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Analytic functions in Banach spaces
by
JACEK BOCHNAK (Krakéw)

There are not many papers devoted to the theory of analytic
mappings in Banach spaces, especially in real Banach spaces; recently,
however, a number of papers concerning that branch have been published
(Cartan, Douady, Lelong, Ramis and others). N. Bourbaki in his forth-
coming books [5] (“Fascicule de résultats” is already available) will give
the systematic theory of such mappings.

This paper gives some results on analytic mappings, with values
in a Banach space, defined on open subsets of Banach gpaces (real or
complex). In particular, we prove a natural criterion of the analyticity
of mappings (Theorem 6). Some versions of that criterion were given by
Alexiewicz and Orlicz [1] and Siciak [17]; the author of the present paper
has been inspired by some ideas of [1], and [9].

The plan of the article is as follows. We start in Section. I by proving
some results on formal series in Banach spaces. In Section IT we consider
Gateaux-differentiable mappings. In Section III we state and prove
some criteria of the holomerphicity (Theorem 4, complex case) and ana-
lyticity (Theorem 6, real case) of the mappings. Finally, in Section IV,
we give the applications of the preceding results, namely: a proof of the
Weierstrass preparation theorem for analytic functions in Banach spaces
(another proof of that theorem was given by Ramis [14]), the generaliza-
tion of a theorem of Malgrange, and some other theorems.

Theorem 4 is stated in [5] without proof (see also [9], [21]). The
proof of case I of Theorem C has been communicated to me by
Professor S. Lojasiewicz.

I would like to express my gratitude to Professor S. Xojasiewicz
for his guidance and valuable remarks. I also want to thank Professor

"~ J. Biciak for helpful conversations.

I. FORMAL SERIES IN BANACH SPACES

Let B and F bereal or complex Banach spaces. Denote by How* (B, F)
(resp. L*(E, F)) the space of k-linear, symmetric (resp. k-linear, symmetric

Studia Mathematica XXXV.3 18
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and continuous) mappings from E* to F. (Thus Hom'(#, F) is the set
of constant mappings from ¥ to F.) Let my: Hoh — (h,..., h)eE* and

Q" (B, F) = {f: f = fom, for some jcHom"(¥, I},
PH(E, F) = {f: f = fom, for some feI*(H,F)}.
A mapping feQ“(E, F) (vesp. f<P*(E,T)) is called a homogeneous
(vesp. continuous homogeneous) polynomial of degree k. More generally,
& finite sum of homogeneous polynomials is called a polynomial. The

composition of two polynomials is a polynomial.
The linear mapping given by the formula

Hom” (B, F)>f - fom,<Q"(H, F)

is an isomorphism and it sends L*(E, F) onto P*(E, F). Its inverse can
be expressed by ([13], [19])

1
@B, Fpf >35 Y (=1t P fo o, Hom*(, F),
° g=0,1
il
k
where o2 B> (hy, ..., Iy) > 3 e;h;e B
i=1

Thus to every homogeneous polynomial f of degree & we have a
uniquely determined k-linear symmetric mapping, which will be
denoted by f (f = fom,).

The elements of the cartesian product @ =[] @*(®,F) (resp.
E=0
P =[] P*(E, F)) are called formal series (vesp. continuous formal series)
k=0

and denoted by Y f;.
k=0
We are now going to distinguish some subsets 2" and # of the space
of formal series. Put
A = { D fncQ: 3 fu(@) is convergent for every point z of a
n=0 n=0
neighbourhood of zero in B}.

We say that a subset A = F is a A-neighbourhood of zero in B if, for
every 1-dimensional subspace u = B, the intersection 4 N 1 is a neigh-
bourhood of zero on that . 'l‘hen we put

= {Z; Fne@: Z Ju(®) is convergent for every point # of a
n= =0

A-neighbourhood of zero in B).

icm
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The elements of the set (resp. ) are called convergent formal
series (Tesp. quasi- con’veryem formal series). ,

We say that 2 fn 18 mormally conwergent if, for a ne1ghbou1‘hood U

of zero in H,

2 sup Ia(@)l] < oo.

n=0
These three notions are equivalent for continuous formal series.
Namely, we will prove the following

THEOREM 1. Any quasi-convergent continuous formal series 2 In 8
a8

normally convergent.
Before proving Theorem 1 we give some lemmas.
Let E be a real Banach space, ¥ = E®zC. For y<E put ([8], [15])

”y”'\ = ].Uf{z[ | ”mzl Yy = 2%1,®2'“ mst %€ C}(I)

Levma 1. The space (B, | |*) is a complex Banach space, and the
mapping
Bsg —>a®l B
is an R-linear isometry.
Proof. For any points yl,yzeﬁj the trivial inclusion

{3 laal Nadl 4 3 lwsl 1B5l): 41 = X @:®2;, 40 = 3 b@w;}
< {Z |2l llexll: #1+92 = 2 0 ®2:}

implies the triangle inequality |ly,+¥." < [y./|" + lly=ll". We verify the
equality |e] ly]|" = lley|* observing that for ¢ # 0 we have

{2 lladl: ey = 3 a@z} = lo]{ 3 lwil Ib)]): 9 = X b;@w;}.
The mapping

(*) B> (2, 0) > 3,01+ 0,@icH

is' an isomorphism of (real) vector spaces. Note that if 2,01+ z,®14
= ) y,®%, then @ = > y;Rez, z, = 3 yIme; so max{lall, lla}
< X o] llysl or max{imill, 2]} < [z 142,04 By this and the obvious
inequality max {|z®1||", [z ®il|*} < |z|| we obtain |z @ 11" = @4 = |a}.
This implies that |jz,®1+ wz®1,|[" < |lvy]|+ lwsl|, and that (*) is a topolo-~
gical isomorphism; thus (E 11" is a complete normed space.

(%) Another formula for a norm is given in [19].
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Remark. In what follows we do not distinguish between ¥ and E®1.
We shall write 2@z = 2z for @B, 2« C. Then H is the direct sum E-+iE
(over R).

Levma 2. Let B be a real and F a complex Banach space. For every
n-linear mapping p <Hom™(E, F) there exists evactly one n-linear extension

¢ <Hom™ (B, F). If ¢ is continuous, then |p|| = [¢].

Proof. It is obvious that the following map, given by the formula

P (mgo)+'iwgl): sy w;f)“f“'iwg)) = 2 gt e +8"¢(m£el)7 seey ,’L'gfn)) ’
&=0,1

is the symmetric extension of ¢, n-linear over R. The simple observation
that ¢(u, iz) = ip(u, @), B, weE, implies that ¢ is n-linear over C.

The extension ¢ is unique because F is generated by E.

Now suppose that ¢ is continuous, i.e. .

gl = sup llp(@,, ..., w,)] < oo.

{laegll=1
% .
Ity =12’1 zg’ af), then
=
]l‘];(yu ¥ < 2 [2%1)1 eee |z§")| llp (991(1)’ crey %(”))H

=T B 1 n 1 n
P

< 3 DL bl o2 o)
) yemes iy

Iey,

ky
<lpll( 3 101 1f21) ... ( 3 140 1],
=1

ip=1

which implies that; [ (y,, - .., 4.)ll < llgll 321" lall* or [B] < lig]l. By the
trivial inequality |l > |lpl| we have [l¢]] = [§].

COoROLLARY. For every homogeneous polynomial feQ"(E, F) there

exists esactly one “complew” polynomial f <Q(E, F) such that f = § (see
also [18]).

For any continuous homogeneous polynomial fePY(B,F) we set
Ifll = sup||f(a))).
lali=1

Lemma 3. If Vis a findte-dimensional real vector space, with a euclidean
norm, F a real Banach space, and f<P*(V, F), then ||f| — {Fil8

Proof. We start with the case(?) F' = R. It suffices to consider the
case [lf| = 1.

(%) which is proved in [21; the present version is due to 8. Lojasiewicz.

iom®

Analytic functions in Banach spaces

277
Let % =2. Suppose that [F(z,y)] =1 for (, ;y)eS‘l (8 = {zeV:
lwll =1}) and o+y 5= 0. Then
[ ( By _
i uwn+m)r =t
(indeed, from the equality j(z,y) = Hf(e+y)—flo— y)) and the ine-

quality |f(zF )| < llzF y* we get :
1 = f(@, 9| < Hf @+ ) +}f(e—y) < }o+ ylIP+Hille—yi2 =1,

Le. |f@+9)| = llm+yl).

For keN given arbifrarily, suppose that By B) =1 (3e8).
It is clear that for an aeS the inner product {a, ;> #0 (i = 1,...,k).
Then, for an ¢> 0, the set

A =@y @) 8% Cay 1> > 65 1y, .. @) = 1)

is compact and 4 is not empty. Assume that the maximum of the function
k
As(my, ceey Xg) = 2 {a,z;>eR
i=1

is attained at the point (z7,...,a5). It is sufficient to prove that
e =... = g}, where & = +1. If this is not true, ie. @y # zy and
@, # —wy for a pair of indices p, g, then at the point (a, ..., 4;)ed,
where 2; =2} (i #7p, q),

a7

ly+a3)

. r_
Ty =Ty =

we have
& , 13 «
2 ey 3> > 3 a2}
=1 d=1

(because ][m;-}-mZH < 2), which is a contradiction.

The general case easily follows from the above. Let & F >R be
& continuous linear functional such that [|£]] = 1 and ||&of| = 1. In view
of the previous case, there exists an element x*<V such that ¥l =1
and &of (#% ..., 2% =1. This equality implies that [f(z ..., )|
= f@"l =1, ie. |If] = 1.

Remark. Lemma 3 in general is not true if the norm on V is not
euclidean.

The following lemma is a version of the important Polynomial
Lemma ([11], [16]):

Lmvwa 4. Let B be a comples Banach space, A = A% ...x A, = C,
where A; are compact, connected subsels of C, not reduced to a single point
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and © > 1. Then there exist 6 > 0 and n* <N, so that for any s > n* and
any (not necessarily homogeneous) polynomial f: C" — B of degree <s
the following implication holds:

(If@l< M for med) = (If(@)| < Mo® for o(z, 4) < 9.

Proof (by induction)(®). Let n =1 and o > 1. Denote by d the
diameter of the set A = A;. Let aeAd and seN. Then there exist s+1
pOIntS 2, ...,2, of A such that |a—z| = dk*/s* (5 =0,...,s). Let

§
wy(2) = Ho (2—#).
) ik
For 6> 0 fixed, assume that [z—a| < 4; then

ak? k2 [
le—2l < 5—!——87 = cl(a*—l— —gz—), where a2 ==
thus
$ e s 2
[we(2)] < dsn (a2+'—2\)< @ (a2+—2),
=0 - 8 j=1 8
gk
dlk*—j? AR T
el > = o el > Al [ [ 0O
i*k
whence
w;,(2) O o Ll b
< 21, (a)® where I (a) =[ _— .
wy (%) < 2Ll ° 7];[ g2 /s
Since
}1:1(1+a2/t2)dt 1 a?
HmT,(a) =é° and 11mf1n(1+—)dt =0,
8500 a0 g 12

() We repeat here the argument of Leja (case m» = 1) and Siciak (induction
step) transferred to the case of Banach spaces.
8

8
*) Since IT |j2—%? > % IT §2 (indeed,
§=0 j=1

%
1}}1
(kﬂ_.jz) k ) 8 p9 2 s—k . 8 . I .
B[ we IR () B L
I j=oJ+1 ST jer Ik \; 0 jm1 Jt+k
=1

the produet of the right-hand sides being > }).
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we may choose 6 > 0 and 7eN such that La)<Voifs># (a? = §/d).
The Lagrange interpolation formula (for the Banach space-valued poly-
nomials) implies that for any polynomial f: ¢ — E of degree < s:

1@ = [[ (a0 22
k=0

Wy (2)

If |f(2)| < M on the set A, then
If@I<2(s+1) M-I(a)* i |2—a| <5,

which, together with the fact that 2(s+1) < Vo' for s> %, implies

If@l < Mo® for |p—al < § and s> max{k, #}; the choice of &, %, 7
is independent of a.

Now assume that the lemma is true for the polynomials of n—1
variables. Let @ > 1 andlet 6 > 0, n*eN be chosen to I/—r;, 2§ in the lemma,
simultaneously in the case of one and #—1 variables. Let s >n* and
suppose that f: C* —F is a polynomial of the degree <'s, so that
If@, 2| < M if 2'ed’ = 4,x...x4,_,, #eA,. Then (according to one
variable case) |f(, 2)ll < MV’ if Yed’, 0(z, A,) < 8; thus, according
to the inductive assumption,

I, 2l < Mo® it o(#, A) <8, oz, 4,)< 5.

COROLLARY. If {f,}nen 45 @ sequence of polynomials having a common
bound on the set A (as in Lemma 4) and degf, = n, then for every o > 1
there ewist a constant M and a neighbourkood U of the set A such that ||f,(2)]]
< Mo™ if 2eT. , .

‘Levya 5. If B and F are complex Banach spaces, f: H — F is a homo-
geneous polynomial and ||f(2)| < M for [za—z|| < 7, then ||f(2)|l < M for
llell <.

Proof. Let |[h] < r, heB. The principle of maximum applied to the
holomorphic map ¢: C>y — f(n2,+4)eF implies that there exists a com-
plex number 7, by =1, such that flp(n)li < lp(n)ll for |y| <1. Hence

IF N = lip (O < lip (molll = I (020 + W)l = 11f (2715 W) < ML

LeMmA 6. The closure of any A-neighbourhood A of zero in the Bamach
space B has interior points.

Proof. Let K, be a ball with centre at zero and radius §, contained
in the space R or C (according to whether ¥ isreal or complex), 8§ = {weE:
llwll =1}, 4, = {ze8: K;,-@ = A}. The sets 4, are closed and cover
the sphere S. Hence Baire’s theorem shows that, for some n*eN, 4,. has
an interior point (in §). Clearly, the interior of the set KA, c 4
is not empty.
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Remark. The interior of a A-neighbourhood of zero may be void.
Zero is not necessarily the interior point of A4.

Proof of Theorem 1. For any « in the unit sphere S, there exigts
@ 9, >0 such that |f, ()| < 1/2" for all # belonging to the ball K, ,
centred at zero with radius J,. By the confinuity of the polynomials
fuy the inequality |f,(w)]| <1/2%. true for wed = Lé K, », holds also

on the set A, which contains a ball with radius » > 0 (Lemma 6).

Case I, of B and F being complex Banach spaces, is simple. Since
£ @)l < 1/2™ in a ball with radius 7, by Lemma 5 the same estimationg
hold in the ball centred at zero with the same radius ». But this means

00
that Y f, is normally convergent.
n=0

Case II, of E and F Deing real Banach spaces and dimF < oo,
follows from Lemma 4. Indeed, without loss of generality we may assume
B = RP. The set A coritains some p-dimensional cube I; Lemma 4 implies.
that for complex extensions f, of the polynomials fn the estimations
[Ifa{w)| < M -2" hold true, provided that « belongs to a sufficiently small
neighbourhood of the set L in the space €. In particular, | fn(u)ﬂ < M2
in & ball with radius r contained in CP; thus ||f,(u)| < M-2™ for lu| < r

n=0

(Lemma 5). This fact implies that Y f,, and then obviously 3 f, are
n=0

normally - convergent.
‘We shall deduce case III (B, F' real Banach spaces) from cases I, IT
and the following Lemma 7.

L
We say that a formal series D f.<Q (B, F)is strongly quasi-convergent
n=0

= Y . . el
i for every finite-dimensional vector subspace V = F the series D fuve
n=0

€Q(V, F) i8 convergent (f,; = f,| V).

LevwmA 7. If the formal series Zo'o Fac@(B, F) of (“real”) polynomials
ismstrongly quasi-convergent, then nt?;; series of their complemifications
n;ﬂ FacQ(B, F) is also strongly quasi-convergent (in ).

Proof. It is sufficient to assume that dim B < oo and show that

o0 - o0
the convergence of 3 f, implies the convergence of 3 f.. (Indeed, every
n=0 n =0
finite-dimensional vector subspace of F is contained in OV
by identification) for some finite-dimensional subspace V of E.)
Next., We may assume that the norm on % is enclidean. Tiet Focl™(B, F)
be an n-linear, symmetric mapping corresponding to fneP™(B, F); denote

(=Ve®C

icm°®
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by fnePn(E,.F) and ?neL"(E,f') the complexification of f, and 7,,
respectively. In virtue of case II,

gsup{ﬂfn(m)”; el < 7}

is convergent for an 7 > 0; this means that Y #*[|f,]| < co. According
n=0

to Lemmas 3 and 2 and the trivial inequality ]]?n]l = Ifull = Ifl we have
Iall = Wall = IFall = Wl > 117,15

thus the equality [|f,]l = |If,] must hold. But this implies that 21’“]]]2}{

=0

< oo, ie. 3§, is convergent.
n=0
Case III (¥ and ¥ are real Banach spaces). According to case IT
o0
the series ' f, is convergent, for every finite-dimensional vector subspace

n=0

oo
V < E; thus ) f, is strongly quasi-convergent. In virtue of Lemma 7,
n=0

o0
>'fn is also strongly quasi-convergent, whence, in particular, quasi-
n=0

convergent. According to case I, this implies that the series 3 F., and
n=0

el
" then the series }' f, are normally convergent. The proof of Theorem 1

n=0

is complete.
COROLLARY. A NP = # NP.

II. GATEAUX-DIFFERENTIABLE MAPPINGS

In this section we will consider mappings defined on an open subset
U of a Banach space F with values in a Banach space F.

A mapping f: U — F is said to have a Gateaux derivative of order
koat xeU if:

(a) For every ‘heE the mapping

Tnt Kpot — f(w+th)eF

(defined in some neighbourhood K, of zero in R or C) is %k times differen-
tiable at zero.
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(b) The mapping
dk
okf: Esoh -—>—dt—kfh(0)eF

is a homogeneous polynomial of degree s(s =1,..., k).

We say that f: U —F is of class G* if it has a Gateaux-derivative
of order % at each point of U. The homogeneous polynomial dF f.is called
the k-th Gateaux derivative of f at .

Let K be a neighbourhood of zero in R or C.

LevvA 8. Assume that ¢: K —~F is n times differentiable at zero.
Then the n-th derivative @ at zero can be expressed by the formule

dn k3
o O =tim e 3171} plon.

The proof of this lemma will be omitted(®) (see [5a], Ch. I, §3,
ex. 6 a).

THEOREM 2. Let f: U — F be a continuous mapping of class G in U.
Then the n-th Gateauw derivative O%f is — for éach zeU — a continuous
homogeneous polynomial (i.e. S%f<P™(E, F)).

Proof. Let U and

0 Bf == 3 (—1) - ragfos,

T gp=0,1 .

be a uniquely determined n-linear, symmetric mapping such that
S (hy ..., hl = 0;f(h). It suffices to show that 5'f is continuous.
Fix (A7,..., k) eE” and a sequence {t},.y of the real numbers

(te # 0) converging to zero; put Q = {0,1}". Choose a neighbourhood
V. of the element

n
Ua(h;‘,-";h:) =21'31’,h:; 8 ={(t,...,8)eR,

=

such that o+t V, = U for s = 1, ..., n and ¥ sufficiently large.

. t+hy—e(t
() Hint. Put Iyp: t — M, and note that
n 1§
Tip(0) = — 3'(

X3
&

— 1" g (sty.

-3

Th’e proof of Lemma 8’is a simple consequence of the following observations:
(a) Inlp") = (Tne). (b) If @ is & times differentiable in K, then ||qo(’°)(t)——a\| <7 in

K= (ko) —all<r it ¢ 2 ~ o)
e ;ng() all<r it &, 13+ kheK. () If ¢’ (0) exists, then Iyp(t) — g’ (0) i 0 < [f

Amalytic functions in Banach spaces 283

The set W = () o;*(V,) is a neighbourhood of (A},..., h})eE™
ee2
Let

Pt U Vsah —>“];T j(—l)n_s(z)f(w+ Stkh) eF.

£eQ tk s=0

In virtue of Lemma 8,

a
(%) Oxf(h) = o f(@+1h)(0) = limyp, (k).
Setting

1
p—— 1(_1)n—(51+...+en)¢ko(o.=l W),

!
K2

we note (formulae (*) and (*#)) that

5’;f<hl,...,hn)=;im%(h1,.-.,hn>, (Byy ooy hy)e W.
—>00

This implies that 6%f] W, as a pointwise limit of the sequence of
continuous mappings, has a point of continuity. Our theorem follows,
because an n-linear mapping in a Banach space having a point of
continuity is continuous(‘).

We say that a mapping f: U —F satisfies the condition () if
for each affine subspace V c B, dimV < k+1, the mapping fITU NV
is of class C*. ‘ '

LEMMA 9. Any mapping f: U — F which satisfies the condition r*(U)
is of class G in U.

Proof. For each heE there exist

d
3 () = F (@ h)co,

and the restriction of 8,f to every 2-dimensional vector subspace contained

" in F is linear; hence 6,f is linear.

THROREM 3. The mapping f: U —F satisfying condition r*(U) is
of class G% in T.

(5) Any multilinear mapping which is bounded in a neighbourhood of a point
is continuous. Indeed, the statement is trivial if » = 1. Suppose that it is true for
n—1 and let @: E® — F be an n-linear mapping, bounded in a neighbourhood uf
(¥, y™*) < BP—1 x B. It is easy to see that by the inductive hypothesis we have [lp(z, y)i|
< My, for |lw] < 1 and y fixed (weB ), yeB; My is independent of x). Thf? Banach-
Steinhaus theorem [7] implies that, for some M= 0,{lp(,y)| < M provided that
ol < 1 and [yl < 1.
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Proof. Set
dr
() = =ml@tth) s (D<)
It suffices to show that 6Zf are homogeneous polynomials, ie. to

find 82feHom?(E, F) such that 6%f(h, ..., h) = 65f(h) (p< k).
Leb

_ 9P LA
Bf sy -y ) = flo D tibiflyectyme (P <H).
0t; ... 01, “ »
It is clear that 82f are symmetric. It suffices to prove that 82f are
multilinear. If p =1, this is true by Lemma 9. Let 1 <p <% and fix
hyy ey byy; the hypothesis implies that the mapping

0: Usw — 8 (g, ..y hyy) eF

satisfies the condition »'(T), and so, by Lemma 9, it is of class G* in U.
Hence

d
u0lly) = 2 b Flhy ooy p)|
“p T

a ot o
N t,h b
dt. (t%l...at f(w+ v ”+i=21 ‘ l) ’l1=--~=p—1=(‘)

D p—1
liis <
= oty . E)i;f(aH' gtﬂh")

which shows that 62f is linear in hy,, and hence (by symmetry) p-linear.

lp=0

= —gf(hla teey hp):

lty=is =ty=0

III. ANALYTIC FUNCTIONS IN BANACH SPACES

Recall the definition of an analytic mapping f: U — F from an
open subset U of a Banach space B to a Banach space . Suppose that
Jis of class O (we refer the reader to Dieudonné [7]). Recall shortly
that under the assumption of the existence of the (k—1)-th (Fréchet)
derivative D*~'f(x) in a neighbourhood of the point z, and the existence
of the derivative of the map 4 — D*"'f(2) at x,, D*f(w,) is a k-linear,
continuous mapping (and symmetric, as can be proved), identified with
this derivative by the following canonical isomorphism of Banach spaces:

L(B, MB, B)2g = {F*>(hy, ooy b) = @) (b, ..., by) B} MF (B, F);

M (B, F) is the Banach space of all k-linear continfious mappings. Thus
the (Fréchet) derivatives D*f(x,) of f at 2y¢ U are the elements of L* (%, F)
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DEf (@) (hy ..., h) is written shortly as D*f(w,)(h). It is obvious that the
existence of the k-th Fréchet derivative D*f(x) implies the existence
of the k-th Gateaux derivative &3f, and we have the equality D*f(z)(h)
= SEf(R).

If, for every w,<U,

Hat 1) = 3= Difla) (h)
k=0 ™"

for Al < &g, (85, > 0), then fis called an analytic mapping. An analytic
mapping in the complex Banach spaces is called holomorphic.
Levwma 10. Let B and F be complex Banach spaces. If the mapping

g9: D3z - g*<L(E, F),
defined on an open subset D = C, has the property that for each heH
D2z —» g*(h)eF

48 holomorphic, then g is holomorphic.

Proof. Fix gyeD. There exists an » > 0 (independent of heFE) such
that for each heFl

Fh) = D a, ) e—z)* i ozl <r.
n=0
Obviously, the mappings a,: B — F are linear. We shall prove
that they are continuous. By the Cauchy integral formula we have

1 g°(h)
h)=— T
an( 1‘) Py omiyier (z_zo)'nfl

dz;

thus a,, , as the pointwise limit of the sequence of linear econtinuous mappings
(Riemann sums), is continuous. (Banach-Steinhaus theorem). The con-
tinuity of a,, the estimations
I a, (Wl < sup [lg*(B,
{g—zgl=1
and the Banach-Steinhaus theorem imply that for a constant M and
all neN,

" @, (h)]| < 2R,

o0
ie. ||, < M /™. Hence the series ) a,(2—z,)" is convergent in the dise
n=0

le—2o| <7 and its sum is equal to g. The mapping g is therefore holo-
morphic.
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TEEOREM 4. Let f: U —F be a locally bounded mapping from an
open subset U of a complex Bamach space B to a complex Banach space F.
If, for every 1-dimensional affine subspace A = E, the restriction f|U N1
is holomorphic, then f is holomorphic.

Proof. It is a simple consequence of the Harfogs theorem that f
satisfies the condition 7*(U) for each keN. Theorem 3 implies that f is
of class G*. It is easy to see that, at each point zeU, f can be expanded
in the convergent formal series

. o
(*) flokhy = X5r oL, bl <
where ¢, > 0. It remains to show that f is of class 0% (then, necessarily,
D¥f(x)(h) = 6%f(h) and the theorem follows).

Note that the integral Cauchy theorem implies the equality

Of(h) = — | floa+zh)e™ de it o+{ecC: o] <1}hc U.

T ity

Fix #,¢U and choose an r,> 0 such that ||f(2)|<< M for {|z— |
< 2r} c U. In view of the above integral formula, ||6%f(h)|| < ME! if
le— ol <7, and |h|| < 7,. These inequalities together with the homo-
geneous property of o%f give the following estimations:

(#4) loaf ()l < MELr*Ihfl 3 Jlo— @] < 7.

Combining this estimate with (+), we obtain for [o—a| < 7, (and
IR < 7o) ‘

e Mt
If (@—+h)—f2)]| < T ST
and .
My h))

B+ 1) —fl@)— 8, F(R)| < —2r .
(@B —f(a)— 8 f W] < T,
The first inequality gives the continuity of f and — as a consequence
— the continuity of Gateaux derivatives 32f (Theorem 2). The second
one proves that d.f is the Fréchet derivative Df(x) of f at .
If we can prove that the mapping

Df: Usw - Df(w)<L(B, F)

is locally bounded and, for each affine line 1 < E, DfIU n 4 is holo-
morphie, the proof of the theorem will be complete. Indeed, this implies
by induction that all the D*f exist and satisfy the assumptions of the
theorem, whence (by the first part of the proof) they are continuous.

©
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Now, the local boundedness of Df follows from (#+). Next, for every
helB apd the affine line 1 — F fixed, the mapping
U A 4>z — Df () (h) < F
is obviously holomorphic, whence, by Lemma 10, Df|U o 1isholomorphie.
This proves the theorem.
COROLLARY 1. If a sequence of holomorphic mappings {f,: U — Fen
is locally uniformly convergent to f, then f is holomorphic.

Proof. The mapping f is obviously continuous. Applying Theorem 4
and the classical Weierstrass theorem about uniform convergence of the
sequence of holomorphic maps (with values in a Banach space) of one
complex variable [7], the theorem follows.

COROLLARY 2. A mapping f: U — F is holomorphic if and only if at
any %< U it can be expanded in a convergent continuous formal series

f@+n) = D' fu®).

Then D"f(x) = n!f,.

In particular, every continuous polynomial is a holomorphic mapping.
Corollary 1 and Theorem 1 imply (see also [17])

TuEOREM 5. Bvery andlytic mapping f: U — F from an open subset

U of a real Banach space B, to a complex Banach space F may be extended

to a holomorphic mapping f , defined on some open subset U < B containing U.
Then (at the points xeU) the development of f in the formal series is a com-

N T
plexification of the development of f: D% () = D"f(x).

CorOLLARY 2'. Corollary 2 holds with “holomorphic” replaced by “anal-
ytic”.

We say that f: U — F satisfies the condition r*(U) (resp. o(U))
if and only if for each finite-dimensional affine subspace V < E (resp.
for each 1-dimensional affine subspace A = E) the mapping f|U NV - F
is of class C® (resp. flU n i — F is analytic).

Let U be an open subset of a real Banach space, and ¥ a real Banach
space.

THEOREM 6. A continuous mapping f: U — F satisfying the conditions
r°(U) and w(U) is analytic.

Proof. From Theorems 3 and 2 it follows that f is of class G~ and
& feP*(B, Ty (k =1,2,...). The hypothesis implies that at each point
By U

0

1
Flath) = 3= 8 f,

n=0

it 7 belongs to some A-neighbourhood of zero in F.


GUEST


288 J. Bochnak

Theorerm 1 implies that

1
2t

ozf
n=0 °
is normally convergent; clearly,

o 1
2 i
n=0
is convergent to f.

A simple consequence of the proof of Theorem 6 is

THEOREM 6'. A continuous mapping f: U — F defined in some neigh-
bourhood U of zero, satisfying condition »*(U) and analytic on the trace
A N U of each 1-dimensional vector subspace A on U is amalytic in a neigh-
bourhood of zero.

We now have the tools to transfer the theorems dealing with ana-
lytic functions of one or of several variables (real or complex) to the case
of analytic functions in Banach spaces.

Applications of Theorems 4, 5 and 6 will be given in the next section.

IV. APPLICATIONS

A. Weierstrass preparation theorem for analytic functions in Banach
spaces. Let K De the field R of real or C complex numbers, I a neigh-
bourhood of zero in K, and U a neighbourhood of zero in Banach space
E (over K).

Any mapping of the form:

H: UxK>(@,2) & +a (@) 7+ ... a (@)K,

where a,, ..., &, are analytic functions U — K, and ¢;(0) = 0, is called
a distinguished polynomial. ‘

TEEOREM. Let f: UXI — K be an analytic function such that f(0) =
and f1{0} XTI s 0. Then there exist an analytic function p defined in a neigh-
bourhood of 0eE XK, p(0) # 0, and a distingwished polynomial H such
that f = Hy in some neighbourhood of 0. Further, p and H are uniquely
determined by this conditions in a neighbourhood of 0.

Proof. Uniqueness in the general case follows frofn uniqueness
in the finite-dimensional case.

We shall deduce the theorem from the proof of the classical Weier-

- strass theorem [4], using Theorems 4 and 5.

Case I (K = C). Choose £> 0, so that f is holomorphic in the set

{@,2)eBXC: ol < ¢, |2| < e} and f(0,2) %0 if 0 < 2] < e. I r is the

©
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multiplicity of the root of the funetion z — f(0 ;&) in zero, then for 4
sufficiently small (0 < 6 < &), f z,2) # 0 if |z |< 8, 2| =¢ and — for
z fixed — the equabion f(#,2) =0 has exactly r roots 2 (2}, ..., 2,(2)

(not necessarily distinet) (theorem 9.17.4 of [7]). By the classical 1e81du111n
theorem we have

of

= (%, 2)
b({)}) = —}—— L d . i , ;
! 27,2, flw,e) @ = z1‘(m) +ota(my.

Hence, for each veetor line 2 = E, b; is holomorphic in the set
{wel: ||lz] < 6}. The continuity of b; in 4, = {z<B: x| < 8} follows
from the definition of b;. Applying Theorem 4 we find that b, is holo-
morphic in 4;.

Set

H(w,2) = [p—a(®) .- f—2(2) =+ a,@)7 " +... 4 a,()

and note that a, are polynomials in b; with complex coefficients such that
@,(0) = 0.

For xed, fixed, the functions f(z,2) and H(x, 2) have the same
zeros in {ze C: |2| < ¢} and H (2, 2} = 0 if # = & The function

fl@,2)”

p(z,2) = m

is well defined, different from zero, and holomorphie in 2 (|| < ¢,  fixed).

Hence @ may be expressed by the formula
“ 1 flwys)

omi ) H(z,s)(s—a)y

( y % ) =
12]=8
which implies the continuity of ¢ in W = A,;X{ze C: |2] < &} and the
fact that for each veetor line 1 = EXC, | W n 4 is holomorphic. Thus,
by Theorem 4, ¢ is holomorphic in a neighbourhood of zero.

Case II (K = R). Extend the analytic funetion f: UXI -~ R to
a holomorphic function f : UxI—~ C, defined in & neighbourhood of zero
in HxC (Theorem 5). Case I implies the existence of the holomorphic
function ¢ and of the distinguished polynomial H defined in a neigh-
bourhood of zero such that f = ﬁé The uniqueness of the solution of
our problem in the case of a finite-dimensional real Banach space implies

that the restrictions of H and @ to a sufficiently small neighbourhood
of zero in B xR are veal-valued functions. These restrictions, as analytic
functions, are the required solution of the problem.

Studia Mathematica XXXV.3 B
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Remark. In the rest of the section, U will be an open subset of a real
Banach space B, F' an arbitrary real Banach space, and I an open subset:
of a 1-dimensional Banach space.

B. Generalization of a theorem of Malgrange.

TaeEoREM. If U and I (as above) are conmected, f: UXI — F is an
analytic mapping (f # const), @: U =1 4ds a continuous mapping
satisfying condition ¥*(U) and f(,@(x)) =0 in U, then ¢ is analyiic,

Proof. The case dim B < oo, dimF = 1 was proved by Malgrange
(other proofs of this case are due to Fiojasiewicz (unpublished) and
Siciak [17]).

Case I (dimF = 1). Without loss of generality we may assume that
U is a convex set. In virtue of Theorem 6 it sutfices to prove that, for
each affine line 4 = &, the mapping ¢|U N 1 is analytic. For fixed z,¢
eU N 1, choose a line p = F such that z,ep and fi(up N U) XI = const
(the existence of such a line follows from the hypothesis). If 7 is the affine
plane containing 2 and u, then f = f|(x N U)xI # const and f (v, (p|m N
s} U)(m)) = 0. According to the remark above, @|x N U is analytic.
Obviously ¢|4 n U is also analytic.

Case IL (F an arbitrary Banach space). Let a and b be different points
belonging to im f, and let g: F — R be a continuous functional such that
g(a) # g(b). Then gof: UxXI — R is an analytic function, gof s const
and gof(z, p(x)) = 0. Applying case I we infer that ¢ is analytic,

The following theorem is a simple consequence of Theorem B, but
we give here also another proof, in order to illustrate the method of
applying Theorem 6. ' ‘

C. TaroREM. If f: I > F is an analytic mapping (f # const),
¢: U — I is continuous and satisfies the condition +°(U), and fo ¢ is analytic,
then ¢ is analytic.

Proof. Case I First we prove the theorem in the special case, where
U and I are neighbourhdods of zero in R, ' = R, ®(0) =f(0) = 0 and ¢
is analytic except perhaps the point 0. We can exclude the csse fop =0
as & trivial one (fhen necessarily 9 = 0). In the other case we may assume
that (@) = 2 p(2) (p(0) 0,y of class €*) and f(z) = a"g(x) (g(0) 0,
g analytic). Let fop = h. Since f(p(x)) = fl#*v(2) = (" y(@)) g (2" p (2)),
we have h(z) = a™h(x) for some analytic function % (R(0) 0), or
{p@)g(@*p (@) = h(z). Now we call prove that ¢ is analytic at 0. Indeed,

the function @(z, y) = y* g(w"'y)—h(m) i defined and analytic in some

neighbourhood of (0, y(0)) <R Since

o®
oy (0, %(0)) = nyp(0)-1g(0) 0,
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‘ by the implicit function theorem y, as the solution of the equation

& (z, p(#)) = 0, is analytic in a neighbourhood of 0.
Case IT (F' = R). For each affine line 1 — E, the pairs of mappings

" fand | U N 2 satisfy (locally) the assumption of case I, and thus | U N A

is analytic; Theorem 6 implies the analyticity of P.

Oase IIL, of F' being an arbitrary Banach space, can be treated
similarly to case IT of Theorem B. ;

Remark. Theorems B and C are not true if dim7 > 1.

D. Generalization of a theorem of Bernstein. A real function of one
real variable having the derivatives of all orders non-negative is
analytic. This theorem of Bernstein can be generalized to functions on
Banach spaces as follows. Let 4 be a subset of the unit sphere § < E
such that 4 U (—4) = 8.

' TEEorEM. If f: U—~R is a continuous Sfunctions satisfying the
condition r*(U) and for each point weU, 67f(a)= 0 for acA and =
=0,1,2,..., then fis analytic.

Proof. The condition d3f(a)> 0 (ac4) implies that the derivatives
of all orders of the function

(%) t — f(x+ta)

defined in some neighbourhood of zero in R are non-negative. Applying
the theorem of Bernstein, we obtain the analyticity of the mapping (),
i.e. the analyticity of f| U n 4 for every affine line A ¢ B. The theorem
follows from Theorem 6.

Remark. A weaker version of the lagt theorem was proved in [20].
E. Generally we have the following prineciple:
If it is true that

If f: I >R is the function of class €%, satisfying the conditions
Wiy ..., Wy, then f is analytic,

“then it is also true that

If p: U -~ R is a continuous mapping defined on an open subset
U of a Banach space F, satisfying the condition 7*°(U), and for every
atfine line 1 < E,p| U N 1 satisfies the conditions W,,..., W,, then

@ is analytic.
°
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A characterization of analytic functions
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1. The main purpose of this note is to prove the following

THEOREM 1. Assume that

10 fe®™(D), where D is a domain in R", -

20 for every weD there exidts an r > 0 such that for every aeR", o] = 1,
the function f(z+1ta) is analytic with respect to te(—r, 7). The number
r may depend on % and a.

Then the function f is analytic in D.

Example. The function f(x,,2,) = afas(af+25)7, f(0,0) =0, is
continuous in K% analytic on every line z = #,-+ta, teR (@eR?), bub
f is not analytic ad: (0, 0) as a function of two real variables. Moreover,
given any integer p (0 < p < 40), one may easily define a function
fe®?(R?) which is analytic on each line but is not analytic in B2

As_ a consequence of Theorem 1 and of the classical Weierstrass
preparation theorem we ghall get

THEOREM 2. If H(2,y) = H (2, ..., 2,, ¥) & 0 is analytic in o domain
& = R*"' and Hw, f(x)) = 0 for meD, where D is a domain in R* and
fe€°(D), then f is analytic in D.

Theorems 1 and 2 have been proved by Bochnak [1] also for functions
in Banach spaces. Another proof of Theorem 2 (and also of a more general
theorem) was earlier presented in [3]. Still another proof of Theorem 2,
based on the theory of semianalytic sets, was given by S. Fojasiewicz.

2. Theorem 1 will easily follow from the following
LeMmA. Let

zeR",

(1) - gfam,

be a series of homogeneous polynomials in n variables of respective degrees 1.
Put 8§ = {ac<R": || = 1} and assume that there exists an open subset 2
of 8, Q2 #@, such that for every acQ one can find ¢ = o, > 0 such that
series (1) is convergent at ® = ga.
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