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The differential equation of an inner function*
by

HENRY HELSON (Berkeley, Calif.)

1. Introduction. A wnitary function in a Hilbert space # (always
assumed separable, and allowed to be finite-dimensional) is a function
U(z) defined on the line, taking values in the set of unitary operators
in #, and measurable. (The common definitions of measurability coincide
when # is separable.) L% is the Lebesgue space of measurable fonctions
on the line with values in #, under the norm

17l = [_f |1F (@) da]".

A unitary function defines a unitary operator in L% by multiplication:
UF is the function with values U (2)F(z). Hi, the Hardy space of .the
upper half-plane, is the subspace of I, consisting of those F having an
analytic extension to the upper half-plane with

f IF (24 iw)|Pds < K < oo, all w>0.
—00
. A unitary funetion U is inner if U is non-constant, and UF is in H
for each F in HZ% . This is the case just if U(2) is the boundary function
of an analytic operator function U(2), defined in the npper half-plane
and satisfying [|[U(2)]l <1 there.

The invariant subspace problem is to decide whether each bounded
operator T in s has & non-trivial closed invariant subspace. We exclude
the case where o is 1-dimensional, and the answer trivially. negative.
This general problem aboub operators has been transformed [2] into
a problem about inner funetions: can every inner function U (with trivial
exceptions) be written in the form VW, where V and W are inner functions ?

More generally, spectral properties of operators are related to the
structure of associated inner functions. Therefore it is not surprising that
information about inner funetions in general is difficult to obtain.

* This paper was written ab the University of Science and Technology, Kumasi,
Ghana. Part of the paper was presented to the British Mathematical Colloquium at
Swansea in 1967.
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A differentiable unitary function U wsatisfies a differential equation
(1) : U'(z) = iM(z) U(x),

where the operator function M is determined by the equation. U being
unitary means that M(z) is self-adjoint for each z. Which self-adjoint
functions M are obtained from unitary functions U that are inner? Thi
question is a stability problem for ordinary differential equations, but
no information seems to be available about it. A good answer would un-
doubtedly contain a theorem about invariant subspaces.

The invariant subspace problem for quasi-nilpotent 7 leads to a fune-
tion M (x) baving an analytic extension M (2) everywhere in the plane
except to -1 (and indeed 2°M (2) is analytic at infinity). U is inner if
and only if ¥ =4 is an apparent singulority of the differential equation.
Even when & is finite-dimensional no simple criterion is known on which
to decide whether a singularity of M(z) is apparent.

At the other extreme, if M (2).is entire, the solution U (=) will be entire
also; we seek conditions on M implying that U (¢) is bounded in the upper
half-plane.

The trivial non-factorable inner functions (which exist in every di-
mension) lead to M essentially of the form (1+2%' M,, where M, is

& constant projection. This paper arose out of the attempt to find a non-

facterable inner function by solving (1) with M(2) a non-constant pro-
jection function. This hope was futile, for I proved in 1966 that an inner
Junction U is surely factorable if M is mon-constant and projection-valued.
The main theorem of this paper asserts that this result is empty: if U
is inner and M projection-valued, then M is constant.

The theorem is a negative one as far as invariant subspaces go, but
it seems to be of a new type in differential equations. At least the proof
given here seems unlike those current in the field.

2. The spectral resolution. To a unitary function U is associated
& closed subspace # = U-H%, of I%, (the set of all UF,F in H%). The
subspace .# determines U up to multiplication on the right by a constant
unitary operator. For two unitary operators U and V

U-HY = V-H% it and only if V*U is inner.
 For each real « let S, denote the operation of multiplication by
¢ in L},. Then for # = U-H, U any unitary function, we have [3]
Bol = 8yl it a> 8,
M 8, .# = {0}, U 8, dense in IZ,.

a<oo az—o0
Any closed subspace .# of L2 having these properties will be called
& normal invariant subspace. A simple but fundamental result, generalizing
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a theorem of Beurling and first completely proved by Halmos {1], states
that every normal invariant subspace of I2, has the form U-H%, for some
unitary function U; and U is determined by the subspace up to multi-
plication on the right by a constant; unitary operator.

Let U be a unitary function, .# = U-H%., and P, the self-adjoint
projection of L, on 8, 4 for each real a. Then {I— P,} is a decomposition
of the identity in L3,. We construct the unitary group

V, =~ [ ¢*ap,

with self-adjoint generator

- f/wpl.

—00

I

B
From definition,
Py . =8,P.8_; (all real 4,7).
In consequence, we have the two commutation relations
(2) V.8, =" 8,V,, S8_,BS,=1+B (all real 1,1).

The second relation means, in particolar, that the domain of B is

invariant under all ;.

Bach continuous unitary group {V,} or self-adjoint operator B,
acting in L% and satisfying (2), leads backwards to a unique subspace
A and almost unique unitary funetion U.

If # = H%., or U is constant, it is easy to verify that

d
V.F@) =F(e+), BF(@)=—i— F).

The domain of B is the set of F in L%, whose Fourier transforms F
satisfy
[ @ P @) du < oo.

Such functions are continuous, and have this propfarty (which will
be required later): if BF = 0 almost everywhere on an interval, then F

is constant on the interval. .
These operators V,, B associated with H3 will be called 7, and B,.

We want to express V, and B for an arbitrary subsgace M = U-Hy
in terms of T,, B,, and U. Let @, be the projection of Ly on 8,H%p; then
we have

(3) Pu. = UQ, U*, Vt — UT; U*’ B = UBQU*.
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The first relation is immediate, because the right side is an orthogonal
projection whose range in US,H = 8, #. The other two relations are
obtained by setting the first one into the integrals defining V, and B.
Now define

Ay(@) = Ulw) U (a+1),

and denote the operation of mutliplication by A, in L3, again by 4,.
The second relation in (3) takes the form

V,F = AT,F

In a scalar context, where these calculations have been carried out
before [3], the funetion 4,(x) of two variables was called a cocycle.
The description of B in terms of B, is obtained in the next section.

3. The differential equation. The last relation in (3) gives formally
M =iU0".

The calculation is meaningful if F belongs at the same time to the
domains of B and of B,; but such functions may be rare. A condition of
smoothness on U is needed to ensure the existence of many such 7. In
applications (for example to the invariant subspace problem) U may be
assumed analytic on the real axis. A weaker hypothesis, convenient for
present purposes, is this:

1 U (z+1)—U(z)] should converge in norm to a bounded operator
U’ (@) for each z, and uniformly on every finite interval of x.

We shall call U a smooth unitary function if it has this property.

The derivative of a smooth unitary function is continuous in norm.
Also

(4) BF = —iU(U¥F+ U*F') = B,F—MF,

T*(z+1)— U* (¢ —
(- )t @) _ T*(041) Ul) tU(aH—t) T @),
so that U* is also smooth, and U* () = — U*(2) U (z) U* (2).

Let 2 denote the set of F in the domain of B, that are compactly
supported.

Lemma. UZ = 2 4f U is a smooth unitary function.

Let F belong to 2, and write
U (s+ ) F(z--1)— U(x) F (@)
=17 U(@+ ) [F o+ 1)~ F (@) 4+t [U(s+1)— U(@)] F ().

As ¢ tends to 0, the first term on the right converges in L2, because

U is continuous in norm and F is in the domain of B,. The second term .

converges uniformly and in I?, because F is compactly supported. Thus
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the left side converges in L%, which means that UF is in the domain
of B,. Since UF is compactly supported, it belongs to 2.

‘We have shown that UZ is contained in £. The same result holds
for U*, and so U2 = 2.

The lemma in connection with (3) implies that &
domain of B, and obviously (4) holds for ¥ in &.

The expression for M in (4) can be written

Z is contained in the

(5) M =iUUY = —U[U*U' U*] = — iU U*,

showing that U satisfies the differential equation (1). M () is self-adjoint
for each x, because the adjoint of iUU™ is —iU' U*, both equal to M.
Finally, M is continuous in norm, because it is the product of norm-
continuous functions.

The differential equation (1) holds in the eomplex plane wherever
M(z) = —4iU'(2) U(2)"" is analytic. This region is symmetric about the
real axis.

We have associated to a smooth unitary function the invariant
subspace # = U-H%, self-adjoint operator B acting in I%,, and finally
the self-adjoint operator function M (z) acting in 5 for each x. This path
can be retraced. Some points require care, and so the result is stated for-
mally.

TuEOREM 1. Let M be a norm-continuous self-adjoint operator function
defined on the line. Then By— M is a symmetric operator on 9. It possesses
just one self-adjoint extension B that satisfies the commutalion relation (2).
B is derived from a unique normal invariant subspace U-Hy. U is a smooth
unitary function, cmd the solutions of the wectorial differential equation
P (2) = 1M (x)F(z) are ewactly the functions Ug, @ in H#.

For each ¢ in ;f construet a solution ¥, of this differential equatlon
such that F,(0) =¢. Any solution funetlon F has constant norm:

g; P (@)|F = 2 Re(E" (s), F(2) = 2ReliM (2)F(z), F(x)) =
because M () is self-adjoint. Now define U(z)g = F,(x) for each » and ¢.
Standard facts about the differential equation imply that U(z) is unitary.

In order to solve (1), in the classical theory of differential equations,
one actually solves the integral equation

v
(6) U(2) = 1+iofM(y)U(y)dy-

Tt follows (since M is locally bounded) that U is norm-continunous.
A gecond appeal to (6), using the continuity of U and of M, shows that U
is smooth.
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Let B be the self-adjoint operator associated with U. ThenB =B,—IJ
on &, because U is smooth and satisﬁe§ the differential equation. The
unicity of B requires proof. Suppose that B is another sglf-adjoint opemtog‘
satisfying the commutation relation and equal to B,—M on 2. Let U
be the corresponding unitary function, determin.eﬂd up to multiplication
on the right by a constant unitary operator. If U is smocth, normalize
it 50 that i7(0) = I. Then Up and f7rp are two solutions of the differential
equation equal to ¢ at # = 0; the uniqueness theorem for solutions of the
differential equation implies that these solutions are identical,ﬁnd we are
finished. But we want this conclusion without supposing that U is smooth.
For that we must in effect prove a stronger result about uniqueness of
solutions of the- differential equation.

We are given that

UB,U*F = UB,U*F (all I in 9).

Writing F = UG and taking account of the lemma we have

U*UB,U* UG = B,G@ (all G in 9).

Take G(x) = f(z)p, where f is a scalar function that is suitably smooth,
compactly supported, and equal to 1 on an interval (—4, 4). Then @
is in 2 and B,G vanishes on the infterval. Hence B, U* UG vanishes on
the interval too. As we have observed, this implies that U*ve = ﬁ*Ugv
is' continuons and constant on the interval. Now A can be as large as we

please, and ¢ is arbitrary in 2. Hence U* U is a constant unitary operator,

0 U determines the same invariant subspace as U, and finally B = B.
This completes the proof of the theorem.

4. The order relation. Let U and V be smooth unitary functions with
assoclated self-adjoint functions M and N respectively. Write M & N
to mean that U-H}, is contained in V- H2,, or, in other words, that V¥ U
is inner. We should like to describe this order relation by analytic prop-
erties of M and . In particular, it would be interesting to characterize
those M such that M ¢ 0, corresponding to inner functions U. Con-
cretely, we ask for which functions M does every solution of the differential
equation F' = iMF have o bounded analytic extension to the upper half-
plane?

TueorEM 2. Let B and C be the self-adjoint operators associated with
M and N respectively. M & N if and only if F(B) < f(O) for every fumction
f that is real, increasing and bounded on the line.

©

icm
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The operators f(B) and f(C) are defined by the spectral resolutions
of B and 0, and the inequality refers to the ordinary order relation for
bounded self-adjoint operators.

Let B and € have spectral resolutions {I —P3}, {I—@Q,} respectively.
Then

o

f(B) = — {of(l)dPn f0) = — [ f(3)aq,.

Set g(@) == 0 for # < 0, =1 for # > 0. This is » function of the type
mentioned in the theorem, and g(B) =P, ¢(C) =@,. (The spectral
resolutions are continuous, so there is no question of left or right limits.)
By definition, M ¢ N if and only if P, < @,, which is to say g(B) < g(C).

If this is the case, it follows (by comsidering linear combinations
of translates of ¢) that f(B) < f(C) for all increasing bounded functions f,
and the theorem is proved.

COROLLARY. If M & N, then M(x)> N(x) for all ¢. In particular
of M & 0, then M (%)= 0 for all .

Let f, be bounded monotonic functions tending to the unbounded
function f(z) = . For each n, f,(B) < f,(C). Passing to the limit and
using the fact that B = By—M and ¢ = B,—XN on 2, we have for Fin 9

J(MP,Fydz> [ (NF,F)dw.

This. implies that M (x) > N(z) for each =.

There is another way to prove the corollary directly from the diffe-
rential equation. This proof is less general but throws light on the result
from another direction. Suppose that M & 0 and that U(z) is analytic
on the real axis; let us show that M(xz)> 0 for each . For any ¢ and
Im 2>0 we have [[U(z)¢|| <|l¢|l. Therefore, setting z = z+1dy and
differentiating at y = 0,

0

02— (U@e, UlR)g) =2Re[iT’ (z)p, Ulz)g)
dy
= 2Re(—M (z) U(z)p, U(x)p).

Since M (z) is self-adjoint, this means M (z) > 0.
TurorEM 3. If U, V, and W are smooth unitary functions,and U = VW,
then the corresponding self-adjoint functions satisfy

L M(U) = M(V)+VH(W) V.

The proof is a stmightforwé.rd verification.
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5. The main theorem.
THEOREM 4. Suppose that every vector function T satisfying the differ-
ential equation

) T'(@) = ig(r) M(2)F(@)

 has @ bounded analytic evtension to the upper half-plane. Assume that M (x)
is norm-continuous amd projection-valued. Assume, furthermore, that o(x)
is a continuous bounded real function on the line such that 1/o(z) is entire,
and such that —log|o (2)] possesses a positive harmonic majorant in the upper
half-plane. Then M(x) is constant.

Tor the sake of clarity the proof will be given for the case that
o(#) = 1;the modifications necessary for the general result will be sketiched
afterwards. First we prove two lemmas that are well known for scalar
inner functions.

LEMMA. An inner function that is norm-continuous on the real axis
is necessarily analytic on the real awis.

Any inner function U has a representation in the upper half-plane
by a Poisson integral along the axis. The continuity of U enables one to
show, as for scalar functions, that U(z) is continuous in norm on. the
closed upper half-plane. Therefore U(z) is continuously, and therefore
analytically, invertible near the real axis. Define Q)" = Uz)~" in the
upper half-plane, near the real axis where U(e) is invertible. Then @(z)
is bounded and analytic in the lower half-plane near the real axis, with
boundary values equal to those of U(z). Hence @ and U continue each
other across the  axis.

LewmMA. Let U, V, and W be inner funciions, U = VW, and U analytic
on the real axis. Then V and W are analytic on the real awxis.

(This fact is contained in the lemmas of p. 76 and p. 79 of [2]; however,
a short independent proof is desirable. Mr. C. Jacewitz has suggested
this one.) )

Define Q(2)* = W(2) U(2)™", analytic and bounded in the wupper
half-plane near the real axis. Then Q(2) is analytic and bounded in the
lower half-plane near the axis, and its boundary values are V(z) almost
everywhere. Hence ¥V and @ continue each other across the axis. Now V,
being analytic and unitary on the axis, is analymcally invertible there,
so W is analytic on the axis also.

There is one more fact to prove before beginning the main argument.
I Uis a smooth inner function satisfying the differential equation (1),
then obviously U’ (x) has norm at most 1 (assuming that M is projection-
valued). We want to show that |U’ (2)| < 1 in the upper half-plane. From

icm°®
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the integral equation (6) we have for all real ¢ £ 0

a4t
® e Tl =[] X Tma<

For fixed ¢ the quantity

U -

is bounded in the upper half-plane, because U(z) is bounded; and for 2
real the bound is 1. Hence (9) is bounded by 1 in the upper half-plane,
uniformly in ¢. Letting ¢ tend to 0 gives the same bound for ||U' (2)].

The proof of the theorem itself makes use of the analytic range functions
studied in [2]. For each z, let J(x) be the range of M (z). Since J(z) is
also the range of the bounded analytic operator function U'(z), J is an
analytic range function. The complement J (z)* of J(z) is also analytic,
because it is the range of iU— U’ =i(I—M)U. (The hypothesis that M
is projection-valued is crucial at this point.)

For any range function X, s/x denotes the set of all ¥ in H3y with
values in K almost everywhere. Set A" = &, @75, Clearly, 4 is an in-
variant subspace of H; it is a normal invariant subspace because J and J*
are analytic range functions. Call its inner function V. A function F
in H% belongs to 4 = V-Hp if and only if MF, the prOJeetlon of Fin J
at each point, is a function in Hj.

Now U-H?% is contained in V- H;g' For if G = UF, F in H3, then
iMG = iMUF = U'F is in H%, so G is in V-H%. Hence 7*°U =W
is inner, so U has the inner factoring VW.

U is smooth and therefore analytic on the real axis (by the first lemma
of this section). Therefore V and T are analytic on the axis (by the second
lemma). Let the self-adjoint functions corresponding to ¥ and W be
M., M, respectively. Then M, (x) and M,(x) are positive for all , and
M = M,+VM,V*. Therefore

(9) T (o)

(10) OS VM, V<M or O0<M, <V MV.

The structure of V can be described to this extent: there exist com-
plementary subspaces J¢,, #, of # such that for all «
(11) V) #, =Jd (@), V) #,=4J@"

The fact that #, and s, are independent of #, which is the important
point, is seen by constructing ([2], p. 66) the outer isometry functions
mapping #, onto J and #, onto J» respectively, and observing that

¥ must be the sum of these isometry functions.
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From (10) and (11) we conclude that V*MV is the constant projection References

of # upon #,. Then (10) implies [1] P.R.Halmos, Shifts on Hilbert space, Crelle’s Journal 208 (1961), p. 102-112.

2] H. Helson, Lectures .on invariont subspac i
M, #, < #y, M, #, ={0}. %3]] — Qompact groups with ordered duals, Pﬁ)c.eioﬁgggeﬁghl??:z’. (I:f)GiéeA (1965)
. 144-156. ’
The differential equation satistied by W* P
UNIVERSITY OF CALIFORNTA, BERKELEY
TOWY = =W,
Regu par la Rédaction le 18. 7. 1969
< gives W¥p = 0 for ¢ in o#,, or W*p = constant.

If we assume, as we may, that U(0) = V(0) = W(0) = I, then W" ——
is the identity on s#,. Therefore W*s#, = o, and W also leaves £, o,
invariant, Let ¢ be in #,. Then Up = VWg is in Vi#, =J*, so that

Ugp =iMUp =0.

Hence Up = ¢ for all ¢ in #,, Us#y, = J* iz constant, J is constant
and finally M (the projection on J) is constant. This completes the proof
under the assumption that o(z) =1.

In the general case, we have to prove first that U’(z) is bounded in
the upper half-plane. U’(z) is still bounded so this is not surprising. An
analogue of (8) holds, with o(y) supplied in the integral and the constant
on the right changed to |jp|,. The conclusion follows as before.

It follows that J, the range of U’, is analytic. Now J'L is the range of

W—M)T =iT—o ' T,

and we have to show that U’ (2)/o(2) is analytic and bounded in the upper
half-plane. This is a- conclusion of Phragmén-Lindelof type. Let wu(2)
be a positive harmonic majorant for log|e(#)"!| in the upper half-plane.
Since U'(2) is bounded, we have

le() U () << K@ (Tmz > 0).

The left side is bounded on the real axis by the differential equation,
and we conclude that it is bounded in the half-plane.

(The growth condition on g(z)~! is only needed for this application
of the Phragmén-Lindelof principle, and the condition can take various
forms. It is enough to require that ¢(2)~* = O(exp|z|”) for some a < 1,
uniformly in the upper half-plane. This hypothesis covers the case ¢ ()
= (14-4%)~" mentioned in the Introduction.)

Having established that J and J* are analytic range funetions, and
that U’/e is bounded in the upper half-plane, we can follow the original
proof with only obvious modifications.
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