- icm®
- [3] S. Bernstein, Sur les fonctions absolument monotones, Acta Math. 52 (1928), p. 56-66.
- [4] S. Bochner and W. Martin, Functions of several complex variables, Princeton 1948.
- [5] N. Bourbaki, Variétés différentielles et analytiques (Fascicule de rèsultats), Paris 1967.
- [5a] Fonctions d'une variable réelle, Paris 1949.
- [6] H. Cartan, Sous-ensembles analytiques d'une variété banachique complexe (d'après J.-P. Ramis), Séminaire N. Bourbaki, Février 1969.
- [7] J. Dieudonné, Eléments d'analyse, tome I et II, Paris 1968.
- [8] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
- [9] E. Hille, Functional analysis and semigroups, Amer. Math. Soc. Colloquium Publications 1948.
- [10] K. Kuratowski, Topology, London and New York 1966.
- [11] F. Leja, Teoria funkcji analitycznych, Warszawa 1957.
- [12] B. Malgrange, Ideals of differentiable functions, Oxford 1966.
- [13] S. Mazur und W. Orlicz, Grundlegende Eigenschaften..., Studia Math. 5 (1935), p. 50-68.
- [14] J.-P. Ramis, Sous-ensembles analytiques d'une variété analytique banachique, to be published in Springer Verlag (Ergebnisse der Mathematik).
- [15] R. Schatten, A theory of cross-spaces, Princeton 1950.
- [16] J. Siciak, Asymptotic behaviour..., Ann. Pol. Math. 20 (1968), p. 267-278.
- [17] A characterization of analytic functions of n real variables, this fasc., p. 293-297.
- [18] A. E. Taylor, Additions to the theory of polynomials in normed linear spaces, The Tôhoku Math. Journal 44 (1938), p. 302-318.
- [19] Analysis in complex Banach spaces, Bull. Amer. Math. Soc., 49 (1943), p. 652-669.
- [20] R. Welland, Bernstein's theorem for Banach spaces, Proc. Amer. Math. Soc. 19 (1968), p. 789-792.
- [21] A. Donady, Le problème des modules..., Ann. Inst. Fourier 16, 1(1966), p. 1-98.

Reçu par la Rédaction le 16. 7. 1969

A characterization of analytic functions of n real variables

b

J. SICIAK (Kraków)

1. The main purpose of this note is to prove the following Theorem 1. Assume that

1º $f \in \mathscr{C}^{\infty}(D)$, where D is a domain in \mathbb{R}^n ,

2º for every $x \in D$ there exists an r > 0 such that for every $a \in \mathbb{R}^n$, ||a|| = 1, the function f(x+ta) is analytic with respect to $t \in (-r, r)$. The number r may depend on x and a.

Then the function f is analytic in D.

Example. The function $f(x_1, x_2) = x_1^2 x_2^2 (x_1^2 + x_2^4)^{-1}$, f(0, 0) = 0, is continuous in \mathbb{R}^2 , analytic on every line $x = x_0 + ta$, $t \in \mathbb{R}$ $(a \in \mathbb{R}^2)$, but f is not analytic at (0, 0) as a function of two real variables. Moreover, given any integer p $(0 , one may easily define a function <math>f \in \mathscr{C}^p(\mathbb{R}^2)$ which is analytic on each line but is not analytic in \mathbb{R}^2 .

As a consequence of Theorem 1 and of the classical Weierstrass preparation theorem we shall get

THEOREM 2. If $H(x, y) = H(x_1, ..., x_n, y) \not\equiv 0$ is analytic in a domain $G \subset \mathbb{R}^{n+1}$ and H(x, f(x)) = 0 for $x \in D$, where D is a domain in \mathbb{R}^n and $f \in \mathscr{C}^{\infty}(D)$, then f is analytic in D.

Theorems 1 and 2 have been proved by Bochnak [1] also for functions in Banach spaces. Another proof of Theorem 2 (and also of a more general theorem) was earlier presented in [3]. Still another proof of Theorem 2, based on the theory of semianalytic sets, was given by S. Łojasiewicz.

2. Theorem 1 will easily follow from the following Lemma, Let

(1)
$$g(x) = \sum_{l=0}^{\infty} P_l(x), \quad x \in \mathbb{R}^n,$$

be a series of homogeneous polynomials in n variables of respective degrees l. Put $S = \{a \in \mathbb{R}^n \colon ||a|| = 1\}$ and assume that there exists an open subset Ω of S, $\Omega \neq \emptyset$, such that for every $a \in \Omega$ one can find $\varrho = \varrho_a > 0$ such that series (1) is convergent at $x = \varrho a$.

Then there exists r > 0 such that

$$|P_l(z)|\leqslant 2^{-l},\quad z\in C^n,\quad \|z\|\leqslant r,\quad l\geqslant 1,$$

i.e. the function

$$\tilde{g}(z) = \sum_{l=0}^{\infty} P_l(z)$$

is holomorphic in the ball $||z|| < r, z \in C^n$.

Proof. Given an $a \in \Omega$, we may choose a $e_a > 0$ so small that

$$|P_l(ta)| \leqslant 1$$
, $|t| \leqslant \varrho_a$, $l \geqslant 1$.

For every $k = 1, 2, \dots$ the set

$$E_k = \{a \in \Omega \colon |P_I(ta)| \leqslant 1, |t| \leqslant 1/k, l \geqslant 1\}$$

is closed in Ω , $E_k \subset E_{k+1}$ and $\Omega = \bigcup_{k=1}^{\infty} E_k$. By the Baire theorem there exists an open set $\omega \subset \Omega$ such that $\omega \subset E_k$ if k is sufficiently large, say $k \geqslant k_0$. Therefore

(3)
$$|P_l(ta)| \leqslant 1, \quad |t| \leqslant r_0 = 1/k_0, \quad a \in \omega, l \geqslant 1.$$

The set $G = \{ta \in \mathbb{R}^n \colon a \in \omega, \ 0 < t < r_0\}$ is open in \mathbb{R}^n and it contains a Cartesian product $K = [a_1, b_1] \times \ldots \times [a_n, b_n]$ of n linear segments $[a_j, b_j]$ $(a_j < b_j), j = 1, \ldots, n$. It is obvious that $|P_l(z)| \leqslant 1$ in $K, l \geqslant 1$.

We may treat $[a_i, b_j]$ as a subset of the real line in the complex z_j -plane. Let $f_j \colon C - [a_j, b_j] \to C$ be a conformal mapping of $C - [a_j, b_j]$ onto $\{w \in C : |w| > 1\}$ such that $f_j(\infty) = \infty$. Using the well-known Bernstein inequality for polynomials in one complex variable and the induction with respect to n, we get the inequality

(4)
$$|P_l(z)| \leq |f_1(z_1) \dots f_n(z_n)|^l, \quad z \in C^n, \quad l \geqslant 1,$$

where $|f_l(z_l)|$ is considered as continuously extended on the whole z_l -plane. Put $M = \sup\{|f_l(z_1)\dots f_n(z_n)|: ||z|| \leq 1, z \in C^n\}$. Then by (4) and by the homogeneity of P_l we get (2) with r = 1/2M. The proof of the Lemma is concluded.

3. Proof of Theorem 1. Let x_0 , be a fixed point of D. Given an $a \in S$, the function $f(x_0 + ta)$ is analytic at t = 0, so there exists a $\varrho_a > 0$ such that

$$f(x_0+ta) = \sum_{l=0}^{\infty} P_l(a)t^l$$
 for $t \in (-\varrho_a, \varrho_a)$,

$$egin{aligned} P_l(a) &= \sum_{|\mu|=l} rac{D^\mu f(x_0)}{\mu!} \; a^\mu, \quad a^\mu = a^\mu_{1^1} \ldots a^\mu_{n^n}, \, |\mu| = \mu_1 + \ldots + \mu_n, \ \mu! &= \mu_1! \ldots \mu_n!. \end{aligned}$$

By Lemma, the series $\sum\limits_{0}^{\infty}P_{l}(z)$ is convergent uniformly in a ball $\|z\|< r, z\,\epsilon\,C^{n}$ and its sum $\tilde{f}(z)$ is a holomorphic function there. But $\tilde{f}(x_{0}+ta)=f(x_{0}+ta), t\,\epsilon\,(-\varrho_{a},\varrho_{a}), a\,\epsilon\,S$. By the identity property of analytic functions

$$\tilde{f}(x_0+ta)=f(x_0+ta), \quad |t|<\varrho=\min(r,\operatorname{dist}(x_0,\partial D)).$$

Therefore $\tilde{f}(x_0+x)=f(x_0+x), \ \|x\|<\varrho, \ x\,\epsilon R^n.$ The proof is concluded.

4. Proof of Theorem 2. We want to prove that f is analytic at every point $x_0 \, \epsilon \, D$. Without loss of generality we may assume that $x_0 = 0$ and $f(x_0) = 0$. We shall use induction with respect to n.

 1° n=1. Let us write H in the form

$$H=H_1\ldots H_p,$$

where H_j is an analytic function irreducible in a neighborhood of $0 \in R^2$. The function f satisfies the functional equation H(x, f(x)) = 0 (f(0) = 0). By the Weierstrass preparation theorem we may assume that

$$H_j(x, y) = y^{s_j} + a_{j1}(x)y^{s_j-1} + \ldots + a_{js_j}(x),$$

where a_{jk} are analytic in a neighborhood of x=0 and $a_{jk}(0)=0$. At first let us observe that f is analytic in (0,r), where r>0 is sufficiently small. Indeed, H_j being irreducible, the discriminant $D_j(x)$ of H_j and $\partial H_j/\partial y$ does not vanish identically. So there exists an r>0 such that $D_j(x)\neq 0$ $(j=1,\ldots,p)$ for $x\in (0,r)$, because D_j is analytic and its zeros are isolated. For every $x_0\in (0,r)$ there exists a j such that $H_j(x_0,f(x_0))=0$. But

$$\frac{\partial}{\partial u}H_j(x_0,f(x_0))\neq 0,$$

because $D_f(x_0) \neq 0$. Therefore, by the implicit function theorem, the graph of f restricted to a sufficiently small neighborhood of $(x_0, f(x_0))$ is contained in a finite union of graphs of functions analytic in a neighborhood of x_0 . Consequently, f being \mathscr{C}^{∞} must be analytic in a neighborhood of x_0 . Therefore $H_f(x, f(x))$ are analytic in (0, r). As

$$\prod_{j=1}^{p} H_{j}(x, f(x)) = 0$$

in (0, r), there exists k such that $H_k(x, f(x)) = 0$ in (0, r).

It is known ([2], p. 89) that there exists a function

$$g(z) = \sum_{l=0}^{\infty} c_l z^l$$

holomorphic in a neighborhood of z = 0 such that

(5)
$$f(x) = g(x^{1/s}), \quad 0 < x < r_0 \ (0 < r_0 \le r),$$

where $s=s_k$ and the value of $x^{1/s}$ is suitably chosen at each point of (0,r).

Let m be the smallest integer such that $c_m \neq 0$ and m is not divisible by s. Then

$$f_0(x) = f(x) - \sum_{l=0}^{m-1} c_l x^{l/s}$$

is of class \mathscr{C}^{∞} and $f_0(x) = x^{m/s} g_0(x), g_0(0) = c_m \neq 0$. In particular,

(6)
$$\lim_{x\downarrow 0} |f_0(x)x^{-m/s}| = |c_m| \neq 0.$$

But, as the function f_0 is \mathscr{C}^{∞} , so either it may be written in the form $f_0(x)=x^qf_1(x), f_1(0)\neq 0$, for a fixed positive integer q, or $\lim_{x\downarrow 0}(x)x^{-q}=0$ for every real positive q. Both cases lead to the contradiction with (6). Consequently, $c_l=0$ if l is not divisible by s. Thus, by (5), the function f has an analytic extension from (0,r) on a neighborhood of 0.

Analogously, f may be analytically extended from an interval (-r, 0) on a neighborhood of 0. Since the function f is \mathscr{C}^{∞} , these two extensions must coincide, and therefore f is analytic at 0.

 2° Let now n be an arbitrary positive integer. The set

$$E = \{a \in S \colon H(ta, y) = 0, -r \leqslant t \leqslant r, -r \leqslant y \leqslant r\},\$$

where r>0 is sufficiently small, is closed and nowhere dense in S, because $H\neq 0$. Thus, there is an open set Ω in S such that for every $a\in \Omega$ we have $H(ta,y)\not\equiv 0$ (-r< t< r, -r< y< r). By the assumption, H(ta,f(ta))=0 in a neighborhood of t=0. By 1° the function f(ta) is analytic with respect to t. It follows from the Lemma that the Taylor series of f at $0\in R^n$ is convergent in a neighborhood of 0 to an analytic function f and, moreover,

$$\tilde{f}(ta) = f(ta), \quad a \in S - E, \quad |t| < \varrho,$$

 ϱ being a positive constant. Since the set E is nowhere dense in S, we have $\tilde{f}=f$ in a full neighborhood of $0 \in \mathbb{R}^n$, because f and \tilde{f} are continuous. The proof is ended.

References

- 1] J. Bochnak, Analytic functions in Banach spaces, this fasc., p. 273-292.
- [2] B. A. Fuks, Introduction to the theory of analytic functions of several complex variables, Moscow 1962 (Russian).
- [3] B. Malgrange, Ideals of differentiable functions, Oxford 1966.

Reçu par la Rédaction le 16. 7. 1969