P o= for 1 < p < oo,

cm
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Also if p = oo, then by “1/p” we understand “0”.
Definition 1.2. Let 1 <p, ¢<< co. Let us put

Ipala) = swp | 3la(i,)a(i)y(j)

IRt <Livg*<l' 57

(ae .M).

Clearly, 2p,q 18 & symmetric matrix norm. Using the Holder inequality
we get
Leyvma 11 If 1<p<py< oo and 1< g< ¢ < oo, then

1py—-1/0% ml[q;—dla‘

(1.6) Z‘p,q(Pn,m(a)) < Aml,ql (a)-n
(aeMin,m=1,2,...).

In the sequel an important role will play the following Hilbert
matrices hy (n =1,2,...) defined by

Jm+1—i—5)?

. for i4j # 41 and ¢,j< n,
b (2, §) =

0 otherwise.

It is known that for each p with 1 < p < oo there exists a constant
K (p) such that
(1.7 2,00 (ha) < E(p)

(The proof of this fact may be found in [4], Chap. I, § 10, or may be
simply derived from the Riesz theorem; ef. [2], Chayp. XT, § 7. Historicaly
the first proof is due to Titchmarsh [14].) o

PROPOSITION 1.2. Let p # oo, q % oo and let l/p+1/g=1. Then
tn(lp,q)>0(1779)1nn (’”=1;27'--)7
where O(p, q) is a universal constant.

Proof. Clearly, Ppn(bn)=hy. By the assumption, ¢ < p*. Thus
by (1.6) and (1.7) we get

T, g(n) < B () 81117 < I (p) o=,
On the other hand, by Definition 1.2, we have (for n > 2)
Ioa(Taha) = Ao D) (met1—i—j) usy)
itj<n
>yl

for m =1,2,...

(1.8)

D) (n+1—i—j).

iHi<n

Since for some C independent of #» we have
1.
Siwtiioi = 3 S5 o

i4j<n i<n—1J<i
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we geb ’ Fer further application we shall need another property of the ‘

Jp g Tahy) = On' =P =1 Inp = On'?=H%Inm.

Thus
Zﬂ,q(Tn‘hn) Ow’llp_llq"lnn N o
Ap,a(hn) - K(p)nl/l’—l/q* = )

1o (Ap,0) 2 Inn.

This completes the p}’oof.

By (1.1) we get

CororLARY 1.1. If 1fp+1ljg=1 (1<p,q< o), then 4(l5,)
= 0(p, 9)Inn. ‘

Problem 1. Estimate from below the numbers

1 1 :
tn(Ap,q) for——+—'—<1 (py g # o0).

Observe that we have oo, (@) = sup(Zla(@ NYH and A, (a) =
s171p (Zm(z §)P)HP. Thus

tulhpee) = Inllngd =1 form=1,2,... (1<p<o0,1<g<00).
For each » with 1< r< + oo define the symmetric matrix norm o, by

(tr.L(@oa®y )" for 1< 7 < oo,

l“(a,) ’forr-—ocr

o.(a) =

It is well known that of = g, (cf. [4], Chap II11, §1) Therefore,
by (1.1) and Proposition 1.2, we get

COROLLARY 1.2. #,(0y) = t,(0x) > Clan (n =1,2,...).

This corollary is also a consequence of a theorem proved by Gob-
berg and Krein ([4], Chap. II, §6). It follows from Macajev’s results [9]
(cf. also [4], Chap. IIT, § 6) that for 1 < p < --co the sequence (i, (dp))n
is bounded.

CoroLLARY 1.3. We have

lim?,(0,) = limit,(co,) = Clon  (n =1,2,...).

Pa=l =00
Proof. For each a< M we have limc,(a) = o, (a). Thus, in particular,
- =00
1im oy () = oo (hn) = Ay 3 (hn) and lim o, (T ) = 495 (T hy) 2 Clnn. Hence
=00

r=0o0

. 0 (Tahy) _ O
lim? >lim e ]
(o) = I ) T EE)
The identity hmt (c,) = 11mt,,(ar.) is an obvious consequence of (1.1).

numbers i, (a).
Define the projection D,: M — M (n =1,2,...) by

Dgmsl@) = D D' ali, jug,

k<<m max(i,7)=2k—1

Dm(@) = > D' ali,)uy.

k<m max(i,j)=2k
ProposITION 1.3. If a i8 a symmetric matriz norm, then
tp(a) = S:uPa(Dn(a)) = |Dulle (n=1,2,...).
a{a)<1
Proof. We consider only the case where n is an odd integer. The

proof for » even is similar. For n = 2m—1 we define a permutation
@, of positive integers by

n—i+2 oo
—? for i odd and i< n,
& (i) — L1ad
n () ﬁl‘)—ﬂ for ¢ even and i<,
i for 1 >mn.

Next define an operator U,: M — M by
Un(a) = D' als, uomom (@eM).
7
One can easily check that
Tn(Una) = Upn(Dya).

This identity together with the fact that U, is an isometry (because
a i3 a symmetrie matrix norm) imply the desired conclusion. .

2, Matrix spaces and bases. :

Definition 2.1. If « is a matrix norm, then by M, we denote the
Banach space being: the completion of the normed linear space M under
the norm a.

The space M, can be in a natural way identified with the subspace
of all scalar-valued matrices. The norm in M, will be also denoted by a.

‘We recall that a sequence (e,) of elements of a Banach space E is
a basis for B if for each ¢ in ¥ there exists & unique sequence of sealars
(¢n) such that ¢ = 2 CnCn-

The following theorem is'a slight generalization of a result of Gelbaum
and Gil de Lamadrid [3]:

Studia Mathematica XXXIV 4
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TeporEM 2.1. The sequence (Ui iule-1 5 @& basis for every matriz
space M,, where

m+1  for k=mits and 1<s < m+1,
i(k):‘s——m for b =m*+s and m+1<s < 2m41;

(2.1) . s—m  for bk =mP+s and 1<s < m+1;
ik =lm~|—1 for & =mi+s and m+1<s < 2m+1

(m=20,1,2,..).
Proof. Let us set

Qu(@) = D) alit), j() gy (ae M5 k=1,2,...).
<k
It follows from (2.1) that
(2.2)
Q Pm,m+-Pm+1,s_Pm,s for t = m?4s and 1<s < m+1,
=

Prymt+Ps_mmi1—Ps_mm for b = mit+s and m-41< s < 2m+1
(m=0,1,2,..).

(We put Pyy = Py ; = Pjy = 0). Thus [|@]. < 3 for all k. Since by (2.2)
lim@Q(a) = a for each ae M and since M is dense in M, we infer that
']

limQy(a) = & for each ae¢M,. But this is equivalent to the assertion
k :

of the theorem.
- We recall that a basis (e,) in a Banach gpace H is called unconditional
if the convergence of a series > #,6, implies the convergence of every series
n

D s(n)tye, for s(n) =

in F if for every permutation @ of the indicies the sequence (eg(u) is
a basis for E.

Gelbaum and Gil de Lamadrid [3] observed that the double sequence
(#4,) 18 not an unconditional basis for the space of compact operators
in the Hilbert space l,, i.e. in the space MM, ,. In fact, those cases where
the double sequence (u;) is an uncondltloneul basis for 2 matrix gpace
(i.e. each ordering of (u;;) in a sequence is a basis) are rather exceptional
and very often matrix spaces do not have any unconditional hasis. Firgt
we consider the case of operator ideals on a Hilbert space.

Definition 2.2. A matrix norm o is called wnitary if a(woacw)
= a(a) for every stable unltary ma.trlces % and v and for ae M.

A matrix 4 is unitary if «* =« and u i3 stable if u(i,j) = 67 for
all but finitely many ¢ and j, where & = 1 for i = j and &} = 0 otherwise.

THEEOREM 2.2. For every unitary matric norm o the following conditions
are equivalent:

+1. Equivalently, (e,) is an unconditional basis

icm°
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(2.8)
(2.4)

the double sequence (u;;) is an unconditional basis in M,;
the matriz space M, consists of Hilbert-Schmidt matrices, i.e. the
identity map o — & is an isomorphism from M, onto M,,.
Proof. Clearly (u;;) is an unconditional basis in M,,. Therefore
(2.4) implies (2.3). Conversely, (2.3) implies that there iy X > 1 such that

(2.5) for be M,

K a(d) < a(p]) < Ka(b)
where [b](i, ) = [b(s, )| (3,5 =1,2,...).
Next observe that for each a< M there exist stable unitary maitrices

% and v such that woaow = ((4;5}), where

=V Xati, )P

(This is & consequence of the facts that every matrix has the polar repre-
sentation (cf. [2], Chap. X)) and that every self-adjoint matrix is unitary
equivalent to a diagonal matrix.) Since @< M, there is an index n =n(a)
such that #; = 0 for ¢ > n(a). Consider the unitary matrix w, defined by

fori=1,2,...

1 — 27 ) .
—e V11034 for 2,5<n
(',j>=lﬁ (/=35 IS

8 otherwise.

(Cwa(i, ). Then [B](3, ) = t/Vn
..). Thus choosing stable unitary matrices u, and v; 80
,1,0,0,..)) = Vn(8%) we have

Let b = woaovow, = {(t;6)ow,) =
(i,j=1,2,
that ul((ti) = ]/th(éi) and v ((1,1,

7 times

%,0bjov, = ]/ D tiu,;. Thus using the assumption that « is a unitary
B

norm we get
(26) a@=a®) and o) =) Nt =1 Dlal,)F = oya).

The desired conclusion follows now from (2.5), (2.6) and the fact
that M is dense in M,.

Remark 1. Mitjagin has observed that a similar argument shows
that if a is a matrix such that 2, ,(Jvoaou|)< oo for all unitary matrices
% and v, then o;(a) << 4-oo.

Remark 2. Observe that for each matnx norm « condition (2.3)
is equivalent to the following ‘“‘elementary” condition which does not
involve the notion of unconditional basis:

If ae M., then (s(i, j)a(i,j))eM., for every matriw (s(i,J)) such that
§(i,J) = x1 for 4,j =1,2,


GUEST


52 S. Kwapien and A. Pelczydski
Our next result lies much deeper than Theorem 2.2, First we recall
the following concept. Let (e,) be a basis for a Banach space H, and let
(&}) denote the sequence of coetficient functionals of the basis (i.e. ey (%) = o,
for # = 3 epeueB (n=1,2,...)) Let us put

n

Eyne((en)) = ﬂg}l sup HZ 0,f(m e |1y

whére the second supremum is taken over all finite sequences of indices
<< <1 (§=1,2,. L)

It is well known that the basis (e,) is unconditional if and only if
Koo ((en ) < -+ oo.

‘We begin with the following lemma:

TEMMA 2.1. Let B be a Banach space with o basis (6,). Let a be a sym-
metric matriz norm and let U: M, — B be an isometrically isomorphio
embedding such that

2.7 limen(Tugy) =0 for j,m=1,2,...,
(2.8) limey(Tugy) =0 for i,m=1,2,...
7 . .
Then .
(2.9) Kunc((en)) > supts(a).
8

Proof. Pick ¢> 0 and fix an index s. Next, by Proposition 1.3,

we choose a matrix a = (a(i,j)) in M so that a(a) = 1 and
(2.10) a{De(a)) > ts(a)—

We are going to show that
T {(2.11) Kono((en) = ts(a) — 2.

This clearly will imply the assertation of the lemma.

In the sequel we shall agsume that s = 2n—1 is an odd positive
number. The proof in the case of an even s is almost the same.

Using (2.7), (2.8) and the standard *‘gliding hump” procedure we

define inductively three increasing sequences of indices (m(k)iL1, (» (k)i
and (q(k))io1 so that for by = ' a(i, J)Upu,q the following inequal-
ities hold: max(s,f)=k
2 16 (Ub) e < 5
)
|5 e <
mk+1)<r<m’ 2s
for k=1,2,...,s and for each m' > m(k+1).

icm
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These conditions imply:

(2.12) ] e:(Ubk)e,—Ub,;” <=
m(k)<r<m(k+1) §
for k=1,2,...,s,
(2.13) e (TUby)e,
mk)y<r<m(k4-1)
for k. #£1 (k,1=1,2,...,9).

53

Let us put =k2 Ub. Since U is an isometry and the matrix
<8

norm ¢ is symmetric, we have

] = a(Zbk) = a(ZZ“(’%.?)“p(i) q(:f))
X

i<s j<s

(2.14)

'L:J)ui,:") = a(-Ps,aa

< a(a) = 1.

Now we are going to estimate from below the number

12 (o), whero n

I<n ml-H<r<m(2l)

‘We have
1 3  eéwe

& S ema ”ZUbol 1” —2” Uby_y—

But, by (2.12) and (2.13), we have
[Tt~ & (2)er

m2l-1)<r<m(2l)

< H Uby_y— 3: (Ubga_1)er

ml-1)<r<m(2l)

2|

k<s

€

&
<o -1
Thug

(2.15)

i<n m2l-1)<r<m(2l)

Next observe that

s+1
P

m(21_1)<r<m(21)

m(2l—1) <r<m(21)

z)ep = “lg Ubﬂ_l“ ——Z'-s.

(2.16) HIZUbﬂ_IH af Dbusa)
<n i<n
& 2 a (i, J) tpg), q(d))
—a a(%])%;;) = a(Dy(a).

I<n max(i,j)=21-1

e (x)erll.

o (Ut e, |

1
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(Because U is an igometry and the matrix norm a is symmetric.) Com-
bining (2.15) and (2.16) we get

> a(Ds(a))—s.

(2.17) » & (@)er

<n m(zl~1)<1'<m(2l)

Comparing (2.17) and (2.10) with the definition of Kync(6,) we
obtain (2.11). '

Tevma 2.2, Let (6) be a sequence of bounded linear funetionals in

o Banach space B, and let o be o symmetrio makric norm. If t?m"e emis‘{s
an isomorphic embedding U: M, B, then there ewisls another zsomcfrp'hw
embedding U: M, — B such that conditions (2.7) and (2.8) are satisfied.

Proof. Consider the “cubic matrix” {g(Tu.,)}. Since for each
fixed pair of indices (n,r) the sequence (en( Tty )21 i8 bounded, one
can extract, by the standard diagonal procedure, an if@l:@&smg sequence
of indices (s(j))2, such that there exist limits 115110,,(Uur’3(7-)) for n,r
=1,2,...

’Re7peating the same arguments for the “cubic matrix” {e;[(ﬁumm)}
we extract an increasing sequence of indices [r(i))i2, so that there exist
limits limep( Ty o) for m,j =1,2, ...

v

Next we put for ae M,

Va = Z a (%, §) (Urgai) a2y T Ur(air),s(20—1) = Yr(2i),a(2i—1) — Ur(2i— 1),3(21))-
%7
Sinece « is a symmetric matrix norm, for each two increasing se-
quences of indices (p(4)) and {¢(j), and each matrix beM, wo have

o 3 b(p(0), a(i))ws) <a®) = a( ) b(i, oan) -
z

Applying this to the matrices ¢ and Va we obtain
ale) < a(Va) < 4a(a).

Thus V: M, — M, is an isomorphic embedding. Now it is eagy to
verify that U = UV has the desired properties, which completes the
proof.

THEOREM 2.3. Let a be a symmetric matrin norm such that the sequence
(tnla)) 18 unbounded. Then M, is not isomorphic to any linear subspace
of a Banach space with an wncounditional basis.

Proof. Suppose on the contrary that T: M, — B is an isomorphic
embedding and (e,) is an unconditional basis in B. Let (e)) be a sequence
of coefficient.functionals of the basis (e,). By Lemma 2.2 there is another
isomorphic .embedding U: M, - B which satisfies conditions (2.7) and
(2.8). Now, according to [11], Proposition 1, we replace the original norm
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(2.23)

Main triangle projection 55

of ¥ by an equivalent norm with the property that U with respect to the
new norm is an isometrically isomorphic embedding. Clearly, (e,) remains
unconditional basis in the new norm. Now, by Lemma 2.1, we get
Kune((en)) = +o0. Thus the basis (e,) is not unconditional, a contradiction.

COROLLARY 2.1. Let 1<p, g<oco and 1/p+1fg>1. Then no of
the spaces M,  and M 5. 18 isomorphic to o linear subspace of a Banach

space with an wunconditional basis. .

Proof. This is an immediate consequence of Theorem 2.3 and
Proposition 1.2 and Corollary 1.1.

Corollary 2.1 and Theorem 2.3 enable us to give various examples
of Banach spaces without unconditional basis. These examples seem
to be new from the point of view of the linear topological classification
of Banach spaces.

Example 2.1. The space M, | has the following properties:

(2.18) M, , is isomorphic fo mo subspace of a Banach space with an
’ unconditional basis.
(2.19)

(2.20)

In M, | weak and strong convergence of sequences coincide.

M;, | is isometrically isomorphic to a conjugate space of a Banach
space.

Proof. (2.18) follows from Corollary 2.1.

(2.19) Suppose that there exists in Mlm a weak Cauchy sequence,
say (@), which does not converge in the norm topology. Then there is
8> 0 and an increasing sequence of indices (n(m))5_, such that

(2.21)  Ayy(bm) > 8

Clearly, the sequence (b,) weakly converges to zero. For aelM, A4

and for p,g =1,2,... we put
Preolo) = D) D' ali, g, Peg= 3 3ali,f)us.
i<p 7 I=r i

Observe that the ranges of the projections P, (and P, are
isomorphic to the Cartesian product of p (respectively ¢) copies of the
space ;. Since in the space I, norm and weak convergence for sequences
coincide, we have

(2.22) MMy [Py o (b)) =1im Ay 3 (Pos g (b)) = 0
m m

for bn = Gnpm— Onpm_1y, m=1,2,...

(p,g=1,2,...).

Using (2.21), (2.22) and applying again the “gliding hump”’ ‘procedm:e,
we define three increasing sequences of indices (m(k)), (i(%)) and (j(%)) so that

ll,l (bm(k) - 2

(k) <i<i(h+1)

Dungy (2 j)ui,j) <9k
(k) <I<i(F+1) '
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Next we define scalar sequences (#(d))2; and (y(f))R2: so that
sup |#(4)| = sup ly(5)l =1 and
i

By (3 ) 11) = Bingey (8, 1) 2(9)y () -

(224) I Lo o<
7210 <7<i k+1; 7{ ;<f<7(’“+13

Tt follows from the definition of the norm. 1,; that the sequences
(w(9) and (y(j)) determine by the formula

= Y a(i, j)o@)y()

X
a linear functional on M , of norm 1. Tt follows from (2.21), (2.24) and
(2.23) that

F(a)

B (b > 6—27% (b =1,2,...).

But {his contradicts the fact that the sequence (bnz) converges
weakly to zero in M. ny,q . This completes the proof.

(2.20) is a particular case of the following fact:

PROPORITION 2.1. Let a be a mairiw norm such that the space M, has
the following property: if & is & matrix such that

snu%)a (%%: a(i, ) uw)< +o00,
jsm

then aeM,. Then M, is isometrically isomorphic 1o the space (Mo)*.

We omit the eagy proof of this proposition.

Our next example shows that there exists a reflexive Banach space
without an unconditional bagis. We recall that if (X;)io, is a sequence
of Banach spaces, then by ( P X}, we denote the Banach space of all

1<i<oo
sequences (#;) such that @eX; (i =1,2,...) and

@)l = (3] )" < o0
B

Example 2.2. Let (p(k)) be o sequence of real numbers such that
1< p(k) < +oo and either likmp(k) = oo or limp(k) = 1. Then the space
k

X=( P M, ) has the following properties:
1gk< ) .
(2.28) X is reflewive and separable.
(2.26) X is mot isomorphic to any subspace of @ Banach space with an

unconditional basis.

Proof. (2.25) follows from the fact that if 1 < 7 < oo, then the
space M, is reflexive and separable (cf. [4], chap. IIT, §1).
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(2.26) Suppose that V: X — F is an isomorphic embedding of X into
a Banach space H, and (e,) is a basis in F. Then, by [11], a new equi-
valent norm on ¥ may be given so that V is an isometric embedding with
respect to this norm. Hence each V; = VJ; is an isometric embedding
of M, . into E (J;is the natural embedding of M, mto( P M,p(k))g

p(v,} <k<oo

h.muk, = 0 in .the weak topology of the spaee M, Vi

%p(i)
Since hmukl

satlsﬁes condmons (2.7) and (2.8) of Lemma. 2.1. Hence by this lemma
,,mc((e,,)) > Supsupin(ag,q,) = oo (by Corollary 1.3). Thus the basis
& 7n

(¢x) is not unconditional. This completes the proof.
Problem 2. Does there exist an unconditional basis in the space
M, for 1<p < oo, p £ 2%

3. Tensor products of Banach spaces and matrix spaces. In this section
we restate the main results of Section 2 in terms of tensor products of
Banach spaces.

If X, ¥ are Banach spaces, by X®Y we shall denote the algebraic
tensor product of X and Y. A norm | [ on X® Y is said to be tensor
norm if

(3.1) for each weX and ye¥;

el -yl
811

le@yl =
8Ty = for any two linear operators 8: X -~ X

and 7: Y > Y.

By X®;Y we shall denote the completion of X®Y with respect
to the norm || ||;.

We recall (cf. [8]) that if X and ¥ are Banach spaces, then by X &Y
(resp. X éY) we denote the projective temsor product (resp. the weak
tensor product), i.e. the completion of X® ¥ with respect to the tensor
norm

‘Z T wt (%)

Assume that (e,) is a basis in X and (f,) is a basis in Y. Then the
space X®;Y is in a natural way isometric with ‘some matrix space M,
(this isometry is induced by the map 6®f; — llellllfillu;;). Now Theo-
rems 2.1 and 2.2 can be restated as follows:

TEEOREM 3.1. If A is a tensor norm on X® ¥, then the sequence €,®f1,
€,@F2, 62®f1, 6.0Fs, 618Fs, 6280fs, ... (in this particular order) is a basis
wm X ®;, Y.

lally = it 3l il

(resp.
for a = Zmi®yi).

flallp =
”x'ﬂ<1 ||U'|]<1
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TraRorEM 3.2. If (6,) is a complete orthonormal system in 1y, then
(a:®¢;) is an unconditional basis in the space 1,®:1, if and only if the tensor
norm A is equivalent to the Hilbert- Schmidt norm.

In this section we shall mean by I, the space ¢, and by L, the
space C[0, 1]

Sinee the space I, olq corresponds to the matrix space I, A and.
1,61, to the space M Qorollary 2.1 can be reformulated in the
followmg way:

COROLLARY 3.1. Let 1<p, §<<o© and 1< L[p+1/qg. Then none of
the spaces &1y, @l i3 isomorphic to a subspace of u Banach space
with an mwondmo%al basis.

For the function spaces L, and I, we have a rather complete result:

COROLLARY 3.2. If 1< p, ¢<< oo, then none of the spaces Ly, &Ly, L& OL
is isomorphic with a subspace of & Banach space with unconditional basis.

Proof. Corollary 3.1 implies that neither 1,&1, nor lz@lz is isomorphic
t0 a subspace of a Banach space with an unconditional bagis. If 1< 7 < 400,
then I, is isomorphic to a complemented subspace of L,. Thus for each
pair (p,q) with 1 <p, ¢< oo the space 1,61, (resp. l2®l) mcuz be
isomorphically embedded into the tensor product Ly® Ly, resp. L,®L,.
This completes the proof in the case where 1 < P4 < -co. In the re-
maining cases the tensor product L, & L, (vesp. L, oLq) containg a subspace
isometrically isomorphic either to L, or to L. Since neither Ly (cf. [12])
nor L, (because L, contains a subspace isomorphic to L,) are isomorphic
to subspaces of Banach spaces with unconditional bases, we get the
desired conclusion, which completes the proof.

4. An application to (p, g)-absolutely summing operators. In the
sequel we shall need the following consequence of Proposition 1.1:

ProposITION 4.1. If (k(i))in; is o sequence of m positive integers and
aeM, then .

(4.1) ' ali, )| < logi2nh,i ().
ign - I<h(%)

Proof. The norin 4,,(a) does not increase if we apply any of the
following operations on the matrix a: alternation of order of columns
or rows, multiplication of a column or a row by —1, addition any number
of columns to the i-th one and in the same time replacing these columns
(except the i-th one) by zeros, the same for the rows. Taking this into
account, it is clear that we can transform the matrix o in a matrix o
such  that 4;;(a’) < Ay;(e) and

| X ati,i=3 3 @)
<n I<k(t) <N Il

L}

Main triangle projection 59

Now (4.1) follows from Proposition 1.1, because

a'(3, ) < 2,1 (Ta(a’))-
i<+
We recall that an operator T: X — Y (X, Y Banach spaces) is
(p, q)-absolutely summing if there is a constant € such that

P *0 a2
(i%: H.’l’ml}”) < C;jﬁgl (i%‘ " (@) )

for each » and any sequence {(;);., c X.

Let 8: 1, =1, be the “sum operator”’, i.e. let § map the sequence
(2(2))? in 1, into the sequence of its partial sums (3 (%)) in

k<

The following proposition answers Problem 5 of [8]:

PropoSITION 4.2. If p > g > 1, then S is a (p, q)-absolutely summing
operator.

Proof. First observe that according to statements (0.4)-(0.7) of [7]
it is enough to prove that the operator § is (p,1)-absolutely summing
for each p > 1. Let (2;);_, be a sequence of # vectors in I,. Without loss
of generality we may assume that [|Sz, > ||Sw,]| = ... > |82, and that
each #; has almost all coordinates equal to zero. For m=1,2,...,n
we define a matrix a,, by

() His<m

an (2, ) =
(z:9) 0 otherwise.
One can easily show that
(4.2) M(om) < sup Dla*(@)]  (m=1,2,...,n).

I*] Il<11<‘n

Since #;(j) = 0 for all but finitely many j, there is for each < m
(m=1,2,...,n) an index k(¢) such that for I ,-norm of Sz; we have

13 (i)
IS = s%pjgam(i,j)i = [gam(i,j>]-

Hence, by Proposition 4.1 and by (4.2), we Qet foreachm =1,2,...,n

D) 18w < log,2miyy (@) < logo2msup > [a* ()]

i<m <1 j<n
Hence for m = 1,...,n we have
log,2m
stqn“ L sup |w* (m‘b)! .
. m ¥l

=n
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Thig implies

(Z HSmﬂ[”) < Csup Z lo* (@)1,

i<h <l {gn

Tog,2m \A\Y*
(gl

This completes the proof.

Since the operator § is not weakly compact, we have

COROLLARY 4.1. For each pair (p, ) such that p > ¢ > 1 there ewists
a (p, q)-absolutely summing operator which is not weally compact.

where

5. An application to unconditionally com.fergenl series in IL,. For
(@), = X (X is a Banach space) we shall write
[4 ml) = sup |o* ()| =
i ||w*n<1@§ ’

In the sequel we put for sake of brevity I = [0, 1]and L, = I,[0,1].

ProrosiTIoN B5.1. Let (fi)iei = L, and let (Bi)iy be a  decreasing
or increasing sequence of mesurable subsets of the interval I. Then

D [fils)ds < loga2nby((£).

i< By

sup H sty

Is@)1<1 Y i<h

(5.1)

Proof. Suppose that the sequence (H;) is decreasing (the proof for.

an inmea.sing sequence being essentially the same). Let F; = B, and

By =By i—Bpys i (§=2,3,...,n). Let a be a matrix defined by
ffI ds for 4,5 =1,2,...,m,
a(i, j) = ‘ o .
0 if i>norj>n.
Then
S [fwds =D ali,)) < ha(Tua).
i<n By RN PN |
On the other hand,
A i(a) = su t(é)a(s, j)| = sup 1(8)ds
1,1(a) |H)l£;1¢<n|m§ y ‘ IL(,)I,;”%: 5 @% \
< sup [| Sufils \ds A((F9)-

l‘(“’)l<1 By i<n

Thus (5.1) is a consequence of Proposition 1.1.
Remark 3. Let §: L, — C be an operator defined by

]
(8) (1) = [ fls)ds  (te[0,1]).
[
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Using (5.1) and argumeént similar to that of Proposition 4.2, one can
prove that § is (p, ¢)-absolutely summing for p >¢g> 1.
PROPOSITION 5.2. Let (fi)ii, = Ly and let

21|

g(s) = max
i<n

for sel.
Then .

(5.2) [ 9(s)ds < 2log,2nl,((f2)).
I

Proof. Let us put for ¢ =1,2,...,n

4 ={sel: g(s) = ka(s),gs)>2'fk for j =1,...,i—1},
ki
B = {851: —g(s) = ka(s), —g(8)< D'fuls) forj=1,..., 7:—1}
k<t k<
and let
Ek:U-Aiy Fk=UB.,, for k=1,2,...,n
izk izk
Then
fg(s)ds D [ D fsyas— 3 [ 3 fuls)ds
i<n 4 k<t <N By k<t
2 ffk(s)ds 2 ffk(s)ds
k<n Ey, k<n Fy,

Since the sequences of subsets (Ey) and (F%) are decreasing, by
Proposition 5.2, we get

[ 9(s)ds < 2logy2nk (1)),
I

which completes the proof.

THEOREM 5.1, Let 2 fi be an unconditional convergent series in I,

and let (4;)2., be a sequence of real numbers such that t; = O(In=°3) for
some ¢>1 or (t;)el, for some p << co. Then 2751 :(8) converges - almost
everywhere on I.
Proof. Let
8) = sup tifi(8)].
guls) = sup | 3 155
‘We have to prove that (gn(s)) converges almost everywhere on I
to zero. Since (g,) is a decreasing sequence of positive functions, it is
enough to show that

(5.3) lim [ ga(s)ds = 0.
n I


GUEST


62 §. Kwapie and A. Pelezyiski

We have ¢(s) < 21im g m(8), Where
m

tafi(s)|-

Gam(s) = MaxX l >
n<h<m | p il
TFor each n, the sequence of positive functions (gn,m)m—n is increasing.

Thus
(5.4) [ gals)ds < 2lim [ gn,ms)ds.
I m I

For fixed gnn we define two decreasing sequences (H;)i., and (F,i)?}_n
of measurable subsets of I, in the same way as the sequences (E) and
(Fy) for the function g(s) in the proot of Proposition 5.2, such that

(5.5)  [gam@is< Y 6 [A)ds— [fi(s)ds).
7 n<i<m By 7y

Agsume now that (4)el, for some 1< p < co. Because for each
decreasing sequence (4;)i., of measurable subsets of I

(D | [tsrasl"]™ < OB{(fokza),
44

n<ism

where ( is a constant which depends only on p (compare with Proposi-
tion 4.2 and Remark 3), by (5.5) and the Holder inequality we geb

(5.6) J mn®ds < 3 )" OL(F).

i ni<m
Since the series Y f; is unconditionally convergent in Ly, ¥(( fi)ivn
1

<ll((f¢)) < oco. This together with (5.6) and (5.4) implies (5.3).
Now suppose that ¢ = O(In"%) for some s > 1.
Using Abel’s transformation, the right-hand side of (5.5) is replaced by

Y mti—In~+1) ) n'k( [fls)ds— [ Fils)ds) +
n<i<m X n<h<t Ay By
- +lntm Y 'k ( [fi(s)ds— [ fi(s)ds).
Ay By

n<hm
Let
0 = sup |t 1n'k|;
-

then, by Proposition 5.2, we get
> tkln‘k( [ fi(s)ds— ffi(s)ds)
A By

Lkt

< 210gy2 (i+1— ) ( (6 (10" ) filf ) < €' (Im8) O' T ()

@ ©
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Thus the right-hand side of (5.5) does not exceed

oL((f) 2 (I~ —1In~*(i+ 1)) Ini+ 071, ((f)In~*m1nm.

nLL<m

Since the series (In~*i—In"*(i+1))lni is convergent

T
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and

limIn~**'m = 0, inequalities (5.5) and (5.4) imply (5.3). This completes

m
the proof.

Remark 4. Let (g,) be an orthonormal sequence in L, and (s,)el,
for some 1< < 2. Then putting (f,) = (I8, ¢,) and (1) = (s.P~")
we obtain from Proposition 5.1 a well-known theorem of Rademaehex’-
and Menchoff (cf. [1], Theorem 2.5.4). The fundamental Menchoff theorem

(cf. [1], Theorem 2.4.2) suggests the following problem:

Problem 3. Is the assertion of Theorem 5.1 valid for (f,) = (In"'n)?

6. Two other applications. The following argument shows that the
answer to the Mazur’s question (cf. Seottish Book, Problem 83) is negative.

Namely
There emists a real sequence (e(i))2; such that

sup IZS(i)'t(j)c(i+j_1)l< oo

HCIESHIOTES S

but 3 ilo(4)] = +oo.

Proof. _I*:or each n let (ea(3)) De the sequence defined by ¢, ()
= (%—:7/—]—1) f01." i< 2n+1 and ¢ s n+1;¢,(4) =0 otherwise. Then
0n(t+j—1) = hy(é,4) for ¢,j<m (where h, denotes the n-th Hilbert

matrix defined in Section 1). By a simple computation, we get

i rzsﬁ)t(ﬁ%ﬁﬂ—lﬂ < sup

EOTSHHOTES R IsOI<LE@I<' 7

| Y st mi, )+

+ ) Dlenli+i—l+ Y Noyliti—1) < Ay (ha)+ 2.
! 7

Ion174 i>n41

Now using (1.6) and (1.7) we infer that

A1 () < Joa(fn)n < K(2)n.
Hence

S s@t(fe(t+i—1) < 2
WWMI;(WI 2 (@D)t()enli+i—1)| < (2+E (@),
while

13 i<n

Dlileali) = Din41—i) > On-lnn (n =1,2,...).

The existence of a sequence (¢(s)) with the desired properties is

a simple consequence of the Banach-Steinhaus theorem.
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Our last result gives a geometric intfsr]g.)retation qf Pro.posqnon. il
in the case of the morm ;. By an ellipsoid in the. ’/b-dlm;n?long (1?2; er
real or complex) vector space R we shall mean the image of the : 1;0 i ean
unit ball B, = {weR": o <1} by an ar@l;rl"lmzry nog-deggnerafe 111319,%,;
transtormation of B*. Here [jo] = (3 |z (i)l ). By the siee of a se
in R" we mean the quantity

i<n
(W) = sup max[a(4)|.
z¥  i<n

Furthermore, let &, denote the family of all ellipsoids & in R"
such that v
(6.1)  the points (1,0,0,...,0),(1,1, 0,...,0),...,(1,1,...,1) belong
to &.
We are going to prove the following fact:
PROPOSITION 6.1. There are positive constants €y and O, (which do mot
depend on n) such that

O,ln(n-+1) < inf 8(B) < Oyln(na1).

(6'2) By,

This proposition is an obvious consequence of the next three lemmag
and Proposition 1.1 in the case of the norm Z;;.
. Lemua 6.1, If b, is the matriz defined by

1 fornzpzq=l,

bu(p, 9) 3\0 otherwise,

then A% 1(bs) = t(hr,)- )

Proof. Sinee A7, is a symmetric matrix norm, 231(w) = A3 1(bn),
where b,(p,q) =1 for p+¢ <n+l and* b,(p, q) = 0 otherwise. Next,
taking into aecount that 2;.(a) = i;(a"), we have

Bath) = sup | 5 5u(p, daw, 0| = s | 3 a(p, )|

@< 57 Aa@<t’ printl

‘One can easily derive from the definition of the norm 4, that

sup 11,1(Tn(“)) == ‘J'n(ll,l)'

sup | Y a(@ Q)izm(w)g

1@<’ pypggnid
* This completes the proof of the Lemmﬁ. 3
LEMMA 6.2. There are positive constants C, and C, (which do not depend
on n) such that .

Gr-2p(b) < inf  suplygll < Gl (ba),
(Vggen® a<n

(6.3)

icm
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where ¥ is the set of all such sequences (Yg)aen Of elements of R” that there
8 @ sequence (Bp)p<n such that the following conditions are satisfied:

(6.4) lopll <1 for p =1,2,...,n,

(6.5) (mp7 :’/q) = bn(py 9)

(We use the notation (z, y) =) #(3)y (i) for z,yeR")

=<n

Proof. We apply the following inequality due to Grothendieck [6]
(cf. also [8], Theorem 2.1):

(6.6)

Jor v, q=1,2,..., 2.

There is a universal positive constant K4 such that
| Y alv, 0@y, 49| < Eak1(a)sup oyl sup g
»q » q

for @, y,eR" and for aeM.

Combining (6.4), (6.5) with (6.6) we get

g Maba) = E5* sup | N a(p, q)(@p, y,)

< sup flygll-
i<t ' oy a<n

This yields the left-hand side inequality of (6.3) with 61 =Kz

To prove the right-hand side inequality of (6.3), we define the linear
operator b, from I* (i.e. the space R" equipped with the norm [l fl) into the
space I, (i.e. the space B™ equipped with the norm Il ) BY

(ba)(9) = D'b(p, q)a(p) for wel} and g =1, 2, ...

=

y B

Then the nuclear norm of 13.,, (cf. [18], p. 45, for the definition) is
equal to lL(bn) (because the space of n Xn matrices with the norm }:’1
is in a natural way isemetrically isomorphic to the projective tensor
product I3, @Iy, which is isometrically isomorphiec to the space of all
nuclear operators from 1} into I%). Therefore for each &> 0 there are
a Hilbert space H and linear operators u: Iy -~ H and v: H — I, such
that

(6.7)

bn =vu, Jull =1, A1(ba)+2> ]

(cf. [10], p. 73, proof of Proposition 3). Since b, is an isomorphism, one
can assume without loss of generality that H =1 (i.e. " equipped with
the norm |-} = [|*l,). Indeed, replace (if necessary) H by (ker »)t —
the orthogonal complement of the kernel of v, the operator w by Pu,
where P is the orthogonal projection from H onto (ker v)* and o by its
restriction to (ker v)!, and use the fact that each n-dimensional Hilbert
space is isometrically isomorphic to Iy.

Studia Mathematica XXXIV - 5
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Now we pub @, =ue, for p=1,2,...,% and %“”fq for
g=1,2,...,n, where ¢, = (ép)Kn is the p-th unit vector, »* denotes

the adjoint operator of » and fi is the "g-th coordinate functional, i.e.
f¥@) = ylg) for yel. Then clearly identity (6.5) holds. Using the
formulas

fJull = max |l

we derive from (6.7) condition (6.4) and the following inequality:

) -

ol = max [y,
asn

max [yl < A5 (b

a<n
Letting ¢ tend to zero we get the right-hand side 1nvqu‘nl1w of (6.3).
This completes the proof.
LEMMA 6.3. For each ellipsoid & in &y there are sequences (Tp)pen
and (Yodeen SOtiSfying (6.4) and (6.5) and such that

(6.8) (&) = max |y,
asn

Conversely, each pair of sequences satisfying (6.4) and (6.5) determines
an ellipsoid & in ¥, such that (6.8) holds.

Proof. Let &<, and let w: R” — B" be a non- degenerated linear
operator such that & = #(B,). Letus put @, = »™((1, 1, %im?s , 0)

for p =1, 2,..., % and define y, by the relation
(6.9) (@,yq) = (uw)(q), weR”, ¢=1,2,"..,n

Then clearly we have (6.3), and (by (6.1)) inequality (6.4). Further,
we have .
8( &) = supmax |z(q)| = supmaxl(uw)(q

2ed  a<n xelB, n A<
= supmax (2, y,)| = maX\1yqll
zeBy, q<n

Conversely, if the sequences (@p)pen 804 (Yo)yen saitisty (6.4) and (6.5),
then there is the unique linear operator w: R" — R" satisfying (6.9).
We put & = u(B,). Then (6.8) holds. This completes the proof.

Added in proof. J. Lindenstrauss has pointed out to us that
our Theorem 2.3 can be strengthened as follows:
Let a be a symmetric matriz norm. Then
- AL If supit,(e) = + oo, then M, is not isomorphic to any subspace of
n

a Banach space with an unconditional basis of finite dimensional subspaces.
B. If suptn(a) = K < 4 oo, then M, has an unconditional basis of
Py )

finite dimensional subspaces.

icm°®
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Proof. A. Replace everywhere on p. 52-54 the “unconditional basis
of BE” by “an unconditional basis (B,) of finite-dimensional subspaces
of B” and the “one-dimensional projectors e}(-)e,” by the “coordinate
projectors w,: ¥ — H,”. Conditions (2.7) and (2.8) replace by the
condition

Y iz, (T )] = H;]lllﬂn(vui,i)” =0.

In Lemma 2.2 replace {¢n(Uu:s)} by the matrix {m,(Un,,)} and use
the fact that for a fixed pair (n, r) the finite dimensionality of H, implies
the total boundedness of the sequence (n,,('Uu,.zs))?;l

. B. The subspaces H, spanned by u;; with max(é,j) = n form the
unconditional decomposition of M,. The coordinate projectors are
Ztp = Pyn—Pp yn_y: M, — FE,. We show that

Kuno((B) = sup  sup a3 'm,(a)) <2E.

@< 1K << <y Vi

Fix ry<r,<<...<7; and ae M. Then P, ,(a) =a for some m.

o = > Nali,fu

i<m i<j

Put

and - a" =a—a'.

Since #m(e) < K and the matrix norm a is symmetrie, ma,x(a(a,'),
a(a’ )< Ka(a). Pick a permutation of indices F so that F(r;) = »; for
j<s,and if k< m and % 7 for j<s, then F(k) > m. Let U and V
denote the isometries of M, induced by this permuta,tlon of columng and
rows respectively. Then

S myla) =

i<

Pom(Ud + Va).

Hence

Cl( 2 Tr; (a)) <

<8

2K a(a).

Since M is dense in M,, this completes the proof.
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La fonction de Green d’un processus de Galton-Watson
par

SERGE DUBTUC (Montréal)

1. Introduction. Je me propose d’étudier le comportement asymptoti-
que de la fonction de Green d*un processus de Galton-Watson dont la
moyenne est finie et est plus grande que 1. Je serai alors en mesure de
signaler quelques propriétés des solutions harmoniques extrémales &s80-
ciées au processus.

Soit {p(n)}n., une suite de nombres positifs dont la somme est 1;
on définit une matrice infinie P = (p(z, y)), s =0,1,2,...,y=10,1,2, ...
de fagon récurrente par rapport & 2: p(0,y) = 4(0,¥),

p(@+1,9) = Y p(@)p(@,y—2).
=0

(Dn(2, 9))-

La puissance matricielle #°™° de P donne la matrice P" =
On introduit la fonetion de Green

D) Pa(@, §) < +oo

n=0 &

G(wy y) =

On introduit également les fonctions génératrices

= ijn(l! y)2”

Y=0

Ja(2)

oll 2z est un nombre complexe dont le module ne dépasse pas 1. On
a [f(2) <1 et frs(2) = fr(fs(2)). De plus

an(m, Y =
7=0

Ces diverses matrices permettent de considérer pour chaque entier
« une suite de variables aléatoires indépendantes {Za%, ou P[Z; =y]
= po{®,y). Lorsque # =1, on note plus simplement 7y = Zy,. Ceci
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