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Ideals in subalgebras of the group algebras
by ‘

LEONARD Y. H. YAP (Houston)

1. Introduction. Throughout this note @ denotes a locally compact
Abelian’ group. Let p be a real number such that 1< p < co, and let
L, (@) denote the usual Lebesgue class with respect to 4, the Haar measure
of G Write L;(G) ~ L,(G) as A,(G), and for fed,(@), define I|iflily
= |Ifl.+ [ fll,- Tt is easy (see (2.1) below) to verify that 4,(G) is a Banach
algebra with respect to |||-{|l, (multiplication in 4,(G) is the usnal con-
volution). Tt is plain that if p =1 (and G is arbitrary) or G is discrete
(and 1< p < o), then A,(G) is precisely the group algebra L, () and
I11-1ll, is equivalent to ||-I;; if & is compact, then 4,(€) = L,(#) and
[[{*1]], is equivalent to ||-[l,. The purpose of this note is to present various
properties of the algebra A4,(G). Roughly speaking, our results say that
some of the important known results of L;(G) can be extended to 4,(&)
while at the same time A (G) lacks some of the useful properties pos-
sessed by L;(@). We have been motivated by the interesting papers of
Poreelli-Colling {9, 10], Warner [15], and our earlier considerations of
non-factorization theorems in [16]. The relationships of various results
will be pointed out at the appropriate places.

Now we give a brief summary of the main results in the individual
sections. Tn Section 2 we consider the factorization property of A,(G)
(an algebra A is said to have the factorization property it every element
in A can be written as w-y with x4, y in 4) and it is proved that 4,()
has the factorization property if and only if p = 1 or @ is discrete; A, ()
has a bounded approximate unit if and only if p =1 or & is discrete.
In Section 3 we prove that 4,(G) is a regular semi-simple Banach algebra
satisfying Ditkin’s condition D (as defined in Loomis [7 1) and the general
Tauberian theorem for 4,(6): Let I be a closed ideal in A4,(6@), then T
contains every element f in kernel (hull (I)) such that the set [boundary
(hull (f)) ~hull (I)] contains no non-void perfect set. Warner [15] proves
the results of Section 3 for p = 2. In Section 4 we prove thaf
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(i) every maximal ideal in 4,(@) is regular (closed) if and only if
p =1 or @ is discrete;

(ii) every positive functional on A4,(G) is continuous if and only
if p=1 or @ is discrete;

(iii) it I is a proper prime ideal in 4,(@), then I is regular maximal
if and only if I is closed;

(iv) 4,(G) contains a non-closed prime ideal if and only if @ is infi-
nite;

(v) every prime ideal of A,(G) is contained in a unique regular
maximal ideal if and only if G is discrete.

Thus the results in Section 4 are either extensions or “counter-
examples” of the corresponding results in Porcelli-Colling [9, 10] and
they answer the 4,(@) version of the two questions (see [9]) raised at
a recent international symposium held in Sopot, Poland.

fact 2. Factorization problems in 4,(G). We begin with a very simple
ach:

(2.1) TEEOREM. The function' |||-|[|, is & norm for the linear space
A,(G) and A4,(G) is a Banach algebra with respect 1o |||- p & multiplication
in A, (@) is the usual convolution of functions.

Proof. That [{|-]]l, is a norm is obvious, while completencss easily
follows from the definition of |||+ |},, the completeness of L, (&) (1 < » < o0)
and the fact: ||f,—fl, — 0 implies that fnk —f a.e. for some subsequence
(fa,) of (f,). Finally, to complete the proof, recall that | Frgll, < Ifll - llgh
for all fe L, (@) and g<L, (). Using this fact we immediately have [||f* gmp
< 11l llg1ll, for all f, g in 4,(6). ’

For the convenience of the reader, we now review briefly what we
need from the theory of L(p, g)-spaces.

.(2.2) DerFINITIoN. Let f be a complex-valued measurable function
defined on (@, 1), where 7 is the Haar measure of @. For 4 > 0, we define

m(f, ) = MHweG: |f()] >y}

‘Note that m(f, ') is a non-increasing, right-continuous Ffunction
defined on [0, oo). For z = 0, we define

fH@) = inf{y:y >0 and m(f, y) < o}
=sup{y:y >0 and m(f,y) >a},
-with the conventions inf @ = co and sup @ = 0. We note that f* is

a non-increasing, right-continuous funection. For x >0, we write

@=1roa,
0

icm

Ideals in subalgebras 167

and let
2 das Ve
s ={ 7@ 4,
0
where 1 < p < o0, 1 < ¢ < oo. We say that feL(p, )(@) it |[fllpg < oo
A theorem of Hardy (see [17], p. 20) shows that (the case ¢ = 1 is obtained
by passing to the limit) '

e gy
Ml <2 {f w2 @1 S} < 21l

where 1/p-+1/p’ = 1. Hardy’s theorem can also be used to show that
1l < 1 flay < 2 1fll,, 8o that L(p, p) = L,. The following fact (which
is a special case of ([8], (2,6)) will be useful to us later. A simple proof
is given in [16], (2.2).

(2.3) THEOREM. If p, 7,8 are real numbers such that 1 <7, s < oo,
1jr+1/s >1 and 1/p = 1fr4+1[s—1, then

L (&) * L(&) = L(p, )(6).

Recall that an algebra A is said to have the factorization property
if A-A = A. A-A will be written as A* throughout the rest of this note.

(2.4) TEEoREM. The Banach algebra A, (G) has the . factorization
property <> p =1 (and G is arbifrary) or @ is diserete (and 1 < p < o0).

Proof. The implication « is the well-known factorization theorem
of P.J. Cohen (see, for example, Cohen [1], Hewitt [4], Koosis [6]).

Next we suppose that 1< p < co and G is non-discrete. We will
construct a function F in A,(G) such that F is not in (4,(@))". Detine
r=s=2p/(l+p)sothat L<r =35 <oor<p,andlfp = 1jr4+1[s—1.
By (2.3), we have
(a) (4, (@) = 4,(6) * 4,(&) < L(p, 1)(G).

Thus it suffices to define a function F' in 4,(G) such that F is not
in L(p, 1)(@). Define # = 1/(2p)+1/2, and observe that 0 < f <1 and
Bp >1. Next we choose a positive infeger nq such that 7, > ¢”® and then
choose a sequence (V,)aen, of pairwise disjoint Haar measurable subsets
of @ such that

MV,) = n o= M, Mg+ 1, ...

L
n(n+1)’
Write

F= Zan"s?n’

n=1ng
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where a, = n'’? (logn)~?, and £, denotes the characteristic function of B.
Tt is clear that Fed,(d) and it remains to show that

(0 waw””ﬁ*(wn% = oo,

But straight-forward computations show that

1/ng, if o<y < ay,
m(F,y) = . P
n+1), i a,<y <y,
(ii) Fr@) =a, it 1/n+l)<e<l/n.
Finally, an easy calculation (using (ii) and J3'n7'(logn)™f = co)

gives (i) immediately.

(2.5) COROLLARY. The Banach algebra A,(@) has a bounded approwi-
mate unit <-p =1 or G is discrele.

Proof. The implication < is of eourse well-known. The implication
= immediately follows from the preceding theorem. and Hewitt’s factori-
zation theorem [4]: let 4 be a Banach algebra and let V be a Banach
A-module (that is, V'is an A-moduleinthe algebraic sense and {|av|| < o - |[v]
for all aed, ve V) and suppose that there is a constant M > 0 such that
for aed, veV and ¢ > 0, there exists ¢4 such that |[¢} < M, |la—ae] < e
and [v—ev|| < e Then 4-V = V.

(2.6) Remark. Hewitt’s factorization theorem implies that
Li(@G)*4,(G) = 4,(6) for all G and 1 << p < oco. It is easy to verify that
if 4 and V are as in Hewitt’s theorem and suppose that 4, and V, are
dense subsets of A and V, respectively, then 4,- V, is densein A-V = V.

"Hence (Cy(@))? is dense in 4, (@), where Cy(@) denotes the set of all
continuous functions defined on @ with compact supports.

‘We need the following corollary in Section 4: :

(2.7) CoroLrarY. If 1 <p < oo and G is non-diserete, then (A,(G)
s a dense proper subset of A,(G). .

The situation for unbounded approximate unit is much more pleasant.
Let ¥ denote the family of all precompact neighborhoods of 0, the
identity element of §. Partially order ¥ by set inclusion and denote it
by {Va}. Then {V,} is a directed family, and for each V, choose a non-
negative continuous function v, with support (vy) = ¥, and [vadd =1.
Then we have (see Loomis [7], p. 124) the following which is needed. in
the next section:

(2.8) THEOREM. The net {vz} is an (probably unbounded) approvimate
unit for A,(@).
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(2.9) Remarks. (a) We will have oceasions to apply the above
results in Section 4 to obtain both “positive” and “negative” theorems
related to those in Porcelli-Collins {9, 10].

(b) The usefulness of bounded approximate units is of course well
known and many interesting theorems have been obtained for algebras
with bounded approximate units. For more recent examples, see Varo-
poulos [14], Rieffel [12], and Poreelli-Collins [10], Theorem 1.

3. Tauberian theorems for A, (). We continue to use & to denote
a locally compact Abelian group with character group I'. The Haar measure
of I' is denoted by u. All terms and notation not explained here are as in
Loomis [7].

(3.1) TemOREM. The maximal ideal space M,(G) of the commutative
Bonach algebra A,(G) can be identified with I.

Proof. For 0 # feA,(d), we have
™ < 1™ Ul A= P Al << IR -

Limn [{1 ][ < Tim A= A" < If -

N->00

Hence

Therefore
lim [ 1™ < Ul
Now if yeM,(&), then

O =y (N < -

for all fed,(@).

Hence
Iy ()] < B[] < 1l _

and 8o y is ||-[j;-bounded and hence can be extended in a unique fashion
to a multiplicative linear functional y, on L,(G) and, conversely, every
multiplicative linear functional y, on I, (@) determines a yeM,(G). Now
recall that the maximal ideal space of L, (&) is I' and observe that the
Gelfand topology on M, (G) agrees with the usual topology of I

The next two lemmas are extensions of (and will be substitutes for)
the corresponding results in Rudin [13], 2.6.1 and 2.6.2, and will play

‘the same role.

(3.2) Lenuma. Suppose C is o compact subset of I, V < I'y and
0 < u(V) < oo, u(C— V) < oo, where u is the Haar measure of I. Then
there exists ked, (@) such that

(a) =1 on 0, E =0 outside of C+V—V and 0<fc<1;
(0) 11111, < (80— V) [u (V)P -+ (w0 — V) =12) [ (V0.
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Proof. Let ¢ and % Dbe the inverse Plancherel transforms of the
characteristic functions of ¥ and C— V, respectively, and define

k(w) = p(V) " g(@)h(a) (2e6).

Now by Rudin [13], p. 49, we see that keL (&) and it satisfies con-
dition (a), as well as

Il < (6(O—= V) n (V).

But & is also in L,(@) (because kb = u (V)™ g x % ; see Bdwards [3],
10.4.7, if necessary) and

el = (V)7 lghll, = (V)™ lghlls llghli’
< (V) (9o 1Pllco) 2 gl N1
< w(V) 7RG IR 1) = (gl - 1Rl

S u(0—V)mru(V)-Hee,

(3.3) THEOREM. If W is an open set in I' which conlains a compact
set O, then there ewists f in A,(G) such that f =1 on C and f = 0 outside
of W. ’ :

Proof. Choose a neighborhood V of 0 in I" such that C+ V—VeWw,
#(C— V) < oo and then apply (3.2).

(8.4) COROLLARY. The commutative Banach algebra A, (@) is a regular
semi-simple Banach algebra.

Proof. Immediate from (3.3) and Loomis [7], p. 57.

The main result in this section iy the following Tauberian theorem.
Some applications of this theorem will appear in the next section.

(3.5) TAUBERIAN THEOREM (1). Let I be a closed ideal in A,(@).
Then I contains every element f in kernel (hull(I)) such that the intersection
of the boundary of hull(f) with hull(I) contains no mon-void perfect set.

In view of Theorem 25F in Loomis [7], p. 86, and Corollary (3.4),
it suffices to show that the algebra 4, (@) satisties Ditkin’s condition D:
If fed,(G) and yeI' such that f (y) = 0, then there exists a sequence (f,)
in 4, (&) such that f, = 0 ongome neighborhood ¥, 0f y and ||| * f,—f|/|,~0;
if I' is non-compact, the condition must also be satisfied for the point
at infinity, that is, for each f in A4, (@), there exists a sequence (f,) in
A,(@) such that f, has compact support and ||| f* f,—f [ll, = 0. The case
p =1 is of course well known (see, for example, [7]) and the standard
proof makes use of the bounded approximate units in 4,(&). Warner
[15] has proved it for p = 2 and also observed (in our notation) that

(*) Professor Edwin Hewitt has informed me (November 1968) that he and
Professor K.A. Ross have also obtained (jointly) this theorem. ‘
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A, (@) lacks a bounded approximate unit if G is neither compact nor
diserete and 1 < p < 2. The following lemmas, which lead to a proof
that A4,(G) satisties Ditkin's condition D, are modifications of the corre-
sponding lemmas in Warner's paper. We have included all the details
for the convenience of the reader. ‘

(3.6) LEMMA. The algebra A,(Q) satisfies Ditkin's condition D at
mfinity.

Proof. It suffices to show that for 0 # fed, (@) and ¢ > 0, there
exists a function ged (&) such that § has eompact support and ||lg * f—flil,
< &. First choose a function & (from a possibly unbounded approximate
unit (see (2.8)) in 4,(G) such that

NIf* b—Flllp < /2.

Now by ‘2.6.6 of Rudin [13], there exists a k in L,(@) such that k
has compact support and

f1f 4 k— Rl << 22 [[1f11]p-

Note that ¢ = h+k is in 4,(@) and since g+ f —f = f*(g9— h)+f*xh—f,
we obtain ||lg*f—fl|l, < ¢ and note that g = hk has compact support.

Let % = {U,};.4 be the family of all symmetric neighborhoods of-
the identity element 0 in I" of measure <1. Then % is a directed family
under set inclusion. Let {V,;};,., denote any net of symmetric precompact
neighborhoods of 0 satisfying the following conditions:

(i) given U, in #,V,< U, and u(U,) < 4p(V,) (4 is the Haar
measure on I'); '

(ii) given U,;e% and V;, there is a neighborhood W, of 0 such that
Vi+W,c U,.

(3.7) LEMMA. There exists o net (Kx)ua in A (@) such that, for each
Aed, we have (a) |||k,]]] < 6; (b) %, =1 on some neighborkood W, of 0.

Proof. For given U, in %, let V, be the corresponding set as above.
Let g;, h; be the inverse Plancherel transforms of the charaecteristic
functions of U, and V,, respectively. Defining k, = w(V) g,k and
comparing k, with the function % defined in the proof of (3.2), we see
(by (3.2.(b))) that |[|k;l}|, < 6. To show (b), let W, be the neighborhood
corresponding to U, and V, as described in (ii) above, and then use
by = w(V2)"  Gax by to see that %y =1 on Wi,

(3.8) LmamA. For any compact st C = G and &> 0, there ewists A,
in A such that if % is in {k;] A > Ao}, then [Hk—kKilll, < & for every seC.

Proof. Recall that the set U(C, 8) = {yeI'||(z,y)—1| < & for all
z¢C} is a neighborhood of ¢'in I" (6 > 0). Hence there exists a 4o such
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that if A > 4,, then U2 < U(C, 8), where 6 = min(e/»i, (5/4)7’). Now let
ke{k,| 1 >A4,} and suppose &k = p( V)~'gh, where g, h, V correspond to
2y By, Vi, Tespectively, in the proof of the preceding lemma. It follows
that % = 0 outside of UV. It remains to show that [{|k— k||, < & for
every se(. Observe that

lo— Jel§ = [l —Fall =U{,170(7)|2 1—(s, y)dy < &. '
Thus [fb— ko < 8 and similarly lg—golls < 8u(0)", W=l < Su(V ).
Hence
e— Feglls < (V)™ {llg (h— ) |+ b5 (g — g5}
< u (V)" H{lglls lo— Rglla+ Rglla g — gella}
L8 (u(D)u(V))* < 26. ’
Next we compute [[k— k|, for seC. We have
o — Ty << 1o~ Rell%s - o Teglly << 2772 [|BlfE™ - 26
<206 |kPt = 278,
sinee k = p(V)™ &p* & and the L-norm of &% &y is u(U): u(V). Finally,
1= Rl < 204282 < 2+ (s/4) +2(e/4) = e.

(3.9) COROLLARY. If fed,(6) and F(0) =0, then Lm|||fx*%,||, = 0.

Proof. Let 6§ >0 be given. Choose symmetric compact ¢ = & such
that :

8
Gf flo)dn < .

Put ¢ = 6/3]|fl, and choose A, so that if % is in {k;] 4 > 4.}, then
[Nk— k|||, < & for seC. Hence

(f*R)(t) = [f(s) b(t—s)ds—F(0)R(t)
= [£(s) [h_s (1) — K (1)]ds.

Therefore
| fe&ll, = {é |[708) Do () — Re(0)]ds" e}
< Gf {é [17(8)0o_g (1) — To(t) 12 dt} /7 ds
(by [2], p. 530)
= JI G ey — Tl ds.
Similarly,

[ &l <J|f(8)l We_s— Tl ds.
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Therefore
(%) [[1f*El, <0flf(8)1' Hlk_s—klllpdS-Fé[ 17N - Nik_g— Elllpds.

Now if seC, then |||k_;— k|||, <&, therefore (*) implies

IF k{1, < elfla+ 2111k, 6/24 < 8.

(3.10) THEOREM, A,(G) satisfies Dithin’s condition D at all (finite)
points.

Proof. It suffices to show that 4,(@) satisfies condition D at the
identity element 0 of I'. Let {v,} be the (probably unbounded) approxi-
mate unit described in (2.8) and let (%), be as in Lemma (3.7). Write

Vg, = Vg— ki * 0.

Clearly, 9y, is in A,(G). Now we order the pairs (4, 2) as follows:
(@1, A) > (day As) < dy >dy and 1; >2;. Now let ¢ run through this
divected set; then (v,) is a net and ¥, = 9;—k; 6; = B3(1—F,) which is
identically zero on some neighborhood W, of 0 (see eondition (b) in (3.7)).
Finally for fed, (@) and f(6) = 0, we have
lim ||jog* f—fill, < Lim(|llva* fF—Fllo+lvallo- 1% flllp) = 0.

This completes the proof that A,(@) satisties eondition D and also
the proof of the Tauberian Theorem (3.5).

We record two corollaries below for later application.

(3.11) CoroLLARY. If I is o dlosed ideal in A,(G) and if hull (I) is
empty, then I = A,(@).

(3.12) CorOLLARY. Buvery proper closed ideal in A,(G) is coniained
in & regular mazimal ideal.

4. Maximal, regular, and prime ideals in A,(@). Throughout this
section, G will continue to denote a locally compact Abelian group with
character group I. The purpose of this section is either to extend or to
show the impossibility of extending the theorems in Porcelli-Collins-
[9,10] from L, (&) to 4,(¢). We begin by recalling some facts that will be
needed later. Let [R?] denote the ideal generated by B’ in the sequel.

(4.1) THEOREM ([11], D. 88). (a) If Ris a commutative Banach algebra
suchthat[ BY] # {0}, then B contains & non-prime mazimal ideal «[R] & R.
Bach non-prime mazimal ideal is o magimal subspace of Bwhich contains LB,

(b) If R is o commutative Banach algebra without identity and M is
a maximal ideal in R, then M is regular < M is prime.

(4.2) TEEOREM. Hvery mazimal ideal in A,(G) is reguler <p =1
or @ is discrete.
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Proof. The implication <=is proved in [10], Theorem "1, while
= immediately follows from the proof of (2.4) and (4.1).

(4.3) COROLLARY. Every mawimal ideal in A,(G) is closed <>p =1
or G is discrete.

Proof. The implication < is proved in [10], Corollary 1, while
= follows from the last assertion in (4.1(a)), (4.2) and (2.7).

(4.4) CoROLLARY. Ewery positive functional on A,(G) is continuous
<p =1 or G is discrete.

(A linear functional F' defined on a *-algebra is positive if F(az*) >0
for all zed.)

Proof. The implication < is well-known result of Varopoulos [14].
Now suppose p >1 and G is non-discrete. By (4.3) there is a maximal
non-closed ideal M in A,(@) such that [(4,(6)] € M. Thus there exists
foed, (@) such that A4,(G¢)= M+ {af}. Define F by F(m-+af,) = q;
then F is a positive linear functional, but it is not continuous.

(4.5) LevMA. If I is an ideal in A, (@) such that I is contained in
exactly one regular moximal ideal, say M, then I = M.

Proof. Let y be the character in I" corresponding to M. Thus hull (I)
= {y} and by the Tauberian theorem (3.5) we have I = M.

(4.6) LEvMMA, If a prime ideal I of A,(@) is contained in & regular
mazimal ideal, then I is confained in only one regular maximal ideal.

‘Proof. Same proof as Lemma 2 in [10], use our Theorem (3.3) instead
of [13], 2.6.2.

(4.7) LEMMA. ‘lf T is an ideal in A, (G) such that I is contained in no
reqular maximal ideal, then I = A,(G).
Proof. It follows from (3.5).

(4.8) THEOREM. If I is o prope% prime ideal in A, (G), then I is regular
mazimal <= I is closed.

Proof. Consider the implication <. By (3.12), I is contained in
a regular maximal ideal M. Hence I = M by (4.6) and (4.5). The converse
is of course valid for all Banach algebras.

(4.9) TBEOREM A,(Q) contains a mon-closed prime ideal <= G is
infinite. :

Proof. Only < requires proof. We consider two cases:
(a) If G is discrete, then 4, (G). = L, (@) and we are done by Theorem 3
of [10]. ’
(b) If @ is non-discrete so that I' is non-compact. Now argue as in
the first half of the proof of Theorem 3 in {10] (apply (4.7) and (3 3)
at the appropriate points).
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(4.9) THEOREM. Every prime ideal of A,(Q) is conlained in a unique
regular maximal ideal <- G is discrete.

Proof. Similar to the proof of Theorem 4 in [10].

Added in proof. I wish to thank Professor Edwin Hewitt for informing me
that some of our results in Section 3 overlap certain results in Hans Reiter's new
monograph: Classical harmonic analysis and locally compact groups. Reiter deals with
a large class of subalgebras of L, (@) called Segal algebras, of which the algebras 4,(G)
are examples. We have been able to prove that the Tauberian theorem (3.5) is valid
for all Segal algebras.
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