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Orlicz spaces based on families of measures
by
ROBERT L. ROSENBERG (Pittsburgh, Penn.)

Pitcher [8] introduced a condition on sets of probability measures
(on a fixed measurable space) which is more general than the existence
of a dominating measure, yet strong enough to give good results in certain
statistical inference problems. In this connection, the Banach space B,
was defined; a generalization of this space, called Ea(6, @), iy considered
in the present paper (cf. [11]).

Since F,(6, ¢) is also a generalization of Orlicz space, the reader
iy referred to [5] for background on Orlicz spaces. The first section of
this paper is devoted to the definition of B,(0, &), the proof that it is
a Banach space, and discussion of its dependence on the parameters.
In the next section are considered reflexivity of Hy(0, @) and “compact-
ness” (of the unit ball in & certain weak topology) as an extension of the
concept introduced in [8]. The paper concludes with some results con-
cerned with convexity properties-rotundity and uniform rotundity of
By (6, G)- :

1. Definition and general properties. Let (2,X%) be 2 meagurable
space, and M a set of probability measures on (2; ). If f and g are
S measurable functions and ueM, f = g [4] means that f =g p-almost
everywhere; f and g will be identified if f =gy for all peM.®

1.1. Definition. A set 4 = Q is M-null if for every peM, 4 has
u-outer measure zero. X is M-complete if it contains every M-null set.

For any ({2, Z, M) which is mentioned hereafter, X will be assumed
to be M-complete. This, of course, guarantees that if f is Z-measurable,
and ¢ differs from f only on an M null set, then g is Z-measurable (and
ig identified with f). ‘

Fixing (2, =, M), let @ and 8 be Young’'s funetions; that is, symmetric
non-negative convex functions on the line vanishing at the origin; and
let G: M — (0, oo). If' § is the power set of M, and for any AeS,

mg(d) = MZAG(#)
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(= oo for A uncountable), then eclearly (M, 8, mg) 18 & measure space.
Now consider the two Orlicz spaces

I =Ly(M, 8, mg), Lolp)=Ls(R,2,p),

where u is any measure in M. For each weM, Lo(u) will be endowed
with the -Orlicz norm

£ = sup {| [ Fgdu|: [ P(g)ap <1},
where ¥ is (and will continue to denote) the Young funetion comple-
mentary to @, i.e.

V() = sup {joly— D(y)}-
y=0

On 1§, the norm

NE(F) = mf{K>0 fa( ).sz~

2 9(}1}(;«)) G(u) < ].}

pehd

will be used. It is known ([5], p. 70, 78) that with the respective norms,
1§ and Lys(u) are Banach spaces.
If fe ﬂ Ly(u) (i-e., for all ueM, the u-equivalence class [f],eLq( N))

ned
then Fy(u) = |f|z defines a function F;:M — [0, o). If f,ge ﬂ L (p
and a is real, then clearly
FHU Fy+ F,
L.2. Definition. By (0, &) =

and  Fy = |a| Fy.
{f€ ﬂ Lm
1.3. LemmA. If feBy(0, @), then

): Fyelf).

Il < 6~ )N"(F,)

(G( )
for all weM, where as usual, for a0, 07 (a) = sup {z >

Proof. Since

) b
N§(F) = inf {K >0: Ze( Zr(cm)G(”) < 1},

peM

it follows that for every ¢> 0 and every u,e<lf,

Fy (o) O Fy(w)
| —— T
( N (F)+: )G(”‘)) S ,;M b ( NEF)+ ¢ )G(”) <5

0: 0(z) < a).
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go that

Ille® =

) < VB0 ).
G (o)
Since ¢ is arbitrary, the result follows, q.e.d.
1.4. TeroreM. If N3E(f) = N§(F)), then N3C is a norm on Eu(6, @)
under which this space is complete; i.e., Eg(0, @) is o Banach space.
Proof. If f, geEy(0, @) and « is real,

NG (Fyyg) < NG (Fy-+ Fy) < N§ (Fy)+ NG (Fy) < oo

and
N (Fu)

= NG (|| Fy) = || N5 (Fy) < o0

50 that B, (0, @) is a linear space. In fact, this shows that N5 is a semi-
norm on E,(0, #). To show that N3% is actually a norm, suppose N%%(f)
=0, i.e. N§(F) = 0. Since N§ is a norm, & = 0, ie., for all ueM,
[IfIl3 = 0. But this implies f = 0 [u] for all ueM, so that f= 0.

Now suppose {fu} = Bs(6, &) and N3%(fu—fm) =0 as u,m— oco;
it can be assumed, by extracting a subsequence if necessary, that

3 N, —fapr) < 0.

n=1

By 1.3,
U toll < 070 (G B0 o)

for each ueM, which implies that

-1 1 6,G
6 (G())Z'N fh fn+1 co.

The Holder inequality ([5], p. 80) implies that, for each ueM,

D Mfa—Fasallo <

==

J 1 Taial s < W N 1) = 5 gy el
Thus i py(s) is so large that
) fk o foalle < P (1) 475,
then-
_2 Sl ot < 475,
so that for m > p;(p),
1{00 @)= Fans (@) A Fn (@) —Funl0)] > 27} < 275,

Studia Mathematica XXXV.1
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18 R. L. Rosenberg
If
Bim = {0 [fop (0) = Fpper (@) | fmos (0)— Fun ()] > 27
and
E,u = U Elc X
k=1 M=pj-1
then u(E,) =0, and it is easily seen that {f,} is pointwise Cauchy on

2—F,. Hence there is an f such that f, —f except on an M-null set
(namely, Q{ E,), and it follows by M-completeness that f is Z-measurable,
He.

However, for each weM, La(u) is complete under ||-|s
a function f,eLg(p) with ||f,—

, 80 there is
fulls =0 as % — oo, This implies

i)ﬂfn"‘fu“’/‘"" 0,

which in turn implies that f,, — f, in y-measure, so that there exists a sub-
sequence {fy} with fu, —f,, w-almost everywhere, as % — co. It must
therefore be f, = f[u], whence fe () Lo(u) and

e

fa—Ffllo 0.

Since 0 < F, + F (pointwise) implies N7 (F,) 4 N§(F), and for all
uelM,

B n ()

— I = T1i E 1 b
”f" f”«b iﬂ“fn fm“/¢ - }Lrip(/n“fm) (,U.) <IC§LF(7‘I:“71C«H)(/")7

one obtaing
N (fmf) =

G [e2]
N (Fy-n) < N OG( 2 Fi)

lim ¥ Zr(fk TARIES

M—>00

ed
k‘gyp_Na ('F(flc“flz+1))

hm ZNB (F(fk fk|1))

I

= k‘:zvl: 'N&G(.fk“'flp‘r 1) .

Nm];:t ;hi lg,;stqezl(oilesswn goes to zero as n-—> oo, i.e. f e]“,p(o @) and
By (6,6) will be called the Orlicz space based on M relative to (P, 0, G).
Clearly, if M = {u,}, then B, (0, @) = L, (140), the ordinary Orlicz space.
Bo(0, G) will denote the unit ball {f: N3°(f) <1}. It is easily seen
:]gﬁg If1< lg] implies N3 () < N¥%5%(g); henee every ball aB,(0, ) iﬁ
1.5. TeroreM. (a) If &,(»)

en < Dy(ex) for all o> m, (¢ >0, x,

= 0),

N%?( )< 0[1+ IP:a(‘??z(m?o))] -N%za('),

icm
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where ¥, is the complementary function to D, and where ¢, is the left derivative
of @y Hence Ha,(6, &) = Ho (6, @), whenever W, (pa(emy)) < oo

(b) If 0,(%) < O.(ca) for all >0 (c>0), then N2(-)< eNZ(:).
Hence Eg(0y G) = Bo(6y, @)

(e) If Gy < oGy, then N3*1(-) <max(c, 1) N3™2(-), so that Be(6, G-)
< By (0, Gy).

Proof. (a) According to [5], p. 113, for every peld,

{15, < o1+ p(Q) Vs (psCemo))] 1115,
Sinee u(2) = 1, applying N§ to both sides gives the desired result.
(b) If 6,(%) < 0,(cx), then
(]lf lla ) @lu) < }

20
(>0 0. “0F) aw <1} = o379

Nl (f) = inf{K >0:
peM

< inf IK
pelM

() Gy () < ¢Gy(p) for all eI implies, for a = max(e, 1), b = N5%(f),

S (Hill@)gl() Zl(; (Hflb)GD( )

neM He

< — 2 (J]_j_‘l;ili) Ga(p) < i <1,
MS!DI

=

a a
and so N5 (f) < ab = max(c, 1 V3%, q.é.d.
‘When
0 <1
N L
oo, @] >1,

1§ consists of the bounded functions, in which case Hq(0, §) consists of
the funetions f in (1) Lo(px) such that

ueM
sup {|If Il

in fact, NG7(f) = sup{|fls: peM}. This space Eu(0, #) (which does not
depend on @) will be denoted merely by Es (norm by No(+), unit ball
by By). In particular, it @(z) = [z|", 1< p < oo, then Hy = B, of [8].

1.6. PROPOSITION. If either 0 is discontinuous or 1/G is bounded,
then Bqy(8, G) < By

Proof. Observe that 6 is discontinuous iff 6= is bounded; and that
in any cage 67" is finite and non- decreasmg It follows easily that the
above hypothesis is equivalent to: 6~ [ & (- ) is bounded. This, together
with 1.3, implies that

sup{||flfs: wel} < BNGE(F),

tpel} < oo;
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where

o= w0 () weatf < o=

ie. Es(0,Q) c By, q.e.d.

Two special cases of @ should be discussed here, as they clarify the

situations in what follows. Define

ol <1,

o )= |
Do(w)—’oo, @] > 1.

The complementary function to @, is given by
&,(1) = |#| for all w.

Of course, L, = L, and Ly = L. : ‘

If & is discontinuous, then by [12], p. 82, Lp(s) = Ly (s) with
all- & < || Ife <b - [l% for all xeM and some a, b > 0 which (since u(Q) =
for all 4) do not depend on x. Hence (0, @) = I.(0,Q) with oN f,;,”( 4
< NY() <BNE(-). For this reason, when @ ds discontinuous, it can
(amd will) be replaced by D. If @ (x)/|z| is bounded, then L, (u) = Ly (u)
(2], p. 82) with ol [{ < |16 < dll- | for all weM and some ¢, d>0
independent of x. Hence Eo(6,@) = E,(0, &) with oN%(-)< NGE(+)
bgdgf’g(q. Thus any @ with @(z)/|z| bounded can (and will) be replaced

Y Py !

] Note that 1.5 (a) is of no consequence when ![fz(qoz(cwo)) = oo; butb
since by the equality in Young’s inequality, T2(¢2(cmo)) = 0oy (CWy) —
—@y(02,), this can happen only if &, is discontinuous. The preceding
remarks show that, in this case, afl[ < |-|l5, <b|-[l%. Also, by [12],
D- 82, Loy () = Lo (u) for any @ and any peM, with Il < el ||% for some
¢ >0 independent of u. Therefore -

c ;
o < el < Iy, NEC) < NI () <~ N,
and

E@z(ay G) = E¢(07 &)
(compare with 1.5 (a)).

1.7. Lemva. [fjfs = Iiifo%(u- J OB dp).

Proof. This has been proved ([51, p. 92) for the case @ continuous,

2@ o, 1m 2@ _

20 |@ ) Zs0 0]

Orlics spaces 21

]

If & is discontinuous, i.e., (by convention) & = &, then

o Y o
it Ot JoENG) =t (i [ oo

= inf{%: M[lfl >-k}—] = O} = u-ess sup | f)
= |Iflle = Iflla-
If & is continuous,
Q%
tim 2@ _ o,
wsoo |7
but
Q@) _ o 0,
20 |&
then define

& (x) = D(x)—als|
(clearly a Young function), so that @ is continuous,

5 &
" (@) _ oo, lim @ _ o a—o.

Now
it (14 [ O] = int (1 [ BUNG+oE [ 1f1d)
—int {1+ [ SENY) +a [ ifids
= I+ [ \fld.
An easy computation shows that ¥(z) = P(jo|—a), so that also
1165 = sup{ [ 1o du: [¥(g)du <1} = sup{ [1fyldu: J¥lgl—a)aw <1}

= sup{JifI(lgl—i—a)du:!{i’(g)dy. <1} = Iflg+aflfldp.

Finally, if

lim ———— < oo,
PR

& (z)
|
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then @ (x)/|#| is bounded, ie. (by convention) & = @,. Then

it (14 J o) = int (i J 112

it + Jfidn= [ ifid
=flf = Ifla, q.e.d.
1.8. LeMua. If g, p'eM, 0< a <L and v = au+(L—a) ', then
alflla+ (1 — a)lfllz < R\rlfl\fp < flfa+ £l
for any fe/La (B) ~ Lo (u').
Proof. By definition,
Il = Sup{agﬂfm d/ﬁ—Hl—a)QfJfgl du': aﬂf (g)dp+(1— a)“f?f’(!})d/t’ <1}
<asp{ [Ifsldus o [P0 du < 1)+ '
+0—a) sup  JIfyldu's (1) [¥(g)ap <1} .
< Sup{nfIf(ag)\dwayf(ag)dﬂ <1+
+sup|{ f|f((1—a)g)|dp’: JE(—a)g)dn <1} = Iflls+ Ifll -
On the other hand, using 1.7,

.1 .
I = it {a(L+ [ OCRR) ) +0—a) 1+ J o aha))
1 .1 R
> aint = (14 J oEnay) +(1~a>g1>fof(1+ﬂf O (Kf)dw')
= a|fls+1—a)lfls, q.e.d. '
1.9. ProposITION. If M contains af least two distinet measures and

'L:s conves (6.6 oy ' eM, 0 < a <1 Imply ap+(1—a) u' €M, s0 that M has
infinitely many distinet members), then

N (f) = inf{K > 0 supfifs < K07(0)}.
pel
Consequenily, E4(0,G) = B, whenever 671 (0) > 0, and E,(0, G) = {0}
when 671(0) = 0.
Proof. Note that
sup |l < K671 (0)
HeM

©
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it 6|14/ K) = 0 for all uel, i.e. 0(F,(~)/K) = 0.1t will guﬁiee to SélOW
that O(F(-)/E) 0 if K <N3°(f) and §(F(-}/E) =0 it K >N3(.
Thus, suppose 6(F;(+)/E) = 0; it follows that

F,(,u,))
ol —E ) @u) = 0< 1,
gﬁ ( x )"

so that K > N%(f). Conversely, let o( " (o) [ E) >0 for some poeM,

and fix fe(0,1). Then for p'eM, p' # po and any ce[f, 1], use of 1.8
gives

Q(Ff(“ﬁ‘o‘*“(l—a)l")) S G(Ff(aﬂﬁ (1*0)#’)) . o(ﬂ’i’@) >0.
pE oK

oK

Sinee infinitely many measures in M, of the form ap,+ (L—a)p’y
are obtained by varying e in [, 1], it is seen that

Ze(fzgg))a(m = oo.

ued

. . . el
Hence N5 (f) = K for all pe(0,1), which implies E < N
Tf 67 (0) > 0, then obviously

1
.G — _ “
N = gy S Wk,
so0 that Es(0,§) = Be. If 67*(0) = 0, it is clear that N?,;G(f) =0, i.e.
By (0,6 = {0}, q.e.d.

2. Compactness and reflexivity. In this section a compactness con-
dition for the set of measures M will be introduced,.and t.zhen various
properties of Eo(6, &), ineluding reflexivity, will be investigated.

2.1. TimmmA. If weM and heLu(p), then 1(h, w): Bo(0, @) > B defined

by Uh, w) (f) = [ fhdp is o continuous linear functional, and
@ Q

NE(R).
G(m) ®)

Proof. i(h, u) is obviously linear. By Holder's inequality and 1.3,

(E, 9l < 9_1(

1 1 rd A
i, w0 = | ] o < W0 < 57 55) ] v

Hence

1 1 H
[B(h, @)l = sup{|1(h, @) (D]: ¥ (N <1y <6 (GT#)_) By, qed.
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2.2, Definition. &y denotes the (real) linear space spanned by the
functionals I(h, u) for weM and he &y (u), where Ky(u) is the closed sub-
space determined by the hounded functions in Ly ().

2.3. TEEOREM. &y is o fotal subspace of (Ba(0, @))%, the adjoint
space of Bq(0, G). Thus Bu(6,G) is o Housdorff space under the Sy-topo-
logy of Es(6, Q). -

Proof. By 2.1, &y < (Es(9, G I Uk, @) (f) =0 for all e,
he Ky (u), then, in particular, [ fxsdu = 0 for all well and A X which im-
{Q

plies f = 0 [x] for all uelM, ie., f = 0. In other words, &w is a total
subspace. Since any topology induced by a total subspace of the dual
Space is Hausdorff, the second statement follows, q.e.d.

24. Definition. (2, X, M) is said to be (0, @)-compact it and only
if for some Young’s function &, the unit ball By(0,6) of Ba(0,6) is
Ey-compact.

It will be shown that under a mild restrietion on (0, @), every (Q, X, M)
where M is a dominated set of measures, is (0, ¢)-compact. A special
case is defined by Pitcher [8], when 0 is a two-valued (0 and oo) Young
function. Pitcher also demonstrates that the compactness condition is
really more general than domination.

For any ueM, ¢ 0, ¢By(u) will denote the set

{FeLo(): Iflls < 0}
Writing ¢, for 07'(1/¢(u)), 1.3 takes the form : i

B@(oy G) < Q{%Bw(/ﬁ)-

2.5. Definition. 45% or simply 4, is the diagonal map of By(0, G)
into [ 1{( Bo (i), 1.6, 4G%(f) = {f,}uerr, Where fu=1fIul

In the following, for each uelf , the topology considered on 0,By()a
is the weak topology induced by the 1(h, u), e Ky (u); I1 0.Bo () is then

H
endowed with the corresponding product topology. “¥

- 2.6. Lemua. If B,(0,4) is Su-compad, then 4(By(0, &) is dosed
i the produdt topology of I ¢.Bo(u). The converse holds providing ¥ s
continuous. he2d

Proof. Clearly, 4is a one-to-one map. Consider the topology induced
on 4(By(6, @) by defining U = 4(By(0, @) to be open if and only if

fA‘l(U) i8 &y-open. In this topology, a base at 0 consists of sety of the
orm

{{f#}usﬂ:fn =f[,L6],feB¢(9, @), 11 (hy, (N < e d = 1., ’IL},

Orlice spaces ) 25

where h; e Ky (u;). But these sets are just the intersections _with A(B,(8, &)
of the sets in the base at 0 of the product topology, i.e.,

{{f#}MsM: 12 (R, /‘t)(fnz)l <et=1, ,n}

Henee the given topology is the restriction to 4(Ba(f, @) of th.e
product topology. So if By(f, @) is é’w-compa,c.t, then A(Bq,.(ﬂ, @) lﬁ
compact in the product topology (4 being continuous) 3 ?mtlsmge eac.
¢,Bs(p) is Hausdorff, so is uSIZ—IM ¢, Bo(p), and 4(Bg(8, @) is close -

If ¥ is continuous, then for ueM every continuous linear functional
on Ky(p) is of the form ([5], p. 128)

U = [ fhds, feDaln),

and the correspondence f— T*(f, #) is an isomg’cri.c isomorphism of Ljf’(/”)
with (Ky(w)". Since I*(f, #) () = L(k, u) (), *m is seen that theflgzﬁ
topology on By(u) is equivalent to the weak -topology on t}’le uni

of (KW(M))*, in which that unit ball is compact, by Alaogllu ] Thegre(zr[;.
Thus 6,Bg(s) is compact and, by Tychonoff’s Theorem, so 18 ﬂglo,, ().

It follows that if 4(Be(6, @) is closed m the product topglogzu, th];rf
it is compact, and (since A~ is continuous) B,(0, @) is &Ey-co
pact,f[‘l%fﬁa'quirement that ¥ be continuous, for the converse par}a f’f tpe
preceding lemma, is ‘essential, for the following reason. Whe]aln !Iﬂ}s :;fdi
continuous, then, as has been noted,_KW(p) =.Lm (,u)' for each‘ Me't }71 e
([4], p- 296) the dual space (L, (u))* is isometrically isornorp fh?;.‘com<
space ba(w) of finitely additive (1°ea,1—va1_ue§1) set functl?ns on ugl o
pletion of X which are of bounded variation an*d. vanish, 0111 -n H&u;&:
The L. (u)-topology on ba(p) is thus the weak™-topology (de{l(?eomEtric
dorff). B,(u), the unit ball of Ly(p), is & subset of ba(,u).(m; e)); ;sherefore
isomorphism); in order for B,(u) to be L, (,u,)-eompaet,. it m;)ls e )
be an L (u)-closed subset of ba(u). But an example given by ,
p. 631, shows this need not be true.

n
i), and 1 all e >0
2.7. Levma. If {m, S wnt < M, feioll}q,(yz), 'a,nd if for
and hyeEw(ps), i =1, ..., n, there is geB, (0, &) with

P=1,...,m,

| S~ 9hdu] <,
then )
Z O (1A G (ue) < 1.
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. Proof. Choose ¢ in (0, 1); then by definition, for each ¢ =1, ..., n,
there is an hfeKy{u;) with [ Y(h) du; < 1, satistying
Q

| hedu] > 81115,

since ([5], p. 87) the latter space is norm-determining. Now given ¢ > 0,
there is by hypothesis, a geBs(0, @) with

]ﬂf(f—g)hidmi <& i=1,...,m.
Combining the above,
Sl < [Qf Tredp| < J ! (f—g) by +| ﬂfghfzd‘ui' < ot [lgll.
Then
SO 60 < 3 000l 596 ).

But since geBy(0, @), Lemma 1.3 implies that

1
Slgllss < 60" (__.) <5
? Gluy) S
where

- 1 )
a Elrggﬂ I(G(M)) < B =sup{w > 0: 6(z) < oo}

(the “jump point” of 9, if it jumps), and 80 da <.B. Since & does not
depend on &, one can take < f/6—a. § i3 convex and continuous on
(0, 8); 80 6(3lgliz+ de)—06(3llgllz) < 6(da+ de)—6(da), and
n i n n
g,l 0(8* 1116 6 (ws) <1_21 0(0llglla) & (ps) + [0 (Ja+ de) —6(6a)] 3 G (ps).
< . < i=1
But

2 0(3lgle)6 () < 1

since geBy (0, @), and 0(da+0e)—0(da) >0 ag & 0, because & does
not depend on & and 6 is continuous on [0, ). Therefore,

20816 () < 1,

and letting § -» 1, the result follows, g.e.d.
2.8. THEOREM. B, (9, &) s & y-closed.
Proof. Follows easily from 2.7.
The next Lemma is important for a key result. of this section.

icm
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2.9. LEMMA. If f e Lo(u) for each peM and for every {m, ..., Ut = M
there is an feBg(0, @) with f = f, [w], ¢ =1, ..., n, then {fﬂ},‘fy is in th:e
closure. of A(Bg(8, @) (in the product topology). Conversely, if {fﬂ}ﬂsgff is
in the dlosure of 4(Bo(6, G)), then for every {my pa .-} = M there is @
Semeasurable f (possibly depending on the given countable collection) with
f=Ffuludii=12 ..., and

2 O 6 () < 1.
Proof. Given {u, ..., tn} and feBo (0, §) as in the first statement,
then for any hjeKy(ps), ¢ =1,2,...,n, clearly l(hs, ) (f—F,;) =0, 80
that {f}eir (= 4(f)) is in every neighborhood of {(f.}uar of the form

{{g#}MsM: [2(hi, ﬂi)(gu,;“fm” <egi=1,.. n}a A

- where h; and & > 0 may vary. Since by selecting the various finite subsets

of M, one obtains in this way all basis neighhorhoods centered at {f,,},,d._l,
and each such neighborhood contains an elemem; of A(Ba,(e, G)), it
follows that {f,}.ar is in the closure of A{B4(0, ).

Now suppgs; {fuuenr is in the closure of A(Bs(0, @), and let {uy,

piay o} = M. Let » = X2 ', and define
i=1

dpin{®) A () .
An,m: {0)2—'%;‘>0, T>O H
then
Ao, dpn [ A,
dpn dv dv

is finite and strictly positive on A, m. Let

Oﬂ,m = {LO E-An,m: fy”(w) >fpm(w)}

and, for k=1,2, ...,

 dwlo)
Cm(k)-= {a) eCpumi0 < ——< kL.

‘Z,Mm
Clearly, ,
Mm(on,m) = lim. H:IL(Gn,m(k))y
koo
80 if ftu(Com) > 0, then, for some ko, (G (ko)) >0. I g denotes the
indicator function of Cpm(k), then g and g(dpin [dum) are bounded Z-meas-

urable functions and hence belong to Kw(u) for all w «JI. Since {f“}l‘év.l
is in the closure of A(Ba(6, &), for any & >0 there 15 an feeBo(6, &)
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such that

f gf (fu—Jo) 90| < £/2
and

| ﬂf (Fuu—T )90

. If follows that

Apon
nf (fu,,r‘fs)!l-@;— dﬂm) < ¢g[2.

"

At
f (f"n—-fﬂm)ﬁ;dﬂm = l!sf(fﬂn_fﬂm)gdl‘n < s,

Cp, (%o

and, since the left side is independent of e,

Qppn
o f(ko)(fuﬂ fum)“md,um =0, .

which is a contradiction since ‘ i
¢ /"m(O,,’m(ko)) >0 and the integrand is
strictly positive on Cym (k). Thus #n(Cpm) = 0 and, simila;rly,gr
'll‘m{we-An,m: f,u"(w) < f,um(w)} = 0.
This implies that

pn{wednm: f, =
Next, let ? o T () 7 ()} = 0.

D= s Bl st

ar P 0 for all j< n},

and define
f= 7%'1 p, fuen-

Since f, are Z-me
. #y, asurable, and cl N
f is Z-measurable. Also, note t’ha,t early the D, eX (and are disjoint),

{w: f(o) 7 fuy (@)}

(o)
dv >0 f“f(w) :’éf“’n(w)}

Q) n-1
< {w 4 =0} ug‘L=)1 {!’IJE.D;,':

 [p: (@) n-1
{w. T =0}u7£)1 {wsA,-,,,,: Ty (@) % fu ()}

But obviously

it (@)
:“n{ P = —
@ dy 0} =0,
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and it has been shown that
Hn{a’GAj,'ﬂ:fﬂj(ai) ?5fyn(‘0)} =0;
thus f = fy, [uadsn =12, ...
Turthermore, fe () Lo(u), since by definition fueLo(p) ¢ = 1,2, ..
i=1

Fixing n, s >0, and hieKy(p)y i = 1, ..., %, then since {f,}.ar is in the
closure of A{B,,,(H, @), there is a geBo(f, @) with

]gf(f"!l)hid.ui‘ = lnf(fﬂi—g)hidyﬂ <e, d=1,.,n.
Hence, by 2.7,
20016 (w) < 1.

But n» is arbitrary, so
QG(HJ‘I%")G(M) <1, aqed

2.10. COROTLARY. If {fu}uen is in the closure of A(Ba(6, @), then
HZMQ(IIJ‘MHZ)G(#) < 1.

Proof. For any {uy, s ...} = M, one obtains by 2.9 an f with
f :fu.;[;“i]; i=1,2,..., and

E o (IfI1) 6 (m) < 1,
so that
i O f e & () < 1.

But this holds for any countable subset, so the proof is done, g.e.d.

2.11. PropostTION. If M is countable and ¥ is continuous, then
B,(0, Q) is Ewp-compact.

Proot. By 2.6, it sutfices to show that 4 (Ba(8, @) is closed. Suppose
{f,}uer 18 in the closure of 4(By(8, @)); then by 2.9, since M is countable,
there is an f = f.[u] for all uel, and

200l Gu) <1,

e

ie., feBg(0, G). Hence {futuerre 4 (Bo(6, @), and A(Bs(6, @) is closed,

g.e.d.
"The first main result of this section can now be given in the following:


GUEST


30 R. L. Rosenbeorg

2.12. THEOREM. On By (0, @), the &w and & -topologies are equi-
valent for any . If (2, Z, M) is (0, @)-compact, then B, (0, @) is & -compact.
Conversely, if By (0,G) is &-compact and contains a (strictly) positive
function, then Bg(0, G) is Ew-compact, whenever ¥ is continuous.

Proof. Since Ky(u) contains all u-essentially bounded measurable
functions, the &yp-topology is stronger than the & -topology. Now it
U(hy ) € &, letb .

(#) 1 () = h(w), |W{w)| < n,
0, [B(w) > n;
then 1(A™, u)e &, for n = 1,2, ... Tf fe B (0, @), then, by 1.3,
1f1<07 (] 2
ST

so that

Uhy 1) (=100, @) (D] = | [ Fh—1") du

< [Ifl|lh—B™q go—l(wi—-) h
J 11— 5 d g, d M

which goes to 0, uniformly in f, as % — oo, since Ku(p) = Lw(u) = Ly (u)
([12], p. 82). Hence, all i(h, u), and therefore all elements of &y, can be
uniformly approximated on B (0, @) by elements of &, so that the
topologies are in fact equivalent on B, (6, @). :

Suppose (2, 2, M) is (9, @)-compact, i.e., for some D, B,(0, ) is
_ &p-compact. The inequality N%%(-) < eN%7(+), for some ¢ >0, has been

noted earlier; in other terms, B (8, @) < ¢B,(6,d). But ¢B,(0,4) is
&p-compact (since sealar multiplieation is continuous) and, by 2.8, B (¢, &)
is &,-closed, hence &y-closed, by the first part of this theorem. Thus
B (6,@) is €y (and so &,-) compact.

Now assume that ¥ is continuous, and that B, (0, @) is &-compact
and contains & function f, > 0. Let {f, },.az be in the closure of A, (B, (0, &)
By 2.9, for all {uy, ..., uu} = M there is an f' with ' = Fu iy 6 =1, ..., n
It f™ denotes the truncation of the function f as in Z*), then T

1 , 1
OO = AP Mwl,  i=1,.m,
for every integer N > 0. But since |(f)™| < N, it follows that

1 , .
— folf Y eB, (0, 6)

©
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by the fact that the ball is solid. Again by 2.9, this means that {¥N " fof }uar -
is in the closure of A,(B(f, &) for each N. Now, according to 2.6,
Am(Bm(B, @) is closed, so for each N there is a gyeB, (0, &) such that

1 :
gn =—ﬁfoﬂ;w[ﬂj for all well.

Since for each peM, f& -7, and f§) = (Ngwn/fo) [u], the sequence
{Ngx|fo} must converge pu-almost everywhere to a measurable function 5
which must then satisfy f = f,[u] for all weM. By 2.10, this implies

”;’M@(Hfll’;) Gp) <1,

i.e., feBs(8, &), and so {fluareds(Bo(, ). Thus Ao(Bo(8, @) s
closed ; 50 2.6 and the continuity of ¥ imply that B,(0, &) is &yp-compact,
q.e.d.

The condition in 2.12 that there exist 0 < fye B, (8, &) is essentially

. the same as requiring that §71(0) > 0. More precisely,

2.13. Lemma. If 67°(0) >0 (ie., if 6(z) =0 for some z,>>0),
then By, (0, G) contains a function fo>0. If M is uncountable, then the
converse holds.

Proof. If z, >0 and 8(x,) =0, define f; =z, Then Ifolls, = @4
for all yeM and

3 0(lfolll) G(w) = 3 8(w) G(p) =01,
e M peM

50 focB.(6, ). _
Conversely, let M be uncountable, and suppose 0 < foeBo (8, G).
This means that

,Zw’lf’(]lfoll’f.o) Glw) <1,

and so there must be a peM sueh that 6(]foll50) = 0. But since f, >0,
Ifole is also > 0. Hence 07'(0) >0, g.e.d.

The following result will be found useful later on:

2.14. L. If (2, Z, M) is (6, G)-compact, B.(6, &) contains an
fo >0, and {f.}.r are measurable functions such that for every {uy, ---y fn}
< M there is a measurable function f' with [ = f,lwl, ¢ =1,...,% then
there is o measurable f such that f = f.[u] for all peM.

Proof. The proof here is essentially extracted from the proof of
2.12 (the part where B, (0, d) is assumed & -compact). By the first part
of 2.12, it follows from the above Liypothesis that B, (6, @) is indeed
&,-compact. Although {f.}.ar is not assumed here to be in the closure
of anything, the assumption of the existence, for each {uy, ..., fin}, Of
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an f’ as above, sufficiently compensates for this. One now proceeds exactly
as in 2.12 to obtain the desired function f, g.e.d.

In the sequel, different sets of measures M will be comulem(l on
(L2, Z); this will be indicated as, for example, B, (0, @; M). If G iy defined
on M and M' = M, @ will also stand for the restrietion of G to M’. Also,
f=glM] or [flu = [glar wilt mean f = g[u] for all yel.

2.15. THEOREM. If By(0,G; M) is &y(M)-compact, and M < M
is such that for all [glareBa(6,G; M') there is am f = g[M'] with
[flueBa(6, G; M), then B,(6,G; M') is &y (M')-compact.

Proof. Consider the map [flar—[flwr of Be(0,G; M) into
B,(6,G; M'). It is well-defined sinee f, = f,[M] implies f; = fo[M'].
It is continuous in the &y(M)- and & (M')-topologies, since the invérse
image of the open set

AT Uy i) ()] < ey i =1, ..0,0},  ueM, h,;e]{.p(m'),
is
(LD 0(he, ) (F)l <&y §=1,...,n}.

Furthelrmore, by hypothesis, the map is onto. But this means that
B, (0,65 M') is the continuous image of a compact set, and so is &, (M')-
compact, q.e.d.

2.16. THEOREM. If ¥ is continuous, and M has a subset M’ such that &

(a) Bo(0,G5 M) is Eu(M')-compact;
) [l eBo (8, G; M) implies f =0 [M—M'];
(¢) [g]areBy(6, G; M') implies that there is am f = g[M'] with
f=0[M-MT; : ‘
- then By(0, G; M) is &u(M)-compact.

Proof. Since ¥'is continuous, one may assume, by 2. 8, 4(Bo(6,@; M)
is closed and show that A(B,,,(G G; M) is closed. So suppose {f,,}MM is
in the closure of 4(B,(6, &; M)) ‘then for all {u;, ..., pa} @ M, &> 0,
hieKg(us), © =1,...,n, there is an [f'lyeBa(8, G; M) with

tf(fm hdﬂz‘<€, %‘—-‘—1,...,7]

y (b), f =0 [M— M'], which implies that for all ,ueM M, s> 0,
hEK!p‘( )y ’

Uf#hd:”i <&

8o that f, = 0[,u] for each
[f lareBa(0, G; M), since

Z00F 1) &)

peM—M'. Furthermore, it is eclear that

<”§40(1|f'llfé) @

icm
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It follows that {f.}.ar is in the closure of A(B,(6,G; M), and
since the latter is closed, there is a [glareBo(8, G; M) with f, = g[ul
for all ueM'. But by (c), it may be assumed that g = 0[ M —M'], and
$0 g = f, = 0[u] for all ﬂsM——M/. Thus it is seen that [glareBs(6, 65 M)
and g = f,[u] for-all ueM. Hence {fu}uar I8 in A(Bo(6, G; M)), the latter
is closed, and B,(6,G; M) is &w(M)-compact, q.e.d.

2.17. TaEoREM. If M has a subset M’ such that

(a) (2, Z, M') is (6, G)-compact;

Yo M with g <3 27" i
N=1

(e) for some K >0, [flareB, (8, G; M') implies |f| <EK[M];

(@) [flar eBwo(0, G5 M) implies [flur<Bw (6, G5 M);
then (Q, Z, M) s (0, G)-compact.

Proof. Obviously, every M-null set is M*-null. Conversely, suppose A
is M'-null and peM. Select {uy, fisy ...} = M as in (b); since A is u,-null
for w =1,2,..., it is also p-null. Hence the M-null and M'-null sets
coincide. Now (d) and its converse (which is always true) imply thab
B, (6, G; M') is identical with B, (6, G; M). By (a) and 2.12, B,(6, ¢; M)
(= B (6,G; M) is &.,(M')-compact. Thus it remains only to show that
the & (M")- and &, (M)-topologies -on B (6, @) (= B,(8, G; M)) are
equivalent. It suffices to prove that every element of £ (M) is the limit

of elements of &, (M), nniformly on B, (6, &). o
T8 ueM, and {#y, fis ...} are such that ,u<22 liny then, by the

Radon-Nikodym theorem, there exists a non- nega.tlve fo such that -

(b) for every meM there ewist {uy, ps, --

n(4) =Affod(7§12‘"/4n) =é’1 Affndﬂn

for every AcX, where f, = 2 "f, If heLy(p), then there is an N=0
such that u{w:|h(w)| >N} =0, so that, for n =1,2,...,

tnfo: (h(0) >N, folo) >0} = 0.

But since min(f,. (o), k)|h(w)| > kN implies [h(e)| >N and fo(w) >0,
F=1,2,...,

| >EN} =0, n=1,2,..

oo min(fu (@), k)| (o)

850 min(fy, k) beLy(pa). Hence, if 1(h, u)e £ (M), then

I )
2, Uoain (fn, &) By fin) € Eoa (M),

studia Mathematica XXXV.1 ;
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It feBo(0, ), then, by (o) If| < KLM], 50
16,12 ()= 3 tmin Gy 1), ) )
=1 5 [t 3] [ iminGh, By

) k
= |n=2k7+l thfndﬂn’i“né; foh'(fn—min(fm 7“))&%'

) k
<n=%—1-1 !_!lfhlfndﬂn"‘nél ﬂf lfhl(fn*min(fn: 70))(1/‘9%

o fe
SEN[ 3 Jfadint 3 [{fa—rmin(fa, ) du].

Since Zl‘ﬂf Jnldun =1, the first term here tends to 0 as k— oo. Now
N=

given & >0, one can choose #, so large that

Z ffnd/‘n < &f2;
o om=mgl 2

then take %, so large that (for the fixed n,)
‘ v

) J fadpn < ef2.

=1 fp >,

It follows that

kg
0y f(fn““mln(fn, k.))dl‘n

N==1 Q2
0
< d
<2 L e
g .
< 2 f fnd,“n’f‘ 2 ffnd;un<8,
n=1 fp>k, N=Ngt1

and since ¢ is arbitrary,

. .
él(mn(fm k) &, ,“n) 1R, p)

a8 k— oo uniformly on B,(6,®), q.e.d.
. 2.18. CoROLLARY. If M s dominated by a probabili
(ie., p <€y for all ueM), ¥ is continuous, and either

(a) 9‘1(1/G(-)) 8 bounded

ty measure u,

or

(b} [glar<Bs(6, G; M) implies that there is an f = g M] with [f

]Mu{#)
€Bo(8,G; M w {u,}) for some extension G of G to Mo {u}; ’

then Bo(0, G; M) is Ew(M)-compact.
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Proof. Let M = M {10}
(a) First consider

0 ] < 1
o= S
oo, |#[>1,
so that for any M < M,

N M) = sup |1k

By 211, B (05, G; {u}) is & ({u.})-compact. Olearly, every pedl
is dominated by a countable subset of {u,}. If [f]{,,u}eBw(Bl,é;{yo}),
then |IflI < 1, ie., {fl < 1[uol; and, moreover, this implies by the do-
mination that |f| < L[M], i, [flireBy (0, @; M). Thus (a)-(d) of 2.17
are satisfied, so that Bm(fjl, é; l?l[) is é'ﬂ]ﬁ')@ompaet. But now M < JIZ,
and given [glueB.(0;, Gy M) (ie., |g| << L[M]) there is an f = g[M]
with [flgreBu (0, G5 M); let

(o), lglo)<1,
0, lg(w)] >1.

It follows from 2.15 that B(8, @; M) iz & (M)-compact. Since
B (0, G; M) contains the constant 1, 2.12 implies that Bs(6;, ¢; M) is
& ( M)-compact.

In general, when 6~'(1/G(-)) is bounded, 1.6 shows that

flw) =

Bo(0,G; M) < 6Bo(0y, G; M)

for some ¢ >0. By 2.8, By(0,G; M) is an &y (M)-closed subset of the
&y(M)-compact ¢By(0;, G; M), hence is itself &x(M)-compact. This
concludes this part of the proof.

(b) Tf {f,}uiz is in the closure of 4(B,(6, G; 1)), then by 2.9, for
every uell there is @ measurable f' with

= fulul, f,‘:fuu[.uoj'
But since u < s, the second equation implies f’ = f, [4], so that
Jug = Fuln]  for all peM.

Using 2.10, f,,eBo(0, G; I0), and so A4(B,(8, &; i) is closed and,
by 2.6, Ba(B,é;ﬂi) is é"y(fd)-compact. The conclugion follows from
this, the hypothesis, and 2.15, g.e.d.

Special properties of reflexive E,(6,G)’s will now be discussed.
Compactness is more general than reflexivity, in the following sense:
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2.19. PROPOSITION. If Ey(0, G) is reflewive, then By (0, @) is &y-com-
pact. )

Proof. By 2.1, the &w-topology on Ee(f, ) is weaker than the
weak (ie. o(Ho(8,@), Fa(0,)) topology. By a well-known theorem
([4], p. 425) By (0, @) is reflexive if and only if By (6, &) is weakly compact;
but by the preceding remark, weak compactness implies &y-compactness,
q.e.d.

2.20. LevmA. If By (0, @) s reflewive, then &y is norm-dense in
By (0, ), and all 1eB5(0, G) are absolutely continuous, i.e., {f,} < Ha(0, &),
Tad O imply 1(fn) 0.

Proof. If &y + E5(0, @) and lyeHy (0, G)— &y, then by the Hahn-
Banach theorem there is an LeFp (6, ¢) with L) =1, L(&y) = 0.
But since Hy(6,G) is reflexive, there is an felq(0, &) (f «~ L) with
Io(f) = 1 and I(f) = 0 for all l< &». This, however, contradicts the fact

(2.3) that &y is a fotel subspace of Hi(0,@). Hence &y = Fg(f, &)

Now note that each element of &y is absolutely continuous; for if
{fu} € Bo(6, @), ful 0, peM, and heKy(u), then

(2(Ry @) (Fa)l sgffnimcz,‘ 0,

by the Dominated Convergence Theorem. If ! is an arbitrary element

of E3(6,@) and ¢ > 0, then since &y = Hy(0, @), there is an l,e &y with

[l—1] < e. Hence if {f,} = Bo(0, &), fu ) 0,

B < [ (Fa) - 1= L N 5E (fa) < 1l (Fdl 4+ eN % (f1)

but since I.(f,) > 0 and & is arbitrary, it follows that I(f,)— 0, g.e.d.
In what follows in this section, 6 will be restricted to the two-valued
case; i.e., Hy(0,d) = Ho (as previously defined) with
Mo (f) = supllflls = Na(f)-
ueM i
The methods of proof in the following do not seem to extend to the
more general case. .
2.21. TuroreM. If H, is reflexive, ®7'(0) = ¥~1(0) = 0, and feH,
and if .
<n
fol@) = [f(w)7 [f(w)] < n,
0, [f(w)] >n,

then Ny(f—f.) —=0; d.e., bounded functions are dense in H,. If, morcover,

0 # fely, then
illﬁ,,f@(m(f))d"""’

©
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and if, further, ® satisfies the Ay-condition (i.c., there ewist @, and ¢ >0
with @(22) < oD () for all ©= ), then No(f—fu)—0; i.e, bounded
functions are dense in Ho.

Proof. Since N, (f—fu) < Ny (f T —fi) + N (f~—fr), it may be assumed
that f3> 0. Note that N,(f—f.){ 7> 0; suppose 5 > 0. Sinee

Ny (f—fu) = supllf—fulll,
e
for each  there i§ a pneM with ||f—falli» > 5/2. Define for geFs,

1. (9) zbf !’p‘l(f'_‘fn).qdl‘n’ n=1,2,..

Then since
AN L e e,
Qflp( N.(HH+1 )d‘u”< N +14 (P (f fu) dp
. 1 .
Noanr1d YT — N, ()€1,
<warid R <FpT 0
we have

()] < N2 (27 (f—Fal)llglly < (Wa()+1) Nalg)-

Hence 1,y (it is clearly a linear functional) and 1]l_n|| <N '(f)—{—l
for all m, i.e., lye(Ny(f)+1)Bs, where B is the closed unit ball in .
But by Alaoglu’s Theorem, By (and therefore (N1(f)+1) Be) is compach
in the weak*topology of Ej, and so {I,} has a weak" cluster point 7in
(N1(f)+1)B;- ) )

Now ®&'(f)eEq, since (by Young's. inequality)

187 (Pl < [ @(@7 () dp+1< !{fdM'Fl,
el
so that
No(@7'(f) = sup 07" (e < sup [fap+1 = Ny(f)+1 < oo.
pedf e

Using the fact that ([5], p. 13) &~ ()P (2) = # for all 5> 0, we
Jhave

U™ (f) =%ij§1°lnk(@_’(f)) =l}1j-gﬂf O () ¥ (F— o) Bty

>lm f¢—1 (f'_fnk) P! (f”‘fn;b) df"nk 21]_1]1_ f(f"‘fnk) dﬂ'ﬂ/‘;>"]/2 >0,
Tmoo @

T>oo 2

by the Way the p, were chosen; {l,,} is the subsequeilce corresponding
to ®71(f) by the weak™-compactness of (¥1(f)+1) B3 However, note
that for nz >m and any we, either f(w)—fu, (@) =0 or Jog, (@), =0,
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the latter implying fn(w) = 0; thus &' (f) ¥~ (f—f,,) = 0 whenever
me >m. Hence for each m there iy a subsequence {f{} with

D™ (fu)) = klim gf O (fn) ¥

T fa)) Ay = 0.
But since &7(0) = 0,

0, <
ot (f)"‘ o (fm) = !fl = ] = ¢ (f_.ﬁm) ‘l' 01

27, 1fl>m
50 by the absolute continuity of 1 (2.20),

Yo~ () = lim 3o~ () =

which i$ a contradiction. Therefore n = 0 and N,(f—f, } 0.
I in fact, 0 + feHo, then ®(f/Nq(f))eE, since

sup [0 (Nf(f )

Tt follows from the first part of this theorem that

wp [ (s ) d"=N‘[@(Nj<f))"@(Nﬁf )+

* Finally, suppose & (22) < ¢®(x) for all z >
any a >0, there is a K >0 such that ([5], p. 23)

“\s“”@(nﬁw) <1

meM 5

O(az) < KO (2)  for all > w,.
This clearly implies that
¢(i)<z{¢( )+¢(am) for all 3> 0
No(f) No(f) ’ -

Let & >0 be given, and set o = Ns(f)]e; then, by the above,

g f o7} o< K’i?%’r,f@(zvg(f))d"w(ﬂf)ﬁ)< >

Thus, as before,

supf@(f f")d Vo,

ueM
and

) 1
lim sup ” = (f—m

N—>00 peM

50 hm No(f—fn) <

< lim sup f@( (f*fn)) dp+-1 =1,

Nr00 peM §

g Le. Nlp(f_fn)wlf 0, q.e.d.

@y It follows that for *

©
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2.22. Definition. Denote by Qo the weak closure of the set {I(1, u):
uelM,) in By, where M, iy the convex hull of M.

2.23. Levmuma. If By is reflexive, then Qo is weakly compact.

Proof. By reflexivity, B is weakly compact. Since Qo is weakly
closed, it is sufficient to show that Q, is bounded. But if e}, then using
the Holder inequality and [5], p. 79,

L, )l = SuP”gffd.“l: No(f) <1} < sup {gflfl ap: [l < 1)

1

If p = ayp+...+ anpin e, then
n

2 a1, )l <

1
[BCLs )l = llaa (L, p) - anl (1, )l < & i)’

q.e.d.
2.24. LuEvmA. If Hy is reflevive and leQq, then | can be represented as

[116)) =gfdv, feEBs,
for some probability measure v. If Mgy = {v:1(1, »)<Qq}, then Bs(My)
= Bo(M); in fact, Nu(f; Mo) = No(f; M) for all feBs(M).
Proof. Suppose B, is reflexive and TeQq; then, given feByand e >0,

there is a peM, with
=1L, m) (Nl <.

T, in particular, f is a fixed non-negative function, then
WL, @) (f) = [fap=>0
50 that I(f) > 0. Since 1< E} and H, is reflexive, 1 is absolutely continuous
by 2.20. Also (1) =1, since for any u,
' 1, ) (1) = fau=1.

Sinee F, is clearly a vector lattice (feEq implies [f| <H,), the Daniell

extension theorem ([67, p. 21) implies that there is a probability measure »
with
W) = ffav for all feH,.
Q

Since M = My, the inequality

No(f; Ms) = No(f; M)
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obviously holds for all feF,(M). To complete the proof, let »eMy and
£ >0, and first agsume f is bounded. According to [5], p. 86, there is
a bounded 2° with

[PWYdv <1 and  [If0°1dy > ||fllo—e.
2 Q
If ¥ is continuous, then clearly ¥(A°) is bounded; but even for
discontinuous ¥, &* can be truncated so that ¥(h°) iz bounded. Then

|f7°] and W(h°) e Bo(M). Since 1(1, ») is in the weak (= weak™ here) closure
of {I(1, p): peM,}, there is a sequence {u,} c M, with

JIfH > [IfW1dy and [0 dpo > [WB) D>,
kel Q2 2
Thus, for large enough #,

nflﬂfi dn > [|fllo— &

and  [¥(R)dp, < L+e.
9

Letting = [|(1+e), one obtainsg (using convexity of ¥)

e e S it
J 177 > 1, J PO g < =L
It follows that .
No(f; M) > > ﬂl'Jf;

and since ¢ is independent of » and f,
Na(f; M) = |fllo.
For general feH,(M), let

fro i<,
0, |ﬂ>'m'§

then N"(ﬁ Me) = No(fus Me) = ||fulls, and using the fact ([57, p. 91)
that nfm{rdi 1 “f“vqi a8 m — oo,

f'm =

No(f; Mo) = sup Um]|fulle = No(f; Ma).
1teMl¢i M—>00

But it easﬂy'follows from 1.9 that No(f; M) = Ne(f; M), and
therefore No(f; Mo) = No(f; M), q.e.d.
2.25. TEROREM. If E,(M) s reflexive, then My is dominated.

) Proof. The proof is essentially identical to the correspondihg' one
given by Pitcher [8].
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2.26. TuEOREM. If @ satisfies the Ay-condition, &' (0) = ¥P~(0) = 0,
and B, is reflexive, then for each feBy there is a peMg with

1l = No(f).

Proof. It will first be shown that if 1(1, ») is & weak limit point of
{I(1, )} in Eg, then
lylls > lim lgle

for all bounded g.
Define

1K) =—11€(1+Qf¢(1(g)du) - for all K >0.

Since g is bounded and ¢ must be eontinuous (by the 4,-condition),
it follows that each @(Kg) is bounded, hence eHs. Given_s >0, choose
K. >0 such that h(EK,) < inf h(K)+ e Then (by assumption) for every

€ K>0

. >
£ >0 there exists a subsequence {u,(e)} of {un} such that
lim [ @(K.g)dun(e) =nf¢’(Keg)d#-

Js00 Q2
Define ‘
hy(e) = — (1 [ DU g) gy (5) -
K, ) Q2

Then, using 1.7,
tim g3 < Lim gl < Ly () = B(K) < L () +e = lights+2-

Nr00 J—>00

. L a
Sinee the left end does not involve e, the assertlonlls prove
Now let {u,} = M with |Iflie" 4+ No(f), and let ueMo be such. that
, i)} (this exists by 2.23). If fn, is the

usual bounded approximation to f By, then using the first part of this

proof and 2.21,
Ifll = lim. [ fulfs > Jim L [ffla®
M->00 M>00 700
> lim lim ()5 — If—Fulla")
Tisco M-300 3

> lim lim (1f]5*— No(f—Fm)
= lim |fffr— lim No(f—Ffm) = No(5)-

Bquality holds since, by 224, [Iflls < No(fy Mo) = No(f; M), q-e-d-
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Returning now to the more general H,(0, @), a sufficient condition,
that He (0, &) De reflexive will be established; this condition will involve
only &, 6, and (possibly) &, but nof the family of measures. In what
follows, Z will denote the Young function complementary to 8. Use

will be made of an auxiliary space E@( 0, @), defined as follows:

2.27. Definition. Hs(0,d) = {fe”[}lL,,,(M): F;lf), where I (u)
= | f{u)le.

All the considera.tions used in proving that E,(0,d) s a Banach
space carry over to E(p( 0, &), with obvmus alterations, e.g., Iy is replaced
by F, and N% (f by the norm % (f N§(#F7), the zero element is
the f such that f () = 0[] for all ueM, etc. Henece Dw(ﬂ G) is a Banach
space (under ¥%%(+)) containing Fy(6, ), and note that Na() = M%)
on Eo(6, @). It follows that Fs(6, @) is a closed subspace of Eq)(0 @).

2.28. THEOREM. Suppose D satisfies the A,-condition, and either

(a) 6(2%)/6(w) is bounded on (0, co)
or

(b) 0(2@)/0(w) is bounded on every (0, al, & < oo, and 1)@ is bounded.

Then (E"p(f) Gt and By(Z, @) are Vinearly Y and topologically iso-
morphic.

Proof. Note tiat eitlier (a) or (b) implies
=2 3 6(F ()6 < oo} = .
For any wueM and f,eLs(u), define f,‘EEa)(a, @) by

e i =u,
[0, if &' # 4.
I Te(Bo(6, @)%, then for f,eLo(u), define

fu(.’-") =

¢
G

)
“)

I, is clearly a linear functional on Lo(p); and, furthermore,

lu(fy) =

Nl

0L ()

80 1, i3 continuous (since 7 is continuous), i, e, be(Lo(u)*. But since @
satisfies the A,-condition, there ig (5], p. 128) a (unique) z(M)GLy/(,ﬂ)

No¥(f,) = int {K >0: 6(“%“’)(4(”) < 1} =

icm°
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with
16P)
© @~
for all f,eLa(p).
Now ([5], p. 135)

W (i) = sup {| [ fulel

L(fa) = ffn l(/“)(w)dl‘( )

w)(@)du(@)]: I < 1},
g0 one can chooge, for each ueM, an f,eLo(u) with

E<t,  fhl @ > 35 0)-

Fix these f,, and for any Felf (= ), set
= 1F(u)lf, for all gell.

Then f7eLs(p), and since by hypothesis 07 1(0) = 0, it follows thatb
F(u), whence 7, cmn be non-zero for at most countably many p's.
IL will now be shown that the linear map l—>l defined a.bove, 1s

and Fd? with N?(F) <1 Then
1) 3 IF@] ()6
uel

<2 3 PN )Em <4 3 P (fwa)‘l(n)(w)d;»(w))G(m
neM
Z‘(ff“ () 1(1) (o) dp(w)) G (p) ——421f,,
peM 2

the last: equa.hty coming from (). If {s;, Jig ...} are the measures for
which f,. # 0, then clearly the latter sum is just

2) S ufE) =tmi ,{S i)
k=1 700 =1
But for any uel,
[f,?,c]#,c i p=ppand k=1,...,m,
Z fw“ [0l otherwise.
Since .
,glf)(llfﬁcﬂ’é%‘)G(uk glﬂ( ) G () < 1,4
we have .
ol — 3o = 3 0056w >
peM
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as 1 — oo, Denoting for now h(u) = f, the faet that 1§ = If implies

% /\
2 h(Mk)) =0
k=1

Thus by the continuity of 7, and the fact that N Z;C“(h) <1

lim N%¢(n—

=00

(3) hml( Z “k) = U(h) < U,

N—00

so combining (1)-(3),

NEE(D) = NE(RC)IY) <

hup{g[mcmmz w56 () NG (1) < 1) < 4)l,

which proves the continuity of 7 i

Given §eHy(Z, @), lot the linear functional A(§) on Ho(0, &) be
defined by
Z(I flu

(Ma) () =
(This ma}ies sense Dbecause f(p) =0 except for countably many uell.)
Then it ¥5¢(f) <1, using Hélder inequalities twice,

}(z(é))(f)l 3 (J15e 6y ) ) 6 () < an Wl ()l 6 (1)

2 N5 (150 NE (1 (1) = 2359 (f) F%(§) < 2 N%4(5).

Thus % is a continuous linear map of EW(Z, @) into (E«p(@, G))* with
129 < 2527 (§).

It rema;ms to show that [->1 and i ave mutua.]ly inverse. So if

W) @), FeBo(0,@).

J hleEmZ &) (Le(Ha(, G)*), then for any feHa(6, @),
B@NA = 3 ([ FmTndu) 6
= <as in (1)-(3) above, letting f, = f(u)/|F(u)]) Uf);

i]:} other words, A(§) = 1. On the other hand, if = Z((i)e(ﬁ}ww, &)
(9<Bw(Z, @), then for every ueM and SueLa(u), () implies

(ﬂ(g)(fu 1 ) ona
JHiwan o =5@7”§u( fo,mgmdw)am')

- W(fﬁ:é(#)dﬂ)@(,u) = ff#ﬁ(ﬂ)dﬂy

50 that 1 = § g. Themfme, 11 is a linear, Lopologlcal isomorphism of
(E’;p(@ &) onto Ew(Z, @), q.e.d.

icm

Orlice spaces 45

2.29. COROLLARY. Suppose both @ and ¥ satisfy the Ay-condition, and

0 and Z each satisfies either (a) or (b) of the theorem. Then Eo(6,G) is

reflexive. Moreover, (Ha(0, &) = Hy(Z, @).

Proof. By 2.28, (Dq,(e a)f = (2, G) and (EW(Z )= Eq,(e @),
the isomorphisms being given in the proof of 2.28. To show that Ew(@ @)
is reflexive, it need only be proved that the composite isomorphism
o6, @) &2 (EW(Z Q) = (E (6, @) coincides with the matural em-
bedding of Es(6, @) in (Em(ﬂ @)™

Thus, for any feHo(6,@), the corresponding A(f)e (E,p(Z @) is
given by

(o= 3 {[fwiw

du)G(p)  for all LeBy(Z, G).

and 1eBy(Z, @)

in the notation of the preceding proof,

()

G(w)
Denoting by I; the image of A(f) in (Ha(0, @)™ (under the iso-

morphism induced by the correspondence I —;l), one obtains, by combining

the above,

But the correspondence between le(ﬁ)m(ﬂ,ﬁ'))*
implies (writing fu = f(#)),

Jf(uﬁ(u) dp =

for all pel.

50 = MH® = Fud-
However, as noted in the proof of the theorem,
Su) =i, e, i) = U,

which shows that L; is just the natural image of f Hence E.p(ﬂ @) is
reflexive; but Ea(f, @), being 2 closed subspace of Eo(6,6), is then
also reflexive ([4], p. 67).

Fmally, note that Bo(8, @) & (Bx(Z, @) and He(Z, &) € (Bo(0, &)
(where S denotes 2 topologma,l linear embedding), since it is easily seen
that the mapping 1, defined in the proof of 2.28, maps He(6,G) into
(Bv(2, &))" and By (Z, G) into (Bs(8, @))*. Then, using the Hahn- Banach
theorem and the reflexivity of Bw(Z, @) (which follows by the symmetry
of the hypotheses),

B2, ) S (B(0, o) & (Be(Z, &)™ =2 Be(Z, G).
Hence (Bo(0, §))* = Ew(Z, &), q.e.d.

3. Convexity properties. Theorems describing sufficient conditions
that Bs(0, G) have the properties of rotundity (also called strict con-
vexity) and of uniform rotundity (uniform convexity) are developed in
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this section. These convexity properties, unlike reflexivity, are not topo-
logical properties: in fact, every Orlicz space on a probability space ig
isomorphic to a strietly econvex Orlicz space ([10], Th. 1). Therefore,
in this connection, a statement of the partieular norm involved is egsential.

3.1. Definition. A normed lineax space X, with norm ||-||, is called
rotund it @,ye¥, ||z = [y =1, 2 £y imply [z+y|<2. This clearly
is equivalent to: |u]| = |ly]l and @ =y imply Je-+y|l <2 |l

Suppose .

0(z) = F] O (t)dt

0
and 9(1) > 0. Define the normaliced Young’s function

- 1
0(») = W@(m).

A new norm N9 equivalent to N§ ([13], p. 173) on I is defined by

. (p)

NG (F =mf{K>o: 6(——-—— Gu) < O(L)f.

S (F) >0: X 0[5 )G <oy

Since Ny = N§, 6 can (and will) be assumed to be normalized, a

property which hag many advantages for computational simplicity. Now
define

N =N (T, Fiw) =5,

Tt is clear from the preceding that N%® and N3¢ are equivalent
norms on Ha(0, ¢).

feBa(0, @).

3.2. LemmA. If & is continuous and stricily increasing, them 1§ s
rotund wnder Ng. ‘

Proof. Note that since points of M have finite positive mg-measure,
mq has the finite subset property (i.e., every set of positive mg-measure
containg a set of finite, positive mg-meagure). Since ¥ ig strictly increasing,
#(1) > 0, so that 6 may be assumed normalized. Hence the hypotheses
of Theorem 4 in [9] are met, and by that result, I5 iy rotund under NJ,
q.e.d.

Any increasing function will be called continuous in the extended
sense if it has mo jump discontinuities.

3.3. Leama (Milnes [7]). If u is @ probability measure, then Le(p)
is rotund under ||-llo whenever ¥ and p (= ¥') are continuous in the extended
sense. . Co

3.4. THEOREM. If § is continuous and striotly increasing, and v and ¥
are continuous in the ewtended sense, thevi o (0, @) is rotund wunder N%°.
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_ Proof. Suppose N%’i(f) = N%%(g) =1 and N%%(f1g) =2, ie, if
Flu) = £l G(p) = lglia, 2(w) = If+glle for all wel, then
N =M@ =1, Ne(GF+9=N5(h)=2.
Hence, by 3.2, f = §, i.e., [ifls = |lglls for all upeM. Now
(%) B(w) = If+glls < |+ llglle = 20flfe = 27 (),

and there is strict inequality by 3.3, whenever f = g[u]. Suppose there
is some gyeM with f = g[p,]; then since 6 is strietly inereasing, it holds
for any K > 0 that (by(*))

B (tho) 2f (o)
EAnClR DY R lul i N
() 6( ) < (
Obviously, for any ueM and K >0,

)f2)

Thus, by (+*) and the fact (as in the proof of Theorem 4 in [9]) thab

F(ﬂ))
>0 | = G(p) = 0(1),
2 (Nf,“(li‘) (») (1)

one obtains

3 h(n) _
Sofit)en > 3 0(~2) aw —ocw,
peM uel

ie., F$(H >1, a contradiction. Therefore, it must be f = glu] for every
ueM, ie., f =g, q.ed.

3.5. Definition. A Banach space X, with norm |-}, is called umi-
formly rotund if for every 0 < e<(2 there is a 0<d(s) <1 such that
whenever #, y <X, | = ||yl = Land [z—yl| > &, then ]lw:{—yll < 2(.1— 3(e))-

8(¢) can always be assumed to be a non-decreasing funection of &,
such that 8(s) >0 as ¢ — 0; merely substitute &, for 4, where

5,(s) =— sup 8(¢).
3 g<e’<e

3.6. Definition. Any funetion 6(-) as above is called a modulus
of umiform rotundity (m.wr.) for the given space (with the given norm).

Obviously, every uniformly rotund space is rotund and, moreover,
it is known ([2], p. 113) that pniform rotundity implies ref!e?nwty.

Tt has been proved by Milnes [7] that, under certain conditions on &,
the spaces Lo(u) arve uniformly rotund. However, for the present work,


GUEST


48 R. L. Rosenberg

a seemingly stronger result will be needed —namely, that the modulus
of uniform rotundity of such a space may be taken to be independent
of the particular probability measure u involved. Milnes makes no mention
of the modulus, and certain constants appearing in his proof do apparently
depend on u. But a eareful reworking of the proof (which will be omitited)
shows that the m.u.r. does indeed not depend on w; in the following

121 1

D) = [ )@ and ¥(@)= [ p(H)ad
[] ]

3.7. THEOREM. Suppose p(£2) =1, v is continuous, P(2x) < NP (x)
for all ©> 0, and for every ae(0,1),

. p(®)

Then Lo(u) is uniformly rotund under |||, and the m.w.r. is indepen-
dent of p (for details, see [11]).
3.8. LovmA. Suppose

12|

= [ o0,

where ¢ is continuous. If 0 satisfies the Ay-condition (for all values of its
argument), and if for every 0 < e <1, there is a constant K, >1 such that

((1+s 0) = K, (@) for all »>0, then 1§ is uniformly rotund under the
norm N§ (introduced previously).

Proof. Since 6(22) < ¢6(z) for all # > 0, it follows that 4(1) >0,
and 50 0 can be assumed to be normalized (in the sense already discussed).
Also, as before, my has the finite subset property. Thus all conditions
of Theorem 5 in [9] are satisfied, and se 1§ is uniformly rotund under
N3, qed.

3.9. TeEOREM. If

1%

wm:j%mm, mm=fﬁmm, P(o) = [ (t)dt,

R 0
and

(a) 0(2%) < cO(x), P(20) < ¢D () for all 2= 0;
(b) & and y are confinuous;
(e) for all 0 < e< 1,

¢ Pt o)

1 lim = T2
Yo > and im >1;

== 9@

then Bo(8, G) is uniformly rotund under N3
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Proof. The space lg is & “proper function space”, i.e., a normed

linear space of real-valued functions such that if Felf and 0< P,
sthen F,el§ and N§(F,) < N§(¥). Comparing the hypotheses here with
those of 3.7 and 3.8, it is seen that 15 is uniformly rotund under Ng, and
all Lg(u), ueM, are uniformly rotund under ||-||, with m.u.r. independent
of u. But these facts, applied to the Space .E:’¢(B G) (cf. 2.27) with the
norm. JVZ; , given by N%(f) = (Hf( )I$) imply by Theorem 3 in [1]
that E'm( 6, @) iz uniformly rotund under the given norm.

It is a trivial consequence of 3.5 that every subspace of a uniformly
rotund space is uniformly rotund (under the restriction of the norm).
Since the restriction of ¥%% to the subspace Fo(0, @) is NyE , the proof
is complete, q.e.d.
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