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Analytic approach to semiclassical logarithmic potential theory
by

T. BOJDECKI (Warszawa)

0. Introduction. The object of this paper is to present a non-
probabilistic, purely analytic method leading to the semiclassical potential
theory on the plane in the sense of M. Kac and Z. Ciesielski. Kwapien [7]
proposed such an approach to semiclassical potential theory on a Greenian
domain. The theory for the plane and the line requires a separate treat-
ment. It was M. Kae’s idea to consider integral equations with two
parameters and Bessel kernel. With this idea it was possible to obtain
(cf. [8]) for an arbitrary compact set B < R* of positive Lebesgue measure,
semiclassical analogs of such notions as the Dirichlet problem and the
Green function for R*— B, as well as the equilibrium distribution and
the Robin constant of B. For a large class of sets all these notions coincide
with the classical ones. Roughly speaking, the main difference between
semiclassical and classical approaches is that the polar sets are replaced
by the sets of Lebesgue measure zero. Such replacement turns out to
be advantageous as for all quantities mentioned above analytic formulas
can be derived. All these results were established by probabilistic methods.
In this note the same results are obtained in much simpler way; all con-
siderations are based entirely on the potential theoretic background
including some elements of the axiomatic potential theory. The potential
theory corresponding to the differential operator $4—sI (s > 0) is a main
tool used in the present approach. A brief, by no means complete, survey
of this theory is given in Section 1. The semiclassical solution of the
Dirichlet problem as well as the other potential theoretic quantities are
obtained in Section 2. Section 3 is devoted to discussion of the results
of Section 2. Also the analytic formulas of Section 4 are immediate con-
sequences of the considerations of Seetion 2.

We are going to deal with the plane only, for the semiclassical
potential theory on the line is similar but much easier.

I wish to express my thanks to Professor Z. Ciesielski for suggesting
the problem and for his valuable help and advices.
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1. Potential theory for the operator 34 —sI. Let s be a fixed positive
number. For any point @ = (24, #,) of the 2-dimensional Euclidean space
R* and for a function f, twice differentiable at #, we define

& :
A% (@) = (%— A—sI)f(a;) = é— 050]: (2) - 107

2 02

() — sf ().

A function f on an open subset U of R is said to be 4°-harmonic
on U if A°f(z) =0 for every zeU.

Lemva 1.1, Let K be a disc with center ©, and with radius r. There
ewists o number a, s independent of z, such that, for any function h A°-har-
monie on Int K and continuous on K we have

hao) = —== [ h(y) oldy),

1.1y
( ) Anr K

where o(dy) is the Lebesgue measure on the circle 0K.

Moreover, a,s # 1 as ¥ 0 and a,, 7 1 as 8 0.

The proof follows immediately from the definition and it is omitted.

With harmonicity defined as above, R? is an elliptie, strongly harmonic
space (cf. Bauer [2]). In the sequel all notions concerning potential
theory for the operator 4° will be preceded by 4° (e.g. “A*-superharmonic”,
“A*-balayage™). The class of all 4°-guperharmonic (resp. A%-superharmonic
and positive) functions on an open set U = R* will be denoted by +#}(U)
(resp. #%, (U)). If U = R we write simply 7, #!, for #{(U) and
#%, (U) respectively.

The following is an immediate consequence of Lemma 1.1:

COROLLARY 1.2. If x,, K and a,, are the same as in Lemma 1.1,
ve#}(U) and K = U, then

(1.2)

= [ o(y) oldy).

V(@) =
@)= gyl

Now, let us consider the equation 4°w = 0. It iz known that the
function

1 —
E'(:) == K,(V2s |])
B ™ -
is a ?undamenta,l solution of this equation, where K,(-) is the Bessel
function of second kind of zero order (ef. e.g. [1]). We have (in the sense

of L. Schwartz distribution theory)

1.3) AR = —3,
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where & denotes the Dirac distribution coneentrated at 0; analogously,
the Dirac distribution concentrated at 2 will be denoted by 4,.

The function K°(-) plays, as it is suggested by (1.3), essentially the
same role here as the funetion 1/|-| plays in the classical potential theory
on R? Dealing with K°(-) we shall refer frequently to the following prop-
erties of I (-) (ef. [11]):

(1.3) 0< Ky(r) < +o0, r=0,
(L.3) K,(-) is continuous and decreasing on < 0, +o0),
1
(1.4) Ey(r) = 0(76”’) as r — oo,
2
(1.5) Eqy(r) =10g7—y+o(1) as r =0,

where y is the Euler constant.
Making use of the properties (1.3), (1.3)', (1.4) and Lemma 1.1 one
can repeating almost literally the classical argument, prove the following
proposition (ef. [3]):
ProPOSITION 1.3. If T is a distribution such thai

(1.6) AT<0,

then T is equivalent to & A°-superharmonic function. In particular, for any
Radon measure u, the funclion

1 -
B () = — J Eo(V/3s =) (d)

is either in HL, or it is infinite at every point.
The next theorem we are going to formulate is the “Domination
Principle”. )
TrsorEM 1.4. Let & function f be non-negafive Lebesgue integrable
on R%; furthermore, assume that there is @ bounded Borel set S such that
[ fly)dy = 0. If ves#], and
RY-s§

1
~ L B0 o—yhiw dy < o(o)

for all zeS, then this imequality holds everywhere on R )

Proof. It is known that the kernel K* is regular (cf. [1]). Now, to
obtain the desired result, it is sufficient to follow the Landkof’s proof
of the analogous theorem in the potential theory for the Newtonian
kernel ([8], p. 149).
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Also the semiclassical potential theory in the Kac-Ciesielski sense |

can be built on E* for the operator 4°. For this theory on a Greenian
domain in the Laplace operator case cf. [4] and [7]. Let ’l)e%”st,_ and A4
be a subset of R The sirong A%-balayage of v onto A is defined ag

St (@) = mf{u(z): e, u>v ae on A}

(a.e. — almost everywhere in Lebesgue sense). It has essentially the
same properties as in the Laplace operator case; in particular, vaﬁyf;.;_
and there exists 4, < 4 such that |[4— 4] =0 and 84, = “ordinary”
A°-balayage of » onto 4,.

Again we can define a set A to be strongly A*-thin af @, if either
{4 ~ Ul =0 for some neighbourhood U of #, or if there exists ?Jeyfsti‘
such that »(z,) < ess Im inf o(z). It follows immediately from this defi-

red X

nition that 4 is strongly A°%thin at #, if and only if there is A° such that
[4—A" =0 and 4° is A°thin at =,.

PROPOSITION 1.5. 4 is strongly A°-thin at x, if and only if it is strongly
thin at m, in the sense of the Laplace operator theory.

Proof. It suffices to combine the preceding remark with the fact
that 4 is A°%thin at @, if and only if it is thin at x, (cf. [6]).

As usual, the set of all points at which A is not strongly thin will
be denoted by A*. If 4 is a Borel set then |A— A% =0. )

An argument similar to that in {47] leads to Lemma 1.6 and Propo-
sition 1.7:

LevyMa 1.6. If @ e A%, then, for any ve #}, we have S2,(z,) = v(x,);
if, moreover, we assume that v is continuous at g, then 82, is also comtinuous
at %,.

PROPOSITION 1.7. we A* if and only if S (w,) = 1.

Let B be a fixed compact subset of RB? such that |B| > 0. We ghall
use’the following notation:

I*(B) is the Hilbert space of all square integrable functions f on B
With (£, 9) = [f@)g(y)dy;

0(B) is the Banach space of all continuous functions on B with the
norm [|f|} = sup [F(@)l;
e

#(R%) is the class of all boimded and measurable

functions on R
For feI*(B) we write ‘

1 —
) B () = — | Ky(V2slo—y))f(y)ay.
) B
Levwa 1.8. The operator K%: I*(B) - I*(B) 4s self-adjoint comple-
tely continuous and positive. Moreover, for feL?(B) the function defined
by (1.7) is bounded and comtinuous on R’

icm°®
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Proof. Positiveness of K% is easily derived from the following
identity:

1 o9 17 ot le—ui?j2t
— —yl) == T — g VR
- KD(]/ZS le—yl) p nf e e

2_1_]&3

2m)*; 2

The proof of the other properties is based on (1.3), (1.4),9&11(1 (1.5).
As an immediate corollary we get that for any u >0, feL?(B) there
exists exactly one function g,,¢L*(B) such that

QU:,S—'_MKSBQE,S = f
If f is defined everywhere on R’ (and not only almost everywhere
on B), then

(1.9) Qo s() = (@) — UK 54, ()

defines a function on R? such that (1.8) holds identically; moreover,
Qus<B(RY) it only feZ(R*).
- Now, the results of Kwapied [7] can be adopted to the case of the

kernel K® (cf. also [9]). ) .
First of all the following proposition can be derived from Theorem 1.4:

PropoSITION 1.9. Let u be an arbitrary positive mm@gr and f be
o A%-superharmonic and positive function such that the resiriction of f to B
is in I*(B). Then the unique solution of (1.8), g, .<I*(B), extended fo the
whole R* by (1.9) is positive on R’ L

This proposition combined with the properties of S, gives the
following two theorems:

THEOREM 1.10. Let fe B (RY) ~ L, and let, for given u >0, g, be the
bounded solution of

(1.10)

Then gq.,() 7 SE1(®) as uq oo, seR™
TuporEM 1.11. Let feC(B) and, for u >0, let g, ,, be the bounded solu-
tion of (1.10). Then there ewisis

(1.8)

gs,u—]_uKsBQs,u = V/KSB .

. def
lim ¢,,(@) = Dgy(2)
U—>400
. , 2 .
for every weR? and the function DZ;(+) is A%-harmonic on B'— B, is equal
to f(z) and is continuous at each xeB*; moreover,

sup [ D7 ()] < sup {f(@)].
xeR2 2B
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2. Passage to the limit with the parameters s and u. Throughout
the rest of this paper, B is an arbitrary but fixed compact subset of R?
of positive Lebesgue measure.

Fix s, 4 >0, zeR® and let Q(s, u; #,-) be the square integrable on B
solution of the equation
(2.1) Qs,u; 2, )+ uEpQ(s,u;o, ) = -:TL? K, (V2s jo—-|).
The function @(s, u; #, ) is defined and continnous everywhere on
R*—{z} (it is continuous in “the wide sense” on R’).

We are going to pass in (2.1) with s to zero, and then with « to
infinity. Before that some properties of ¢ (s, u; », *) have to be established.

Lemma 2.1 1° For u,58 >0 and 2, y<k’ the function Q(s, u; z,y)
is positive.

2° For s >0 and o %=y, Q(s, u; 2, y) ts decreasing in w.

3° For uw >0 and 2 5%y, Q8, u;z,y) 18 decreasing in s.

Proof. 1° follows immediately from Proposition 1.9.

To prove 2° assume that ' >wu > 0. It is sufficient to notice that

Qs, us o, ) —Q(s, w5 2, )+ ul3[Q (s, w53, ) —Q(s, w'; @,)]

= (W' —u)E3Q(s, w'; 2, ),
and then to apply Proposition 1.9.

Now, let s >s' > 0. (2.1) implies that
Q' usmy )—Q(s, w32, )+ uKR[Q(8, u; 2, )—Q (s, u; 3, )]
1 — 1 — .
= ~ Ko(l/ZS' je—"-1])~ = Ko(l/?ls o—N—ulK%Q (s, %; 2, -)—

C—E3Q(s, w50, )]

Notice that the function on the right-hand side of this equality can
be extended to a continuous bounded function on the whole plane; it
sbems from (1.5) and from Lemma 1.8. Let it be denoted by @®(-). It
will be shown that Pe ], .

We know that

& (S B2l —)) = o,

and this gives

f 1 —
AS(; K, (V2s Iw~—-l)) = — b (5= ) Ky (V25 lo—]).

e ©
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Now, it can be easily seen that
, 1
470 = — (= 1035 lo—-)— uE30 (s, 3.3,
K

= —(s—8")Q(s,u;2,").
Thus, by Proposition 1.3, ®es#}. Furthermore, since lim D(y) =0,
Wi->c0
we see, by Minimum Prineciple (cf. [2], p. 26) that @EJ?’J_,_. To eomplete
the proof we apply Proposition 1.9.
Ledva 2.2. For any s, >0 and z,yeR?,
Qs, w2, y) = Q(s,u; 9, #).

Proof. Let us write (2.1) as follows:
u — 1 —
Qs ws0,9) = — = [E(V2s e=y)@(s, w5 2, et —Ko(y3sl2 ~y])
B
and
1 — u’ -
SRy (3s by = Qs w5, 9+ JEa(V3s o= D0 w5 9, DL
B
Combining these equalities, we get

Qs u52,9) == [ Q(s, 439, 2Q6, 45 2, u)de—
B

— O [ [ 038 e QM iy, DR, w3 3, )l e
B B

+ = K, 03 la— ).

The latter expression is symmetric with respect to and 7, so the
lemma is proved.

THEOREM 2.3. For any yeR® there exists o Radon measure py such
that

1° u, is concentrated on B and p,(B) =1;

2° for any function feC(B)

lim lim u [f(2)Q(s, u; 2, y)d¢ = lim Lim u [f(2)Q(s, u; 2, y)dz .

§-50 4, u—>+00 B U+t+oos->04 B

‘ = [1@me);
3° if we define
DF(y) :Bff(z)/‘u(dz) for feC(B),
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then DF(-) is harmonic on R'—DB and it is equal to f and continuous af
each y,eB*.
Proof. First of all, notice that for any feC(B) and u,s >0 the
funetion  [f(2)Q (s, %52 ")dz is 2 ‘bounded solution of (1.10). Hence,
B ‘
by Theorem 1.11,
(2.2) lim w [f(2)Q (s, %5 2, y)de = DFy(y)-
U400 B

Furthermore, Theorem. 1.10 gives

(2.3) qu(s, w3z, y)de 8E(y) as w 400,58 >0,yeR?,
and
(2.4) 0<u[Q(s, u;2,y)de <1, u,8>0,yeR.

B

For any s, >0,yeR® and a Borel set 4 = R* we define
:us,u,y(A) = 'lf fBQ(87 u? z? y)dz

Thus, by (2.2) there is a Radon measure u,, such that u,,, is
weakly convergent to u,, (WIitten gy, = f,) 85 % — oo, and Dy(y)
= ff(z /"s y(dz)

Then, by virtue of Lemma 2.1 and (2.4), for each yeR? there emats

" a Radon measure y, such that

(2.5) Bsy = thy a8 8 —>0,.

We shall prove that w,(B?) = 1. Sinee g, , (R S2,{y) a8 w1 +oo
and 8%, (y)'# u,(R?) as £ 0, we see, by (2.4), Lemma 1.1 and Corollary 1.2
that the function- u(R?) is positive and superharmonic on the whole
plane. Therefore u,(R?) = ¢ = const and, by (2.3), ¢ = 1.

Now, for « >0 and @ # y we write

(2.6 Qu; ¢, y) = LimQ(s, u;w, y)
804

and, for any Borel set 4 = R?,
Puy(A) = [Q(u; 2, 9)de.
B ‘AnB >
Clearly, prgyy = fiy 88 8 >0, and the set of measwres {u,,}us, 18

conditionally weakly compact in O*(B) (C*(B) denotes the dual space of
C(B)). Hence, there exists a sequence of measures {,L&;m;”}m=1’2__. (w, 7+ o)
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which is weakly convergent, say, to a measure l‘y For any positive
funetion feC(B) we have, by Lemma 2.1 and (2.5),

oy () < ().

Sinee s, (1) <1 and (1) =1, we obtain pj =
a8 U — oo,

It remains to prove 3° of the theorem. By Theorem 1.11, Lemma 1.1
and (2.5), we see that for fe((B) the function DF(-) is harmonie on

ty- ThUS, gy, = g,

—B. Furthermore, Theorem 1.11 and (2.5) imply that DF(y) = f(y)
a.t every point y<B*.
Let y, be an arbitrary point of B* and {Yu}m-i... be a se-

quence of points sueh that y -y, as m — co. It is to be shown that
By, = Oy, 88 m — oco. We argue like before. The set {By,m=1,a,... Is Weakly

compact m C*(B), so there exist a subsequence {"‘ij} and a mea-
sure u such that I‘”"‘i => § ag j — oo. -

We know that for any positive funetion feC'(B) and 8 >0
By (1) < by (B G =2,2, ..
Hence, by Theorem 1.11,
Fay () = 84, (N < ().
e Ib i8

This, combined with the inequality u(1)<1 gives u = ¢,
clear now that u, = d, as m — oo and the proof is complete.

Theorem 2.3 gives the semiclassical solution of the Dirichlet problem
for R*—

NOW, we are ready to pass to the limits with s and % in (3 1). By (1.5)
we have for small s

1 _ 1 1 1 /2
P Ky (V2slo—y)) = ‘7‘:‘10gm —l—?(log ]/;— )’)‘l‘o(l),

where o (1) is uniform in # and y ranging over an arbitrary bounded subset
of R’ Thus, if we write

:"];(IOg VE—V)[I_MIQ(S:ui 2, ) dz],
™ 8 B

then (2.1) Tan be written. as

@n

(2.8) Q(s, %5 9)

1 % 1
(29) Qs u;z,9) = log — Jle T e nay) det

le—yl
+Q(s,u;y)+0(1),

where o(1) is uniform in u.
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TearoREM 2.4. For any 2, yeR® and @ 1y, the following limits emist
and they ore finite:

(2.10) Tim lim Q(s, u; 2, 4) = = Qul, ),
U—+00 §->0 4
(2.11) tim lim Q(s, u;%) = Quy)-

U0 §>0.4

Moreover, we have

Qolz,y) = —

1 1
(2.12) - flog—lm_—_zT ty (d2) + Qo (y) .

og
lo—yl B

Proof. Notice that, by Lemma 2.1, Qo (5, y) is well defined.
‘We shall prove that for any % > 0 and y eR? there exists im@Q (s, u; y)

804

and it is finite. Let 4 <R? and » >0 be fixed. (2.4) implies that Q(u; 2, 9)
< Joo for almost all z<B, where Q (u; @, ) is given by (2.6). Furthermore,
it is easy to see that

Q(s uj2,y)de = flog rRACEL = g(o)

lim log
804 Bf

and the function ¢(-) is superharmonie, so it is finite almost everywhere
on R?. Thus, there exists a point zeB such that both @{z) < +oo and
Q(u; @, 9) < +oo. Now, (2.9) implies that 1im@ (s, w; y) exists and it is

s—04.

finite. Write

Q(u; y)

(2.13) =1m@(s, ;).
8->04.

Tetting, in (2.9), s 0, wWe obtain

(2.14)  Q(u;2,9)

Q(u z,y)dz+f.?(% Y).
lw yl

It is convenient to use the following notation: for any locally inte-
grable function f, z¢R® and r >0 we write

[ fway.

{9 |lg—ri<t}

Mz, 7, ) =—

icm°®
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LY

w51

)Q(ﬂ 2,y)de+Qu3y), w,r>0,2 #y.

Formula (2.14) gives

iDt(a:,r, Q(u; '7?/)) = im(ﬂ&',r, l

—-——-fiﬂt(mflogl 0

By (2.8) and (2.4) it is clear that there exists
(2.15) Qo (y) =limQ(u;9).
Um0
Thus, by Theorem 2.3 and (2.10), letting u — oo we get
Mz, 7, (-, 9))

=iz, r,

1 1
¥10g -)~- fim(m 7 log )ﬂy(d~)+Qo(?]

['—9l 3 |-—2

Formula (2.14) and Lemma 2.1 imply that @,(-, y) is subharmonic
on R*—{y}, therefore, letting r — 0, we obtain (2.12) and the proof is
complete.

Now, we are going to deal with the function Q{s, %, -). We know
that for s, # >0 the function

Qs,u(') = uﬁ{. Q(sy Ui %, 'V)dz
is a bounded solution of the equation

(2.16)
Thus, if we write

ot UE sy = KL,

i Rl (g V—f——y) [1— [ Qs u;9)2],
B

then by (2.8), for small s we have

(2.18)  Q(s, u59)
= R(s, u)——f g Q(s u; z)dz—)—o 1)fQ(s w; 2)dz.
THEOREM 2.5. There exists lim im R(s, u) R., and it is finite. More-

U—>00 804

over, there exists a Radon measure p, such that o(RY) = pe(B) =1 and,
for yeR?,

(2.19) ,,; o{dz).

f log

Qoly) =
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Proof. The proof is due to Z. Ciesielski and M. Kac and we are
going only to outline its idea. For any u,+ >0, yeR* and small s (2.18)
gives .

My, r, (s, u; )

= R(s, ﬂ)—-—fim(g/,v log Q(s %; z)dz—l—o(l fQ(s u; 2)de

f

It can eagily be proved that for any w,> 0 there exists ¢, >0 and
a function f such that f is integrable on B and Q(s, %;¥) < f(¥) for all
yeB, 4> Uy, 0 < 8 < 8. Therefore

ImRB(s, u)
>0

(2.20) R(u)

must “exist. Thus, letting s — 0, we get

My, r, Qu, ) = R(u)—%fsm(y, rlog =) Q(u; ).
B

1
Now, it is easy to see that letting » — 0, we obtain

R(u)—-flog u >0, yeR

(221) Qu;y) = Q(% z)dz,

Applying Lemma 1.8 and equation (2.16), one can express {Q (s, u; y)dy
B

by means - of the eigenvalues and eigenfunctions of the operator K%;
then it iy seen that « [@Q (s, u; y) dy increases as u  +oco (for s sufficiently
B

small). Hence, clearly

ﬂef
lim B (u)
U400

exists and it is finite.
For any « >0 and a Borel set 4 = R* write
vu(A) = u [ Q(u; 2)dz.
AAB

By (2.17) and (2.20) we have

(2.22) 2, (R?) =qu(u;z)dz =1, %>0.

Using the weak compactness of the set of measures {v,},.,, it is
not difficult to prove that there exists a Radon measure u, such that
Vo = fho 88 U —> 400

and then to derive (2.19) from (2.21), q.e.d.

icm°®
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3. The semiclassical potential theory on the plane. We are going

to discuss some properties of @y(-, -), @(-), sy, tp and Ry. A particular

stress will be 1aid on analogies between classical and semielassical potential

theories.

THEOREM 3.1. The function Qy(-) has the following properties:

1° it 4s mon-negative and subharmonic on R°, harmonic on R’— B;

2° lim (Qo(f'/ - -”lﬂg]y]) = By;

{Y]—o00

3% Q4(
(3.1)

-) 18 continuous at each y,eB* and

QoY) =0

Proof. Only (3.1) needs to be proved. Let y,<B%. By Theorem 2.3,
By = 6,,0, whence using (2.12) we obtain Qy(z, o) = Q,(y,) for all zeR>.
Observe that there exists a point z such that Q,(z, y,) = 0 (in faet, (2.8)
and (2.11) give Qo(-, ¥,) = 0" a.e. on B). Thus @,(y,) = 0.

THEOREM 3.2. The function Qq(-, -) has the following properties:

1° for any @, yeR*, Qo(z, y) > 0 and Q,(w, y) = Qu(y, 2);

2° for every wmeR? Qu(z, ) is subharmonic on R'—{z} and super-
harmonic on R*— B;

3° for y eR?

&(y)

4° for weR? and y,eB*

= lim@Q,(z, ¥);
|z]-+00

Qu(2, 90) = 0;

moreover, Qo(2, ) is continuous ai y,.

Proof. The proof follows immediately from the agsertions of Section 2.

Tt is suggested by Theorems 3.1, 3.2 and by (2.12) to call @,(-) and
Qo(z, -) the semiclassical Green funcmon for R’— B with the pole at
B with the pole
at o, respectively.

Now, for any Radon measure x with compact support write

1 1
I(p, p) = — f R{ log - 4 (do) () .
£

Moreover, assume
Ep = {h A= py— pa, iy pi) < +o0,%=1,2 and support 1 = B},
&5=Ae &5 A({y: Quly) > 0}) =0).

The following theorem is due to Z. Ciesielski and M. Kae:

Studia Mathematica XXXV, 2 13
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THEOREM 3.3. The messure g, 18 in & and

Ry = I{g, ) = it {I(3, A): Ae &5, A(B) =1}

Moreover, if Aedp, A(B) =1,1(4,12) = I (g,y o)y thew A = py.

Tt is clear now that g, and R, should be called the semiclassical
equilibrium disiribution for B and the semviclassical Robin constant for B,

respectively. . o
Next, we turn to the discussion of py, up and B". We are going just

to state the results as they can be rather easily derived from the previous
results, with the help of Proposition 1.6.

PROPOSITION 3.4. fy, = g, 68 |y] — 4o,

TrmoREM 3.5. All measures w, as well as uy are concentrated on B*,
Moreover, if yeIntB, then

1y (0B) = p, (0B) =1.

TEEOREM 3.6. The following conditions are equivalent:
1° yoe B;

2° for any feC(B), DF (yo) = f(¥o);

3° Qq(@; yo) = 0 Jor every weR’—{yo};

4° either y,eIntB or, for any feC(B),

lim DF () = f(%0);

¥y
yeR2—B

5° either yocIntB or, for any xR’

lim Qo(2, ) = 0.

Y—+Yy
YyeR2~B

4. Analytic results. For f<I*(B) write

1
=—;_Bf10g

Tt is well knewn that Gg: L*(B) — L*(B) is a self-adjoint, completely
continuous operator but it need mot to be positive definite. Combining
M. Kae theorem. [5] with J.L. Troutman’s result [10], we see that if By > 0,
then all eigenvalues of Gy are positive but if B, < 0, then there exists
exactly one simple negative eigenvalue of &5 and all other eigenvalues
are positive.

Let {¢mtn=1,s.. be an orthonormal set of all eigenfunctions of Gy
and {An}m=i,.. e the corresponding eigenvalues.

Gpf (@) fy)dy

lo—yl
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THEOREM 4.1. For 4 >0

1 o %
(1) R(u) = Z 1+ui, (1, m)®

m=1

00

42)  QUus9) = (w1 ZHW

o 1
Sy T

(1) ¢m)G5 ‘;Um(?/)] ye< R,

(43) Quso,9)=— Q(u; 2)Q (u; y)—

B (u)

Gppn(®)Caen(Y), m:yEngm Y.

-y v
g Ll
Proof. By (2.21), we have in L*(B)

Qi ) = B N e

Applying (2.22) we get (4.1). Furthermore, (4.4) gives

(4.4) 1, @) P

o U
w6205 9) = R 3 i (1 o) Gnoaly),
whence, by (2.21), we obtain (4.2).
Now, by (2.14) we have

Gaon(y)+ (1, )@ (%, 9)
142, ?

Qs 9), o) =

whence
Qs 9 = Dy 1+Mm @) ot Q3 9) D 1+’;zm

in I*(B); therefore

[/ 1

(L5 Pm) ¥m

2 GB Pm (m) GB Pm (:’/) +

m= 1

+Q(u39) Ziﬁ;f(l, P05 0 ().

Q(u 2, Y) b

7

Using (2.14) and (4.2) we geb (4.3).
THEOREM 4.2, The following formulas hold:

+-3x

m—l

(1, ‘I"-m)2
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(we accept the comvention that 1[R, = co for Ry = 0);

(45)  Quly) = Be—lmR(w) Y (1, pu)Gagn(); YeB'

U400 m=1 1 + “Zm

1 1
Qolz,9) =— logw +
. 1 72
s 1m [ o 00w = Y Gar@Gen)], @£y

Moreover, for feC(B)

. S
(4.6) wolf) = B R(u) Y (L ) (s o)

and, provided R, # 0,

D2) = m() 22 4+ 1m 3

Ry umioe S 1Hudy,

w

(4.7

(.f! <Pm)G:B(pm(y)7 yeRz-

Proof. This theorem follows immediately from Theorem 4.1 and
from the following equalities:

polf) = lim u [ Q(u; y)f(y)dy,
U+ B

Df(y) = lim u [ F@Q(u; 2, y)dw
U—>+-00 B

(cf. Theorems 2.3 and 2.5).
COROLLARY 4.3. The semiclassical Robin constant of B is zero if and

only if
o 1
,,%'17;(1’ @)t = oo

It is possible now to obtain one more characterization of the set B*
provided R, 7 0.

THREOREM 4.4. Assume R, # 0. If feC(B), then

(4.8) fly) = lim O

Jim 3 (6, ) a(0)

at every point yeB*. Conversely, if (4.8) holds for all funmctions feC(B),
then yeB*. '

v

icm
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Proof. The first part of the theorem follows directly from (4.7)
and (3.1).

For the proof of the second part, notice that putting f = 1 in (4.8)
and then applying (4.5), we obtain Q,(y) = 0. Thus, by (4.7) and (4.8)

Diy) =fy), fe0(B),

Now, to complete the proof, it suffices to apply Theorem 3.6.

Remark. The assumption B, 5 0 cannot be dropped. It can be
verified (Z. Ciesielski and M. Kac) that for the unit disc and f = 1 formula
(4.8) does not hold for all points of the boundary.
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