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On symmetry of group algebras
of discrete nilpotent groups

by
A. HULANICKI (Wroclaw)

A Banach #-algebra & is symmetric if for every element & in &/
the spectrum of the element z*z is real, non-negative. The aim of this
paper is to prove that the I;-group algebra of a diserete nilpotent group
is symmetrie.

Tt seems that the method employed can be used to prove symmetry
of 1,(6) for a slightly wider class of groups such as e.g. finite extensions
of nilpotent groups in a similar way as in [2] we proved this for finite
extensions of FC groups, but we shall not do it here. It should be mentioned’
also that solvable groups need not have symmetric l,-group algebras,
as it was recently proved by Jenkins [4], [6]; cf. also [3].

The author wants to express his gratitude to Professor B.H. Neumann
for a very helpful information concerning the relation between free
nilpotent groups and free nilpotent rings.

Let @ be a discrete group. The I,-group algebra of ¢ with the usual
norm, multiplication and involution
lloel] = Z{,; les)l, wy(s) =Y eyl s), o () =a(s"),
8l

it
respectively, acts in a natural way on L,(&). To each zel,(G) we assoeiate
the operator

Lz L,(@)>y —zyely (@)

The correspondence
z— L,

is a *-representation of I, into the algebra of bounded operators in l,(G),
The natural question, which are the functions » on G for which the con-
volution oy is defined for every y in 1,(G) and the operator I, is bounded,
was raised long ago. It is easy to verify that must_ be in 1,(G) but not
all functions in I, have this property. If @<l (G), then

Lippary = I+ I L
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and, consequemtly, Li}.,, exists. Since L}, commutes with all R,
yel (@), where
Ry, 1,(@)22 > zyely(@),
we have
LE;Jlrx*w) = I,
for a function w (in 7,(G), of course). Thus

e(e+0"0) = (e+a"w)s = ¢
and we write ‘
2z = (e+a*z) .

It follows immediately from the definition that a Banach *-algebra .

is symmetric if and only if for every element » of it (e4-2*x)~" exists
(in the algebra). This for the I-group algebra gives a version of the
Wiener theorem:

If 1,(@Q) is symmetric, then for every w in 1,(G) the function (e4a*x)™*
is in ().

Let
(@) = | Ly
Then, since ||L] < [#|l, we have
1) Mm) = A(a") < Eﬁlléﬂ”ﬂ”” = ()

for all = 2" in 1,(G). Suppose the equality
(2) A(®) =v(x) for all & = &* in I,(@)

holds. Then, for every z in I,(6), the completion o* of the algebra o/
generated by e and @* in the norm 1 is equal to the completion «” of &
in the norm . Therefore (2) implies that (e-+a*z) ' car”, which, by the
Gelfand theorem, results in (e-2*z)" el < I,(@) and, consequently
1,(@) is symmetric. ’
. Qur first goal is to find a sufficient condition on the group G which
mgphes (2) and, consequently, the symmetry of 1,(@). Then we show that
nilpotent groups satisty this condition.

1. The condition. Let @ be a discrete group. For a function # on @
let suppz = {s: x(s) # 0}. Let 4, ..., 4, be a family of finite subsets
of G. B.y 4,... 4, we denote the set of all the produets @y ... &y, Where
a;ed;, i=1,...,n We shall also uge the abbreviated notation A" for
4 ... A. For a finite subset 4 of @ we denote by |A| the number of the
elements in A. Clearly

[y 4] < 4] ... |4,
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By a probability distribution on G we mean a function p on G such |
that )
p(s)=0 for all s in & and > p(s) = 1.
se(¥
We write
G = {{g1) G2y )7 G:eG}.

Tor a finite set 4 in G and a sequence t = (i, &, ...} in G we write
fa(4, 8 =t A 1A

OoNDITION (C). Let P be a finite family of probability distributions

on G and let P be the family of the (Borel) measures on G each of which

is the direct produci measure of @ S6QUENCE Py, Pay .-, PjeP. A group

is said to satisfy condition (C) if for every finite family P, a finite set A
in G and number ¢ > 1, there is an n, such thai

Jfa(4, Dap(t) <o

for all m >n, and peP.
Remark. Condition (C) as formulated above is a refinement of
a condition considered in [2] and, again, it imposes a restriction on the
increase of
fold, t) = [43,.. AL,|

as n tends to infinity. A stronger condition

supf, (4,8 = o(¢®) asm —>ocofor ¢>1
.t

was proved to be satisfied by FC-groups but is not satisfied by nilpotent
groups (even of class 2 and two generators). We shall prove that “the
average” condition (C) is_satisfied by nilpotent groups and, on the other
hand, it implies, via (2), the symmetry of I,(&).

THEOREM 1. If o group G satisfies condition (C), then for every her-
mitian element z in 1,(G) we have

AMz) = »(2).

Consequently, I,(G) is symmetric.

Tirst we prove the following

LeMma. Suppose G satisfies (C). Then for every probability distribution p
on &, any ¢ > 1 and a finite subset A of G there exists an ny such that if n > n,
and Uy ..., U, GAA Vi, ..., T, are non-negative integers with u,+...+ Uy
=m and v;-+...-+0, = n—m, we have

(3) b A% b, A p (). p(8,) < o,

Studia Mathematica XXXV, 2 14
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 where the summation is all over the set of the sequences ty, ..., by, t;¢G and
b = bupy 41 -+ Ty J=1,..,r, uy =0, ..., w=u-+...u%.
Proof. Since the left-hand side of (3) increases when 4 is replaced
by a superset of A, we may assume that the unit element ¢ of G is in A.
Then inserting 4 between the #'s in all the b;, we have

b At ATy A At A’ = b A", .0, A",
whence
2 b A" b, A% p (b). .0 (20) < [u(4,8), dp (),
where P = {p, d,} and p is the direct product measure of a sequence

whose terms are p and §, in a suitable order.
Proof of Theorem 1. Let # be a hermitian element in 7,(@). In
virtue of (1) it is sufficient to prove

(4) v(e) < A(2).
For a positive number ¢ we write
z=ao+Yy,

where suppz = 4 is finite and |ly[| < &. We then have

Ur g,

> ytah Ly

m=o

=(+ao) =

where the summation extends over all sequences %, ..., %, and vy, ..., o,
of non-negative integers such that w,+...4-u, =m and o,+...+o,
= n—m. Hence

(8) fle”

u,.mur” .

n
< J lyat...y
m=0

Now we fix uy,..., %, and v, ..., v, and we note that

Y = Ty (). () B(55). .. 0(8) 8,(a5 707 67 BT VS),

a,

yul b, .

where the summation i§ all over the set of the sequences

a = (tl,...

lm)y  GeG i =1,...,m,

B = (81 .., 8@, j=1,...,n—m,

‘gn-—m)i
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v, =0,v;=0+...F 0, =1,...,7,.

Uy =0, u = Uit tu, § =1,

@ = S, 141-+80;)

by =ty 310+l
For every j (j =1,...,7) we have

—1p—1 __ -1 -1 —1 ~1
a’j bj _svi“' vj_1+2(5vj_1+1b3- )7

YU < 2 Z ly (@)l

whence

lly et . JyEadls

B(80,)8(057" 8 1) - 2(8y,) .-

& (.'S'n—m) ée (S;im' .. 81—18) ]

(6) |§m(b;lsl)m(sz)...
o7 8y, 1) (80 1a)- -

= Sy ()] 1y ()] laop, 27

a5, 277

where @y, (8) = w(b;ls),j =1,..

., #. But, sinece supps = 4, . we have
SUpp®, = bjA and hence o

.b, A A"
A% = M(t;, ...

Supp (2, 4" .2y @) < by AATTE

= bl-Avl' b, y T+

Therefore, by Schwarz iﬁequality,

-y, 2 < My, ..., tm)l”zllmblw”F‘
| M (tyy ...y tm)[”zl(mbl)l(m)”l“..
t) [P A(2)" ™,

(@), May) < A(@)A(y) and Aw,) = A(z) for all

i

llzy, %™
v A () Ay

A

= Mty ...,

because, clearly, [zl <<
z,y in L(G).

Now let p(t) =
and, by (6),

lyaat. ..yt et < (@) SN M, .,

]y_(t)]]lyn‘l. "l‘hen p is a probability distribution on G

tm)lp (tl) P (tm)'

Let ¢ >1 and let n, be selected by the lemma for ¢, 4 and p. Then
for all # > n, and arbitrary «,..., %, and v;,..., v, we have

lly“1a®s. .yt r gt < ¢ e A(z) ™

Consequently, by (8), for n >n, we have

<o 3 (M) = et 2ty
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and so
»(2) < o(e+A(2)),
which, by virtue of the arbitrary choice of ¢ greater than 1, since [1(z)—
—Ai(e)] < A(z—2) < Jlo—2] = |yl < e, implies
v(2) < M)+ 2¢,
which completes the proof.

2. Nilpotent groups. Let Z be a nilpotent ring of class <7, i.e. an
associative ring for which

(7 Yoorr¥p =0
for every sequence y,, ..., v, of elements of #Z. The operation
aof =atp+af

in # i3 & group operation and the group & = (%, o) is a nilpotent group
of class <r. It is clear that G can be identified with the set of elements
I+y,ye#, where I plays the role of the unit element and

T+ I+y) =I+y+y+oy'.

If # is a free nilpotent ring of nilpotency class » with the free gen-
erators

Y1is Vay eevy

then the elements I--y; generate freely a nilpotent group of class 7,

The aim of this section is to prove that it @ = (%, o), where £ is a nil-
potent ring, then G satisfies condition (C) and so, by Theorem 1, 1,(@)
is symmetric. If H is a homomorphic image of a group G and I, (G) is
Symmetric, then, trivially, I,(H) is symmetric. Consequently, for every
nilpotent group the I-group algebra is symmetric.

From now on we shall deal with a fixed ring # which iy nilpotent
of class <7. The group (£, o) is denoted by G. Tor a finite set A
in Z we write

nd = {o+...+a,: ged},
We have
(9 - [nd] < (n+1)H1,

aed}.

A" = {ay...q,:

since
nA = {klal-{—...-[—kmaw: Byt otk =mn, k= 0}.

THEOREM 2. If % is a nilpatent ring, then G — (2, o) satisfies condition
(C); consequently, 1,(G) is symmetric.

icm
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CorOLLARY. If G is a nilpotent group, them 1,(G) is symmetrie.

A decisive property of the measures in P which is used in the proof
that the group G has property (C) is the following:

For a finite subset 7 of ¢ and a positive number % we write

'M-n(k: T) = {(ili tgy ..

A family p of Borel measures on G* is said to have property () if

(x) Por every ¢ >0 and k >0 there exisis a finite subset T of G such
that

)G 1;eT for at least (1—%)n of j =1, ..., n}.

1—p(M,(k,T)) <& foralln=1,2,... and all p in P.

LeMMA 1. For a finite family of probability distributions P on @ let P
consists of the direct product measures of sequences P, P, ... with p;eP.
Then P has property (x).

Proo.. Let £ be a positive number such that 2£° < e and let 7 be
a finite subset of @ such that

p(T)>1—¢

If a € = (i, £, ...) does not belong to M, (k, T), then more than kn
of the first # terms of £ do not belong to T. Consequently, by the binomial
formula, ef. e.g. [1], for any p in P we have

for all p in P.

m=kn

1-p(M,(k, D)< ¥ (:;2) (max {p(T): pePYmen
< Ekn Z (ﬂv) < Eknzn: (2§k)n< &
m>kn \T

We now introduce some notation. Let s be a positive integer < r
and let § ={1,..., s}. Let further

4= {Aoz e Au}y

where
4y ={teS: a; <I< by} and b; < gy,

J=10,...,9u—1.

We let

d; = {te8: b, <t< ap,,}.
The segments 4; and 4; (j =0, ..., %) cover together §: Let
4" =, 4;.

Let ¥ = {1,...,%) and let a« and = be functions:

4 =1J;4; and

a: N—>%, 7:N >R,
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We identify o and 7 with elements (a(1),..., a(n), ..) and
(z(1), ..., T(n), 0, ...) of &, respectively. Let @ be the set ot strietly

increasing funetions
g: §—>N.

For o fixed 4 and a ¢ in @ we write

(ap, 7p)g = ( () H (@(5)-- (9“(] )M (e(3)
and for a subset ¥ of @ let
fd‘l’(ar 7) = %;(WF, T‘F)A-

Let, finally,
A, ={a: N -—>A}.~
Clearly,
|4, = 4.

, f. are functions, f;: 4, %, and g is & function
of k& variables from #X...XZ into £, then

[g(fl(An ?flc(An )I ]fl lfk |

For a fixed 4 we say that a subset ¥ of @ has properby (4) if
for every function yin ¥ all possible extensions of p|d’ to increasing
functions § — N belong to V.

LeMMA 2. For every ¢ <1 and a finite subset A of & and a positive
integer v ﬂm’e exits a n, such that

[1fug(4s, D) dp(r) < o

for all n >mn, and peP, where P is a family of Borel measures on Z™
which has property (x), 4 is an arbitrary sequence of segments in 8, s<r,
and ¥ is @ subset of @ which has property 4).

Proof. First we note that it suffices to prove the lemma for the 4
with |4y = = |4}, =1, since, clearly,

Moreover, if fi,...

{(ag, vp),: o 8> A%,

where 4, = {45,...,

Ha(rp(j))eA“‘l‘ c AS.

chl

) The proof is by indueton on |4'|. If {4'| = 0, then for each @e®P
the function (ap, rep) does not depend on = and so

(ag, 9) 4 Al = B.
i<s

aeAn} < {(wp! Tfp)Al

A} and 4} are 4; one-element sets. In fact
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Thus
(10) faw(a,V)eB+...+ B,

where the nuniber of the summands on the right-hand side of (10) is
less or equal to the number: of the increasing functions ¢: § — N, this
being < #". On the other hand, |B|< r|4|", whence, by (9),

|IB+...+B| < (1),
which shows that
.J‘]fA‘P(Any odp(z) < (w +1)T”|Al”

and this completes the proof for the case |4'| = 0.
Now suppose Lemma 2 is proved for all 4 with [4'] = m. Let 4
be such that
[do] = ... =

4, =1 and [4']=m+1.

For a ¢ >1 we select a positive number % such that

(11) (k—l+2)3k[A|v< ]/E‘.

(Such a k exists, since im (k!4 2)* = 1.) Let further
k—0

(12) 0<e< |4

Since P hag property (*), there exists a finite subset T of #Z such
that

1—p(M,(k, T)) < & for all m =1,2,... and peP.

Then, for every positive integer #, we have

II]CA;;(AM T)lvdp(") = f

Mk, T)

< I

My (K, T)

< Mnéﬂ [F49{ 4, D)°dp(2)+1,

RN, (%, T)

T4 (An, DI @p(z)+ [A]™ "

for all p in P.
Now for a fixed = in M, (k,T) let

Py = {pe¥: (&) 0 v (T) =0}
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fmd let {P;}, je A',_ be_a], position into disjonth subsem? of 3{1;\@2], such that ¢ For a fixed vy, every function in &, is uniquely defined by its values
in @; we have ¢(j)ev™"(T) and all the &; have property 4,. on 4 and, conversely, given a function g,: A - N with
Then, of course,

P(o—1) < ga(@) < p(H+1), 1=0,...,u,p{0)=0, p(s+1)=n+1,
Tapla,7) = E D (ap, T9)4
jed" A0} wety _ it defines the unique function ¢ in &,. Let
and so D . 1 '
= rpH—l) <t<p(i+1 =0,...,u.
(13) Fa o< [T | 2 70 {y) = {feN: p(i—1) p(i+1)}, yiens
A0y ged , We then have
But for a fixed j in 4’ for all « such that «(N) < A we have “ : .
i ap, T o (% Tlp(j
3 Gan, )<L 3 (B, 590 6B, 2 eema= & 3 [ [T )
ed;
where £ is the set of increasing functions of the set §; obtained =31 X a(] (y,(j))
from S by amalgamation of j—1, §, j--1 (or only j—1, j, or j, j-+1 ve?, I=1 jeDy(y)
at the end points) into N and agree the functions of &, on Now, let
S\{j—1, j, j-+1}, 4;is obtained from 4 by the above amalgamation and
B, = {/3: ﬂ,: v —>’B}i with B — ATA. N, = {ny,...,n}, Where n;<my<...<n,.
Hence Cleatly, ¢ < kn. Then, sinece (j)eN,, for each | = 0, ., 4 the set
| 3 (A, )4 < Z (B, T‘P A;I Dy(y) is the union of intervals
ped; .
But, [(4;)'f = m. Consequently, by the inductive hypothesis with (i misn) =I5y [y m0) =I5, (mg, my,] = I3,

ATA = B in place of 4, 29y in place of v, where j is the ordinal

- with the convention n, =0, #,,; = n+1, that is
number of j in the natural order of 4’ and Ve in place of ¢, we see that :

there exists an =, such that : Di(p)y = U , U I7.
o 7123 dear]
(14) U{T) {4., (B@, T9) y, )a, 2 odp (z) flf,a“ s )P T vdp (7) < P Hence !
My e, w
for all n>n,, all peP and all § in A", 2 (ag, 7@) = iy > > a(.?)) H (),
To evaluate ' ‘ : 7% veEe 120 LS sen] ger]
! éomnq” 79)| consequently, the function
we fix again a 7 in M, (k, T) and we put N, = N\ 7(7T). By the defi- frdp2 0= D (ap, 1p) e
nition of M, (k, T), we have |N,| < kn. We let - "%
- , can be factorized as follows:
(15) -Ao = {7‘0}7 eny A'La = {’”u}

an  a—(3 a@), 2 a(); Ea(J), 02 e(d), X a@), Xa(j)

Let ¥, be the set of increasing funections P ger2 w3 st pe] )
p: A" > N,. 5 ﬁ 5 ¥ I ( )
. - a(g) [1=(v()).
For a yin ¥, let @, be the set of all extensions of ¢ to an increasing $eF =0 1=L23 ol jer ! Jedy v
function from 8 into N which belongs to @, Then Since
(16) D (ap, mp)y = 2 D) (a%w) 2 a(j)elli 4.
. pedy <F, gedy, ’ jeI}


GUEST


218 A. Hulanicki

(17) and (9) imply
4

IZ(Aw,tp )al < g)ﬂ ”HI"lAI
q
<17 [T Gm+D/1 < IT [@+104,
i=0 7=1,2,3 q=0 . N

where d; = n;,,—%; and, consequently,
g
D d<n
i=0
But
q
max {H (d;+1): Z’ & <n,d; real > 0, g < )

is attained when ¢ = kn and dy=... =d, =n/[kn]<k'+1 if only

7 > (k-4-1)"" == n,(0). Thus
H (1) < (120,
whence
(18) D (Ane, 70) 4P < (BB <
‘WE@O

for all n > n,y(0). '
Now we return to inequality (13). We note that by an iterated
application of the Schwarz inequality we have

a9) e B PP (P AT

We apply (19) to (13) and we complete the proof of Lemma 2 by (14)
and (18). In fact, .

[ 1f4(4s, T)l“dp(r)él [ [f_,.(fl »o)dp (1) +1

nl#y

<1+ f ! Z (An(p,f(p A|vdp(r

My (k, T) M’u(n} Ped,
LIS a1 3 w) ) 270,
Weipo . jed” ?’G‘Dj

where j is the number of j in the natural order of A’ for all j but the last
one, and for the last one j = |4'|—1. By (18) and (14) we then have

J1fae (A P ap () < 14T @7 < 1

for all n > n, = max{ny(0), ny(j): jed'}, which in virtue of the fact
that ¢ >1 was chosen arbfrramly, completes the proof of Lemma 2.

icm

On symmetry of group algebras » 219

Proof of Theorem 2 (conelusion). Let A be a finite set in %
and let
Oyyeoey Oy Tryeeey Ty
be two sequences of elements of #. Then

010710...00,0 Ty = )]

> 2 (ap, To)y

AeD e

where D = J D, and D, is the set of all the sequences of segments

&<

- in {1, ..., 8} = § as defined just after the proof of Lemma 1, @ the seb

of the inereasing functions from 8 to ¥ = {1, ..., n} and @, v the functions
a: jay T § .
Thus

[ryodo...oz,0 Al IZfA(Am T)l<n [f4(An; 7,
de - A<D
where fy = f4,.
Hence, by iterated application of Schwarz meqm.hty, for any p <P,
we have

flriodo...or0 Aldp(r) < fAl;I) 1f4(A,, ©)|dp (z)

<I ([1f3(As, DPdp (),

where v = 2% with %k = k(d4) is the number of 4 in an ordering of D.
By Lemma 2, for each ¢ >1 and 4 there is an n, such that

J154(Ay, 1) dp(z) < &
for all n >, and peP. Thus, since the number of the elements in D is
fixed (D depends only on 7), Theorem 2 follows.
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