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A characterization of analytic functions
of n real variables

by
J. BSICIAK (Krakéw)

1. The main purpose of this note is to prove the following

THEOREM 1. Assume that

10 fe®™(D), where D is a domain in R", -

20 for every weD there exidts an r > 0 such that for every aeR", o] = 1,
the function f(z+1ta) is analytic with respect to te(—r, 7). The number
r may depend on % and a.

Then the function f is analytic in D.

Example. The function f(x,,2,) = afas(af+25)7, f(0,0) =0, is
continuous in K% analytic on every line z = #,-+ta, teR (@eR?), bub
f is not analytic ad: (0, 0) as a function of two real variables. Moreover,
given any integer p (0 < p < 40), one may easily define a function
fe®?(R?) which is analytic on each line but is not analytic in B2

As_ a consequence of Theorem 1 and of the classical Weierstrass
preparation theorem we ghall get

THEOREM 2. If H(2,y) = H (2, ..., 2,, ¥) & 0 is analytic in o domain
& = R*"' and Hw, f(x)) = 0 for meD, where D is a domain in R* and
fe€°(D), then f is analytic in D.

Theorems 1 and 2 have been proved by Bochnak [1] also for functions
in Banach spaces. Another proof of Theorem 2 (and also of a more general
theorem) was earlier presented in [3]. Still another proof of Theorem 2,
based on the theory of semianalytic sets, was given by S. Fojasiewicz.

2. Theorem 1 will easily follow from the following
LeMmA. Let

zeR",

(1) - gfam,

be a series of homogeneous polynomials in n variables of respective degrees 1.
Put 8§ = {ac<R": || = 1} and assume that there exists an open subset 2
of 8, Q2 #@, such that for every acQ one can find ¢ = o, > 0 such that
series (1) is convergent at ® = ga.
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Then there exisis » > 0 such that
(2) [Pz)| < 27F,  zeC"; [, 121,

i.e. the fumction

0

g(e) = 12 Py(2)
=0
18 holomorphic in the ball ||2]] < 7, 2eC™
Proof. Given an aef2, we may choose a g, > 0 so small that

IPl(ta)l<1y W\<-Qu7 l>1-
For every k =1,2,... the set

By ={aeQ: |Py(ta) <1, | <1/k, 121}

is closed in Q, By = By, and 2 = {J F,. By the Baire theorem there
« k=1

exists an open set = Q such that o = B, if k iy sufficiently large, say
k = k,. Therefore

(3) [Prlta)l <1, <7y =1k, acow,l>1.

The set G = {tacR™: acw,0 < t< 7} is open in R* and it conbains
a Cartesian product K = [ay, 1% ... X[a,,b,] of n linear segments
[ay, 0] (a; < b;),5 =1, ..., n It is obvious that [Pi(2)| <1 in K,1>1.
- We may treat [4;, ;] as a subset of the real line in the complex
#-plane. Let f;: C—[a;, b;] - € be a conformal mapping of C— [a;, b;]
onto {weC: |w| > 1} such that' fi{) = co. Using the well-known
Bernstein inequality for polynomials in one complex variable and ‘the
induction with respect to 7, We get the inequality

4) P& < Ifi(2) - Szl 20", 121,

where |f;(2;)| is considered as continuously extended on the whole z;-plane.
Pub M = sup{|fi(2) ... f.(2.)]: |kl <1, 2e0"} Then by (4) and by

the homogeneity of P, we get (2) with » = 1 [2M. The proof of the Lemma
" is concluded.

3. Proof of Theorem 1. Let ¥y, be-a fixed point of D. Given an

aef, the function f(z,4ta) is analytic at { =0, so there exists a 0, >0
such that

Slag+ta) =

s

2 -Pz(ﬂ/)tl for te(“Qa; Qa)!

]

0

. Analytic functions of n real variables T 295

D*f ()
]“\___Z'szu’ o« =ai‘1.,,a,::n7 ]/-‘I 2H1+"'+/‘n?
wl=to .

By Lemma, the series 3 P(z) is convergent uniformly in a ball
]

o] < 7, 2¢C™ and its sum f (¢} is a holomorphic function there. But
f(wy+1a) = fl@,+1a), te(— g., 0,), ac8. By the identity property of
analytic functions

Flaytta) =f(zo+ta), | < o = minfr, dist(s,, aD)).

Therefore f (2,+2) = f(z,-+u), & < o, zeR™ The proof is con-
cluded.

4. Proof of Theorem 2. We want to prove that f is analytic at
every point ,e.D. Without loss of generality we may assume that T, =0
and f(z,) = 0. We shall nse induction with respect to .

10 % = 1. Let us write H in the form

H=H,..H,

where H; is an analytic function irreducible in a neighborhood of 0eR’.
The function f safisfies the functional equation H (z, f()) = 0 (f(0) = 0).
By the Weierstrass preparation theorem we may assume that

H(@,y) = y'i+ap @)y + ..+ o (@),

where a; are analytic in a neighborhood of # = ¢ and a;(0) = 0. At
first let us observe that f is analytic in (0, r), where » > 0 is sufficiently
small. Indeed, H; being irreducible, the discriminant D;(z) of H; and .
0H;/0y does not vanish identically. So there exists an r > 0 such that
Dy(@) #0(j =1,...,p) for ¢(0,r), because D; is analytic and its zeros
are isolated. For every &,¢(0, 7) there exists a j such that Hj(%‘oy bi (mo)] = 0.
But

0 H(x 0
”a‘y— j(-"’oyf(wo)) # 0,
because D;(m,) # 0. Therefore, by the implicit function theorem, the
graph of f restricted to a sufficiently small neighborhood of (mo, f(mo))
is contained in a finite union of graphs of functions analytic in & neigh-
borhood of z,. Consequently, f being ¥* must be analytic in a neighborhood
of %,. Therefore Hy(z, f(x)) are analytic in (0, 7). As

jé]l Hy(o, f(z)) =0

n (0, 7), there exists k such that Hyz, f(»))'=0 in (0,7).
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It is known ([2], p. 89) that there exists a function
9(z) = 3 o
i=0
holomorphic in a neighborhood of 2 =0 such that

(5) f@) = g(@), 0<az<r, (0<r<1),

where s = §; and the value of o'* iy suitably chosen at each point of
(0, 7).

Let m be the smallest integer such that ¢,, % 0 and m is not divisible
by s. Then

m—1

fo(@) =f($)—l§ o
is of class % and fy(#) = & g, (%), 4,(0) = ¢,, 5 0. In particular,

(6) ]iinlfo(ﬂf)-’v_m’s] = le,| #0.

But, as the function f, is #%, so either it may be written in the
form  fy(@) = 2%, (), f,(0) 0, for a fixed positive integer ¢, or
limfy (#)#™? = 0 for every real positive g. Both cases lead to the contra-

40

&

diction with (6). Consequently, ¢, = 0 if I is not divisible by s. Thus,

by (5), the function f has an analytic extension from (0,r) on a neigh-

borhood of 0. .
Analogously, f may be analyticaly extended from an interval (—r,0)

on 2 neighborhood of 0. Since the function f is #, these two extensions

must coincide, and therefore f is analytic at 0. g '
20 Let now n be an arbitrary positive integer. The set

B ={ae8: H(ta,y) =0, —r<t<r, —r<y <},

where 7 > 0 is sufficiently small, is closed and nowhere denss in 8, because
H + 0. Thus, there is an open set @ in § such that for every ae 2 we have
H(ta,y) #£ 0 (—r<t<r, —r<y<r). By the assumption, H(ta,f(ta))
=0 in a neighborhood of ¢ = 0. By 1° the function f(ta) is analytic with
respect to 7. It follows from the Lemma that the Taylor series of f at

«R"™ i3 convergent in a neighborhood of 0 to an analytic function f and,
moreover, :

f (ta) = f(ta), ae8—B, || <o,

0 being a positive constant. Since the set B is nowhere dense in 8, we
have f = fin a full neighborhood of 0 «R", because f and f are continuous.
The proof is ended.
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