

STUDIA MATHEMATICA, T. XXXV. (1970)

Ideals in subalgebras of the group algebras

'n

LEONARD Y. H. YAP (Houston)

1. Introduction. Throughout this note G denotes a locally compact Abelian group. Let p be a real number such that $1 \le p < \infty$, and let $L_n(G)$ denote the usual Lebesgue class with respect to λ , the Haar measure of G. Write $L_1(G) \cap L_n(G)$ as $A_n(G)$, and for $f \in A_n(G)$, define $|||f|||_p$ $= \|f\|_1 + \|f\|_n$. It is easy (see (2.1) below) to verify that $A_n(G)$ is a Banach algebra with respect to $|||\cdot|||_p$ (multiplication in $A_p(G)$ is the usual convolution). It is plain that if p=1 (and G is arbitrary) or G is discrete (and $1 \leq p < \infty$), then $A_p(G)$ is precisely the group algebra $L_1(G)$ and $\|\cdot\|_p$ is equivalent to $\|\cdot\|_1$; if G is compact, then $A_p(G) = L_p(G)$ and $|||\cdot|||_p$ is equivalent to $||\cdot||_p$. The purpose of this note is to present various properties of the algebra $A_n(G)$. Roughly speaking, our results say that some of the important known results of $L_1(G)$ can be extended to $A_n(G)$ while at the same time $A_n(G)$ lacks some of the useful properties possessed by $L_1(G)$. We have been motivated by the interesting papers of Porcelli-Collins [9, 10], Warner [15], and our earlier considerations of non-factorization theorems in [16]. The relationships of various results will be pointed out at the appropriate places.

Now we give a brief summary of the main results in the individual sections. In Section 2 we consider the factorization property of $A_p(G)$ (an algebra A is said to have the factorization property if every element in A can be written as $x \cdot y$ with x, y in A) and it is proved that $A_p(G)$ has the factorization property if and only if p = 1 or G is discrete; $A_p(G)$ has a bounded approximate unit if and only if p = 1 or G is discrete. In Section 3 we prove that $A_p(G)$ is a regular semi-simple Banach algebra satisfying Ditkin's condition D (as defined in Loomis [7]) and the general Tauberian theorem for $A_p(G)$: Let I be a closed ideal in $A_p(G)$, then I contains every element f in kernel (hull I) such that the set [boundary (hull I) $\cap I$ hull I contains no non-void perfect set. Warner [15] proves the results of Section 3 for p = 2. In Section 4 we prove that

p=1 or G is discrete; (ii) every positive functional on $A_p(G)$ is continuous if and only if p=1 or G is discrete;

(iii) if I is a proper prime ideal in $A_p(G)$, then I is regular maximal if and only if I is closed;

(iv) $A_p(G)$ contains a non-closed prime ideal if and only if G is infinite;

(v) every prime ideal of $A_p(G)$ is contained in a unique regular maximal ideal if and only if G is discrete.

Thus the results in Section 4 are either extensions or "counter-examples" of the corresponding results in Porcelli-Collins [9, 10] and they answer the $A_p(G)$ version of the two questions (see [9]) raised at a recent international symposium held in Sopot, Poland.

2. Factorization problems in $A_p(G)$. We begin with a very simple fact:

(2.1) THEOREM. The function $|||\cdot|||_p$ is a norm for the linear space $A_p(G)$ and $A_p(G)$ is a Banach algebra with respect to $|||\cdot|||_p$ if multiplication in $A_p(G)$ is the usual convolution of functions.

Proof. That $|||\cdot|||_p$ is a norm is obvious, while completeness easily follows from the definition of $|||\cdot|||_p$, the completeness of $L_r(G)$ $(1\leqslant r<\infty)$ and the fact: $||f_n-f||_r\to 0$ implies that $f_{n_k}\to f$ a.e. for some subsequence (f_{n_k}) of (f_n) . Finally, to complete the proof, recall that $||f*g||_p\leqslant ||f||_1\cdot ||g||_p$ for all $f\in L_1(G)$ and $g\in L_p(G)$. Using this fact we immediately have $|||f*g|||_p \leqslant ||f||_p\cdot |||g|||_p$ for all f,g in $A_p(G)$.

For the convenience of the reader, we now review briefly what we need from the theory of L(p, q)-spaces.

(2.2) DEFINITION. Let f be a complex-valued measurable function defined on (G, λ) , where λ is the Haar measure of G. For $y \ge 0$, we define

$$m(f, y) = \lambda \{x \in G \colon |f(x)| > y\}.$$

Note that $m(f, \cdot)$ is a non-increasing, right-continuous function defined on $[0, \infty)$. For $x \ge 0$, we define

$$f^*(x) = \inf\{y : y > 0 \text{ and } m(f, y) \le x\}$$

= $\sup\{y : y > 0 \text{ and } m(f, y) > x\},$

with the conventions inf $\emptyset = \infty$ and sup $\emptyset = 0$. We note that f^* is a non-increasing, right-continuous function. For x > 0, we write

$$f^{**}(x) = \frac{1}{x} \int_{0}^{x} f^{*}(t) dt,$$

and let

$$||f||_{(p,q)} = \left\{ \int_0^\infty \left[x^{1/p} f^{**}(x) \right]^q \frac{dx}{x} \right\}^{1/q},$$

where $1 , <math>1 \le q < \infty$. We say that $f \in L(p, q)(G)$ if $||f||_{(p,q)} < \infty$. A theorem of Hardy (see [17], p. 20) shows that (the case q = 1 is obtained by passing to the limit)

$$\|f\|_{(p,q)} \leqslant p' \left\{ \int\limits_0^\infty [x^{1/p} f^*(x)]^q \, rac{dx}{x}
ight\}^{1/q} \leqslant p' \|f\|_{(p,q)},$$

where 1/p+1/p'=1. Hardy's theorem can also be used to show that $||f||_p \le ||f||_{(p,p)} \le p'||f||_p$, so that $L(p,p)=L_p$. The following fact (which is a special case of ([8], (2,6)) will be useful to us later. A simple proof is given in [16], (2.2).

(2.3) THEOREM. If p, r, s are real numbers such that $1 < r, s < \infty$, 1/r+1/s > 1 and 1/p = 1/r+1/s-1, then

$$L_r(G) * L_s(G) \subseteq L(p,1)(G).$$

Recall that an algebra A is said to have the factorization property if $A \cdot A = A$. $A \cdot A$ will be written as A^2 throughout the rest of this note.

(2.4) Theorem. The Banach algebra $A_p(G)$ has the factorization property $\Leftrightarrow p=1$ (and G is arbitrary) or G is discrete (and $1\leqslant p<\infty$).

Proof. The implication \Leftarrow is the well-known factorization theorem of P.J. Cohen (see, for example, Cohen [1], Hewitt [4], Koosis [6]).

Next we suppose that 1 and <math>G is non-discrete. We will construct a function F in $A_p(G)$ such that F is not in $(A_p(G))^2$. Define r = s = 2p/(1+p) so that $1 < r = s < \infty$, r < p, and 1/p = 1/r + 1/s - 1. By (2.3), we have

(a)
$$(A_p(G))^2 \subseteq A_r(G) * A_s(G) \subseteq L(p, 1)(G).$$

Thus it suffices to define a function F in $A_p(G)$ such that F is not in L(p,1)(G). Define $\beta=1/(2p)+1/2$, and observe that $0<\beta<1$ and $\beta p>1$. Next we choose a positive integer n_0 such that $n_0>e^{p\beta}$ and then choose a sequence $(V_n)_{n=n_0}^\infty$ of pairwise disjoint Haar measurable subsets of G such that

$$\lambda(V_n) = \frac{1}{n(n+1)}, \quad n = n_0, n_0 + 1, \dots$$

Write

$$F = \sum_{n=n_0}^{\infty} a_n \, \xi_{V_n},$$

where $a_n = n^{1/p} (\log n)^{-\beta}$, and ξ_E denotes the characteristic function of E. It is clear that $F \in A_p(G)$ and it remains to show that

(i)
$$\int_{0}^{\infty} \left[x^{1/p} F^{*}(x)\right] \frac{dx}{x} = \infty.$$

But straight-forward computations show that

$$m(F,y) = \left\{ egin{array}{ll} 1/n_0, & ext{if } 0 \leqslant y < a_{n_0}, \ 1/(n\!+\!1), & ext{if } a_n \leqslant y < a_{n+1}, \end{array}
ight.$$

(ii)
$$F^*(x) = a_n \quad \text{if } 1/(n+1) \leqslant x < 1/n.$$

Finally, an easy calculation (using (ii) and $\sum n^{-1}(\log n)^{-\beta} = \infty$) gives (i) immediately.

(2.5) COROLLARY. The Banach algebra $A_p(G)$ has a bounded approximate unit $\Leftrightarrow p=1$ or G is discrete.

Proof. The implication \Leftarrow is of course well-known. The implication \Rightarrow immediately follows from the preceding theorem and Hewitt's factorization theorem [4]: let A be a Banach algebra and let V be a Banach A-module (that is, V is an A-module in the algebraic sense and $\|av\| \leqslant \|a\| \cdot \|v\|$ for all $a \in A$, $v \in V$ and suppose that there is a constant M > 0 such that for $a \in A$, $v \in V$ and e > 0, there exists $e \in A$ such that $\|e\| \leqslant M$, $\|a - ae\| < e$ and $\|v - ev\| < e$. Then $A \cdot V = V$.

(2.6) Remark. Hewitt's factorization theorem implies that $L_1(G)*A_p(G)=A_p(G)$ for all G and $1\leqslant p<\infty$. It is easy to verify that if A and V are as in Hewitt's theorem and suppose that A_0 and V_0 are dense subsets of A and V, respectively, then $A_0\cdot V_0$ is dense in $A\cdot V=V$. Hence $(C_{00}(G))^2$ is dense in $A_p(G)$, where $C_{00}(G)$ denotes the set of all continuous functions defined on G with compact supports.

We need the following corollary in Section 4:

(2.7) COROLLARY. If $1 and G is non-discrete, then <math>(A_p(G))^2$ is a dense proper subset of $A_p(G)$.

The situation for unbounded approximate unit is much more pleasant. Let $\mathscr V$ denote the family of all precompact neighborhoods of 0, the identity element of G. Partially order $\mathscr V$ by set inclusion and denote it by $\{V_d\}$. Then $\{V_d\}$ is a directed family, and for each V_d , choose a nonnegative continuous function v_d with support $(v_d) \subset V_d$ and $\int v_d d\lambda = 1$. Then we have (see Loomis [7], p. 124) the following which is needed in the next section:

(2.8) THEOREM. The net $\{v_d\}$ is an (probably unbounded) approximate unit for $A_n(G)$.

(b) The usefulness of bounded approximate units is of course well known and many interesting theorems have been obtained for algebras with bounded approximate units. For more recent examples, see Varopoulos [14], Rieffel [12], and Porcelli-Collins [10], Theorem 1.

- 3. Tauberian theorems for $A_p(G)$. We continue to use G to denote a locally compact Abelian group with character group Γ . The Haar measure of Γ is denoted by μ . All terms and notation not explained here are as in Loomis [7].
- (3.1) Theorem. The maximal ideal space $M_p(G)$ of the commutative Banach algebra $A_p(G)$ can be identified with Γ .

Proof. For $0 \neq f \in A_p(G)$, we have

$$|||f^n|||_p \leqslant ||f^{n-1}||_1 \cdot ||f||_1 + ||f^{n-1}||_1 ||f||_p \leqslant ||f||_1^{n-1} |||f|||_p.$$

Hence

$$\lim_{n\to\infty} |||f^n|||_p^{1/n} \leqslant \lim_{n\to\infty} ||f||_1^{(n-1)/n} \cdot |||f|||_p^{1/n} \leqslant ||f||_1.$$

Therefore

$$\lim |||f^n|||_p^{1/n} \leqslant ||f||_1 \quad \text{for all } f \in A_p(G).$$

Now if $\gamma \in M_n(G)$, then

$$|\gamma(f)|^n = |\gamma(f^n)| \leqslant |||f^n|||_p.$$

Hence

$$|\gamma(f)| \leq \lim_{n \to \infty} |||f^n|||_p^{1/n} \leq ||f||_1,$$

and so γ is $\|\cdot\|_1$ -bounded and hence can be extended in a unique fashion to a multiplicative linear functional γ_1 on $L_1(G)$ and, conversely, every multiplicative linear functional γ_1 on $L_1(G)$ determines a $\gamma \in M_p(G)$. Now recall that the maximal ideal space of $L_1(G)$ is Γ and observe that the Gelfand topology on $M_p(G)$ agrees with the usual topology of Γ .

The next two lemmas are extensions of (and will be substitutes for) the corresponding results in Rudin [13], 2.6.1 and 2.6.2, and will play the same role.

- (3.2) Lemma. Suppose C is a compact subset of Γ , $V \subset \Gamma$, and $0 < \mu(V) < \infty$, $\mu(C V) < \infty$, where μ is the Haar measure of Γ . Then there exists $k \in A_p(G)$ such that
 - (a) $\hat{k} \equiv 1$ on C, $\hat{k} \equiv 0$ outside of C + V V and $0 \leqslant \hat{k} \leqslant 1$;

(b)
$$|||k|||_p \le (\mu(C-V)/\mu(V))^{1/2} + (\mu(C-V)^{1-1/2p})/\mu(V)^{1/(2p)}$$
.

Proof. Let g and h be the inverse Plancherel transforms of the characteristic functions of V and C-V, respectively, and define

$$k(x) = \mu(V)^{-1} g(x) h(x) \quad (x \in G).$$

Now by Rudin [13], p. 49, we see that $k \in L_1(G)$ and it satisfies condition (a), as well as

$$||k||_1 \leqslant (\mu(C-V)/\mu(V))^{1/2}.$$

But k is also in $L_p(G)$ (because $\hat{k} = \mu(V)^{-1} \hat{g} * \hat{h}$; see Edwards [3], 10.4.7, if necessary) and

$$\begin{split} \|k\|_p &= \mu(V)^{-1} \, \|gh\|_p = \mu(V)^{-1} \, \|gh\|_{\mathbb{S}^{-1/p}}^{-1/p} \, \|gh\|_{1}^{1/p} \\ &\leq \mu(V)^{-1} (\|g\|_{\infty} \|h\|_{\infty})^{1-1/p} \, \|g\|_{2}^{1/p} \, \|h\|_{1}^{1/p} \\ &\leq \mu(V)^{-1} (\|\hat{g}\|_{1} \|\hat{h}\|_{1})^{1-1/p} \, \|g\|_{2}^{1/p} \cdot \|h\|_{2}^{1/p} \\ &\leq \mu(C-V)^{1-1/2p} \cdot \mu(V)^{-1/2p} \, . \end{split}$$

(3.3) THEOREM. If W is an open set in Γ which contains a compact set C, then there exists f in $A_p(G)$ such that $\hat{f} \equiv 1$ on C and $\hat{f} \equiv 0$ outside of W.

Proof. Choose a neighborhood V of 0 in Γ such that $C+V-V\subset W$, $\mu(C-V)<\infty$ and then apply (3.2).

(3.4) Corollary. The commutative Banach algebra $A_p(\mathcal{G})$ is a regular semi-simple Banach algebra.

Proof. Immediate from (3.3) and Loomis [7], p. 57.

The main result in this section is the following Tauberian theorem. Some applications of this theorem will appear in the next section.

(3.5) TAUBERIAN THEOREM (1). Let I be a closed ideal in $A_p(G)$. Then I contains every element f in kernel (hull(I)) such that the intersection of the boundary of hull(f) with hull(I) contains no non-void perfect set.

In view of Theorem 25F in Loomis [7], p. 86, and Corollary (3.4), it suffices to show that the algebra $A_p(G)$ satisfies Ditkin's condition D: If $f \in A_p(G)$ and $\gamma \in \Gamma$ such that $f(\gamma) = 0$, then there exists a sequence (f_n) in $A_p(G)$ such that $\hat{f}_n \equiv 0$ on some neighborhood V_n of γ and $|||f * f_n - f|||_p \to 0$; if Γ is non-compact, the condition must also be satisfied for the point at infinity, that is, for each f in $A_p(G)$, there exists a sequence (f_n) in $A_p(G)$ such that \hat{f}_n has compact support and $|||f * f_n - f|||_p \to 0$. The case p=1 is of course well known (see, for example, [7]) and the standard proof makes use of the bounded approximate units in $A_1(G)$. Warner [15] has proved it for p=2 and also observed (in our notation) that

(3.6) Lemma. The algebra $A_p(G)$ satisfies Ditkin's condition D at infinity.

Proof. It suffices to show that for $0 \neq f \epsilon A_p(G)$ and $\epsilon > 0$, there exists a function $g \epsilon A_p(G)$ such that \hat{g} has compact support and $|||g * f - f|||_p < \epsilon$. First choose a function h (from a possibly unbounded approximate unit (see (2.8)) in $A_p(G)$ such that

$$|||f * h - f|||_p < \varepsilon/2$$
.

Now by 2.6.6 of Rudin [13], there exists a k in $L_1(G)$ such that \hat{k} has compact support and

$$||h*k-h||_1 < \varepsilon/2 |||f|||_p.$$

Note that g=h*k is in $A_p(G)$ and since g*f-f=f*(g-h)+f*h-f, we obtain $|||g*f-f|||_p<\varepsilon$ and note that $\hat{g}=\hat{h}\hat{k}$ has compact support.

Let $\mathscr{U}=\{U_{\lambda}\}_{\lambda\in\Lambda}$ be the family of all symmetric neighborhoods of the identity element 0 in Γ of measure $\leqslant 1$. Then \mathscr{U} is a directed family under set inclusion. Let $\{V_{\lambda}\}_{\lambda\in\Lambda}$ denote any net of symmetric precompact neighborhoods of 0 satisfying the following conditions:

(i) given U_{λ} in $\mathscr{U}, \overline{V}_{\lambda} \subseteq U_{\lambda}$ and $\mu(U_{\lambda}) < 4\mu(V_{\lambda})$ (μ is the Haar measure on Γ);

(ii) given $U_{\lambda} \in \mathcal{U}$ and V_{λ} , there is a neighborhood W_{λ} of 0 such that $V_{\lambda} + W_{\lambda} \subseteq U_{\lambda}$.

(3.7) Lemma. There exists a net $(k_{\lambda})_{\lambda \in \Lambda}$ in $A_p(G)$ such that, for each $\lambda \in \Lambda$, we have (a) $|||k_{\lambda}||| \leq 6$; (b) $k_{\lambda} \equiv 1$ on some neighborhood W_{λ} of 0.

Proof. For given U_{λ} in \mathscr{U} , let V_{λ} be the corresponding set as above. Let g_{λ} , h_{λ} be the inverse Plancherel transforms of the characteristic functions of U_{λ} and V_{λ} , respectively. Defining $k_{\lambda} = \mu(V_{\lambda})^{-1}g_{\lambda}h_{\lambda}$ and comparing k_{λ} with the function k defined in the proof of (3.2), we see (by (3.2.(b))) that $|||k_{\lambda}|||_{p} \leq 6$. To show (b), let W_{λ} be the neighborhood corresponding to U_{λ} and V_{λ} as described in (ii) above, and then use $\hat{k}_{\lambda} = \mu(V_{\lambda})^{-1} \hat{g}_{\lambda} * \hat{h}_{\lambda}$ to see that $k_{\lambda} \equiv 1$ on W_{λ} .

(3.8) LEMMA. For any compact set $C \subset G$ and $\varepsilon > 0$, there exists λ_0 in Λ such that if k is in $\{k_{\lambda}|\ \lambda > \lambda_0\}$, then $|||k - k_s|||_p < \varepsilon$ for every $s \in C$.

Proof. Recall that the set $U(C, \delta) = \{ \gamma \in \Gamma | |(x, \gamma) - 1| < \delta \text{ for all } x \in C \}$ is a neighborhood of 0 in Γ ($\delta > 0$). Hence there exists a λ_0 such

⁽¹⁾ Professor Edwin Hewitt has informed me (November 1968) that he and Professor K.A. Ross have also obtained (jointly) this theorem.

that if $\lambda > \lambda_0$, then $U_{\lambda}^2 \subseteq U(C, \delta)$, where $\delta = \min(\varepsilon/4, (\varepsilon/4)^p)$. Now let $k \in \{k_{\lambda} | \lambda > \lambda_0\}$ and suppose $k = \mu(V)^{-1}gh$, where g, h, V correspond to $g_{\lambda}, h_{\lambda}, V_{\lambda}$, respectively, in the proof of the preceding lemma. It follows that $\hat{k} \equiv 0$ outside of UV. It remains to show that $|||k - k_s|||_p < \varepsilon$ for every $s \in C$. Observe that

$$||k-k_s||_2^2 = ||\hat{k}-\hat{k}_s||_2^2 = \int_{UV} |k(\gamma)|^2 |1-(s,\gamma)|^2 d\gamma < \delta^2.$$

Thus $\|k-k_s\|_2 < \delta$ and similarly $\|g-g_s\|_2 < \delta\mu(U)^{1/2}$, $\|h-h_s\|_2 < \delta\mu(V)^{1/2}$. Hence

$$\begin{split} \|k-k_s\|_1 & \leq \mu(V)^{-1} \{ \|g(h-h_s)\|_1 + \|h_s(g-g_s)\|_1 \} \\ & \leq \mu(V)^{-1} \{ \|g\|_2 \|h-h_s\|_2 + \|h_s\|_2 \|g-g_s\|_2 \} \\ & \leq \delta \left(\mu(U)/\mu(V) \right)^{1/2} < 2 \, \delta \, . \end{split}$$

Next we compute $||k-k_s||_p$ for $s \in C$. We have

$$\begin{split} \|k-k_s\|_p^p &\leqslant \|k-k_s\|_\infty^{p-1} \cdot \|k-k_s\|_1 \leqslant 2^{p-1} \|k\|_\infty^{p-1} \cdot 2\,\delta \\ &\leqslant 2^p \delta \|\hat{k}\|_1^{p-1} = 2^p \delta\,, \end{split}$$

since $\hat{k} = \mu(V)^{-1} \xi_U * \xi_V$ and the L_1 -norm of $\xi_U * \xi_V$ is $\mu(U) \cdot \mu(V)$. Finally, $|||k - k_i|||_n \leq 2\delta + 2\delta^{1/p} < 2 \cdot (\varepsilon/4) + 2(\varepsilon/4) = \varepsilon.$

(3.9) Corollary. If $f \in A_p(G)$ and $\hat{f}(0) = 0$, then $\lim |||f * k_{\lambda}|||_p = 0$. Proof. Let $\delta > 0$ be given. Choose symmetric compact $C \subseteq G$ such that

$$\int\limits_{C'} |f(x)| \, dx < \frac{\delta}{24} \, .$$

Put $\varepsilon = \delta/3 ||f||_1$ and choose λ_0 so that if k is in $\{k_{\lambda} | \lambda > \lambda_0\}$, then $|||k - k_s|||_2 < \varepsilon$ for $s \in C$. Hence

$$\begin{split} (f*k)(t) &= \int \!\! f(s) \; k(t\!-\!s) ds \!-\! \hat{f}(0) k(t) \\ &= \int \!\! f(s) \; [k_{-\!s}(t) \!-\! k(t)] ds \,. \end{split}$$

Therefore

$$\begin{split} \|f*k\|_p &= \big\{ \!\!\! \int_G \!\!\! \int_G \!\!\! f(s) \left[k_{-s}(t) - k(t) \right] \!\!\! ds |^p dt \big\}^{1/p} \\ &\leq \!\!\! \int_G \!\!\! \left\{ \!\!\! \int_G \!\!\! |f(s)[k_{-s}(t) - k(t)]|^p dt \big\}^{1/p} ds \\ &\qquad \qquad \qquad \text{(by [2], p. 530)} \\ &= \!\!\! \int_G |f(s)| \!\cdot\! \|k_{-s} - k\|_p ds \,. \end{split}$$

Similarly,

$$||f*k||_1 \leqslant \int_{\mathcal{G}} |f(s)| ||k_{-s} - k||_1 ds$$
.

Therefore

*)
$$|||f*k|||_p \leqslant \int\limits_{C} |f(s)| \cdot |||k_{-s} - k|||_p \, ds + \int\limits_{C} |f(s)| \cdot |||k_{-s} - k|||_p \, ds \, .$$

Now if $s \in C$, then $|||k_{-s} - k|||_p < \varepsilon$, therefore (*) implies

$$|||f*k|||_p < \varepsilon ||f||_1 + 2 |||k|||_p \cdot \delta/24 < \delta.$$

(3.10) Theorem. $A_p(G)$ satisfies Ditkin's condition D at all (finite) points.

Proof. It suffices to show that $A_p(G)$ satisfies condition D at the identity element 0 of Γ . Let $\{v_a\}$ be the (probably unbounded) approximate unit described in (2.8) and let $(k_\lambda)_{\lambda\epsilon A}$ be as in Lemma (3.7). Write

$$v_{(d,\lambda)} = v_d - k_\lambda * v_d.$$

Clearly, $v_{(d,\lambda)}$ is in $A_p(G)$. Now we order the pairs (d,λ) as follows: $(d_1,\lambda_1)>(d_2,\lambda_2) \Leftrightarrow d_1>d_2$ and $\lambda_1>\lambda_2$. Now let q run through this directed set; then (v_q) is a net and $\hat{v}_q=\hat{v}_d-\hat{k}_\lambda\,\hat{v}_d=\hat{v}_d(1-\hat{k}_\lambda)$ which is identically zero on some neighborhood W_λ of 0 (see condition (b) in (3.7)). Finally for $f\in A_p(G)$ and $\hat{f}(0)=0$, we have

$$\lim |||v_q * f - f|||_p \leqslant \lim (|||v_d * f - f|||_p + ||v_d||_1 \cdot |||k_{\lambda} * f|||_p) = 0.$$

This completes the proof that $A_p(G)$ satisfies condition D and also the proof of the Tauberian Theorem (3.5).

We record two corollaries below for later application.

(3.11) COROLLARY. If I is a closed ideal in $A_p(G)$ and if hull (I) is empty, then $I = A_p(G)$.

(3.12) Corollary. Every proper closed ideal in $A_p(G)$ is contained in a regular maximal ideal.

- 4. Maximal, regular, and prime ideals in $A_p(G)$. Throughout this section, G will continue to denote a locally compact Abelian group with character group Γ . The purpose of this section is either to extend or to show the impossibility of extending the theorems in Porcelli-Collins [9,10] from $L_1(G)$ to $A_p(G)$. We begin by recalling some facts that will be needed later. Let $[E^2]$ denote the ideal generated by R^2 in the sequel.
- (4.1) THEOREM ([11], p. 88). (a) If R is a commutative Banach algebra such that $[R^2] \neq \{0\}$, then R contains a non-prime maximal ideal $\Leftrightarrow [R^2] \not\equiv R$. Each non-prime maximal ideal is a maximal subspace of R which contains $[R^2]$.
- (b) If R is a commutative Banach algebra without identity and M is a maximal ideal in R, then M is regular \Leftrightarrow M is prime.
- (4.2) THEOREM. Every maximal ideal in $A_p(G)$ is regular $\Leftrightarrow p=1$ or G is discrete.

Proof. The implication \Leftarrow is proved in [10], Theorem 1, while \Rightarrow immediately follows from the proof of (2.4) and (4.1).

(4.3) Corollary. Every maximal ideal in $A_p(G)$ is closed $\Leftrightarrow p=1$ or G is discrete.

Proof. The implication \Leftarrow is proved in [10], Corollary 1, while \Rightarrow follows from the last assertion in (4.1(a)), (4.2) and (2.7).

(4.4) Corollary. Every positive functional on $A_p(G)$ is continuous $\Rightarrow p=1$ or G is discrete.

(A linear functional F defined on a *-algebra is positive if $F(xx^*) \ge 0$ for all $x \in A$.)

Proof. The implication \Leftarrow is well-known result of Varopoulos [14]. Now suppose p>1 and G is non-discrete. By (4.3) there is a maximal non-closed ideal M in $A_p(G)$ such that $\left[\left(A_p(G)\right)^2\right]\subseteq M$. Thus there exists $f_0\in A_p(G)$ such that $A_p(G)=M+\{af_0\}$. Define F by $F(m+af_0)=a$; then F is a positive linear functional, but it is not continuous.

(4.5) LEMMA. If I is an ideal in $A_p(G)$ such that I is contained in exactly one regular maximal ideal, say M, then $\overline{I} = M$.

Proof. Let γ be the character in Γ corresponding to M. Thus hull $(\bar{I}) = \{\gamma\}$ and by the Tauberian theorem (3.5) we have $\bar{I} = M$.

(4.6) Lemma. If a prime ideal I of $A_p(\theta)$ is contained in a regular maximal ideal, then I is contained in only one regular maximal ideal.

Proof. Same proof as Lemma 2 in [10], use our Theorem (3.3) instead of [13], 2.6.2.

(4.7) LEMMA. If I is an ideal in $A_p(G)$ such that I is contained in no regular maximal ideal, then $\bar{I} = A_p(G)$.

Proof. It follows from (3.5).

(4.8) Theorem. If I is a proper prime ideal in $A_p(G)$, then I is regular maximal $\Leftrightarrow I$ is closed.

Proof. Consider the implication \Leftarrow . By (3.12), I is contained in a regular maximal ideal M. Hence I=M by (4.6) and (4.5). The converse is of course valid for all Banach algebras.

(4.9) Theorem. $A_p(G)$ contains a non-closed prime ideal $\Leftrightarrow G$ is infinite.

Proof. Only < requires proof. We consider two cases:

- (a) If G is discrete, then $A_p(G) = L_1(G)$ and we are done by Theorem 3 of [10].
- (b) If G is non-discrete so that Γ is non-compact. Now argue as in the first half of the proof of Theorem 3 in [10] (apply (4.7) and (3.3) at the appropriate points).

(4.9) THEOREM. Every prime ideal of $A_p(G)$ is contained in a unique regular maximal ideal $\Leftrightarrow G$ is discrete.

Proof. Similar to the proof of Theorem 4 in [10].

Added in proof. I wish to thank Professor Edwin Hewitt for informing me that some of our results in Section 3 overlap certain results in Hans Reiter's new monograph: Classical harmonic analysis and locally compact groups. Reiter deals with a large class of subalgebras of $L_1(G)$ called Segal algebras, of which the algebras $A_p(G)$ are examples. We have been able to prove that the Tauberian theorem (3.5) is valid for all Segal algebras.

References

- [1] P. J. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), p. 199-205.
- [2] N. Dunford and J. T. Schwartz, Linear operators, Part I, New York 1958.
- [3] R. E. Edwards, Functional analysis, New York 1965.
- [4] E. Hewitt, The ranges of certain convolution operators, Math. Scand. 15 (1964), p. 147-155.
- [5] and K. A. Ross, Abstract harmonic analysis I, Berlin 1963.
- [6] P. Koosis, Sur un théorème de Paul Cohen, C. R. Acad. Sc. Paris 259 (1964), p. 1380-1382.
- [7] L. H. Loomis, An introduction to abstract harmonic analysis, Princeton New Jersey 1953.
- [8] R. O'Neil, Convolution operators and L(p, q)-spaces, Duke Math. J. 30 (1963), p. 129-142.
- [9] P. Porcelli and H. S. Collins, Ideals in grou palgebras, Bull. Amer. Math. Soc. 75 (1969), p. 83-84.
- [10] Ideals in group algebras, Studia Math. 33 (1969) p. 223-226.
- [11] P. Porcelli, Linear spaces of analytic functions, New York 1966.
- [12] M. A. Rieffel, On the continuity of certain intertwining operators, centralizers, and positive linear functionals, Proc. Amer. Math. Soc. 20 (1969), p. 455-457.
- [13] W. Rudin, Fourier analysis on groups, New York 1962.
- [14] N. T. Varopoulos, Sur les formes positive d'une algèbre de Banach, C. R. Acad. Sc. Paris 258 (1964), p. 2465-2467.
- [15] C. R. Warner, Closed ideals in the group algebra $L^1(G) \cap L^2(G)$, Trans. Amer. Math. Soc. 121 (1966), p. 408-423.
- [16] L. Y. H. Yap, On the impossibility of representing certain functions by convolutions, Math. Scand. 24 (1969).
- [17] A. Zygmund, Trigonometric series, Vol. I, 2nd ed., Cambridge 1959.

Recu par la Rédaction le 23. 4. 1969