

Orlicz spaces based on families of measures

by

ROBERT L. ROSENBERG (Pittsburgh, Penn.)

Pitcher [8] introduced a condition on sets of probability measures (on a fixed measurable space) which is more general than the existence of a dominating measure, yet strong enough to give good results in certain statistical inference problems. In this connection, the Banach space E_p was defined; a generalization of this space, called $E_{\Phi}(\theta, G)$, is considered in the present paper (cf. [11]).

Since $E_{\sigma}(\theta, G)$ is also a generalization of Orlicz space, the reader is referred to [5] for background on Orlicz spaces. The first section of this paper is devoted to the definition of $E_{\sigma}(\theta, G)$, the proof that it is a Banach space, and discussion of its dependence on the parameters. In the next section are considered reflexivity of $E_{\sigma}(\theta, G)$ and "compactness" (of the unit ball in a certain weak topology) as an extension of the concept introduced in [8]. The paper concludes with some results concerned with convexity properties—rotundity and uniform rotundity of $E_{\sigma}(\theta, G)$.

- 1. Definition and general properties. Let (Ω, Σ) be a measurable space, and M a set of probability measures on (Ω, Σ) . If f and g are Σ -measurable functions and $\mu \in M$, $f = g[\mu]$ means that f = g μ -almost everywhere; f and g will be identified if $f = g[\mu]$ for all $\mu \in M$.
- 1.1. Definition. A set $A \subset \Omega$ is *M-null* if for every $\mu \in M$, A has μ -outer measure zero. Σ is *M-complete* if it contains every *M*-null set.

For any (Ω, Σ, M) which is mentioned hereafter, Σ will be assumed to be M-complete. This, of course, guarantees that if f is Σ -measurable, and g differs from f only on an M-null set, then g is Σ -measurable (and is identified with f).

Fixing (Ω, Σ, M) , let Φ and θ be Young's functions, that is, symmetric non-negative convex functions on the line vanishing at the origin, and let $G: M \to (0, \infty)$. If S is the power set of M, and for any $A \in S$,

$$m_G(A) = \sum_{\mu \in A} G(\mu)$$

(= ∞ for A uncountable), then clearly (M, S, m_G) is a measure space. Now consider the two Orlicz spaces

$$l_{ heta}^G \equiv L_{ heta}(M,S,m_G), ~~ L_{oldsymbol{\sigma}}(\mu) \equiv L_{oldsymbol{\sigma}}(\Omega,\Sigma,\mu),$$

where μ is any measure in M. For each $\mu \in M$, $L_{\Phi}(\mu)$ will be endowed with the Orlicz norm

$$\|f\|_{\sigma}^{\mu} = \sup \left\{ \left| \int_{\Omega} fg \, d\mu \right| : \int_{\Omega} \Psi(g) \, d\mu \leqslant 1 \right\},$$

where Ψ is (and will continue to denote) the Young function complementary to Φ , i.e.

$$\Psi(x) = \sup_{y \geqslant 0} \{ |x|y - \Phi(y) \}.$$

On l_{θ}^{G} , the norm

$$N_{\, heta}^G(F) = \inf \left\{ K > 0 \colon \int\limits_{M} heta \left(rac{F}{K}
ight) dm_G \equiv \sum_{\mu \in M} heta \left(rac{F(\mu)}{K}
ight) G(\mu) \leqslant 1
ight\}$$

will be used. It is known ([5], p. 70, 78) that with the respective norms, l_{σ}^{g} and $L_{\sigma}(\mu)$ are Banach spaces.

If $f \in \bigcap_{\mu \in M} L_{\varphi}(\mu)$ (i.e., for all $\mu \in M$, the μ -equivalence class $[f]_{\mu} \in L_{\varphi}(\mu)$), then $F_f(\mu) = \|f\|_{\varphi}^{\varphi}$ defines a function $F_f: M \to [0, \infty)$. If $f, g \in \bigcap_{\mu \in M} L_{\varphi}(\mu)$ and α is real, then clearly

$$F_{t+g} \leqslant F_t + F_g$$
 and $F_{at} = |a| F_t$.

- **1.2.** Definition. $E_{\sigma}(\theta, G) = \{f \in \bigcap_{\mu \in \mathcal{M}} L_{\sigma}(\mu) : F_f \in l_{\theta}^G \}$.
- **1.3.** LEMMA. If $f \in E_{\phi}(\theta, G)$, then

$$||f||_{m{\phi}}^{\mu}\leqslant heta^{-1}igg(rac{1}{G(\mu)}igg)N_{m{\theta}}^G(F_f)$$

for all $\mu \in M$, where as usual, for $a \ge 0$, $\theta^{-1}(a) = \sup \{x \ge 0 : \theta(x) \le a\}$. Proof. Since

$$N_{ heta}^{G}(F_{f}) = \inf \left\{ K > 0 : \sum_{\mu \in M} heta \left(\frac{F_{f}(\mu)}{K} \right) G(\mu) \leqslant 1
ight\},$$

it follows that for every $\varepsilon > 0$ and every $\mu_0 \in M$,

so that

$$\|f\|_{\phi}^{\mu_0} = F_f(\mu_0) \leqslant [N_{\theta}^G(F_f) + \varepsilon] \, \theta^{-1} \left(\frac{1}{G(\mu_0)}\right).$$

Since ε is arbitrary, the result follows, q.e.d.

1.4. THEOREM. If $N_{\Phi}^{\theta,G}(f) \equiv N_{\theta}^{G}(F_{f})$, then $N_{\Phi}^{\theta,G}$ is a norm on $E_{\Phi}(\theta,G)$ under which this space is complete; i.e., $E_{\Phi}(\theta,G)$ is a Banach space.

Proof. If $f, g \in E_{\Phi}(\theta, G)$ and α is real,

$$N_{\theta}^{G}(F_{t+g}) \leqslant N_{\theta}^{G}(F_{t}+F_{g}) \leqslant N_{\theta}^{G}(F_{t}) + N_{\theta}^{G}(F_{g}) < \infty$$

and

$$N_{ heta}^G(F_{af}) = N_{ heta}^G(|a|F_f) = |a|N_{ heta}^G(F_f) < \infty$$

so that $E_{\sigma}(\theta, G)$ is a linear space. In fact, this shows that $N_{\sigma}^{\theta,G}$ is a seminorm on $E_{\sigma}(\theta, G)$. To show that $N_{\sigma}^{\theta,G}$ is actually a norm, suppose $N_{\sigma}^{\theta,G}(f) = 0$, i.e. $N_{\sigma}^{\theta}(F_{f}) = 0$. Since N_{σ}^{G} is a norm, $F_{f} \equiv 0$, i.e., for all $\mu \in M$, $\|f\|_{\sigma}^{\theta} = 0$. But this implies f = 0 $[\mu]$ for all $\mu \in M$, so that f = 0.

Now suppose $\{f_n\} \subset E_{\Phi}(\theta, G)$ and $N_{\Phi}^{\theta, G}(f_n - f_m) \to 0$ as $n, m \to \infty$; it can be assumed, by extracting a subsequence if necessary, that

$$\sum_{P}^{\infty} N_{\Phi}^{\theta,G}(f_n - f_{n+1}) < \infty.$$

By 1.3,

$$\|f_n-f_{n+1}\|_{oldsymbol{\phi}}^{\mu}\leqslant heta^{-1}\left(rac{1}{G(\mu)}
ight)N_{oldsymbol{\phi}}^{ heta,G}(f_n-f_{n+1})$$

for each $\mu \in M$, which implies that

$$\sum_{n=1}^{\infty} \|f_n - f_{n+1}\|_{\phi}^{\mu} \leqslant \theta^{-1} \left(\frac{1}{G(\mu)}\right) \sum_{n=1}^{\infty} N_{\phi}^{\theta,G}(f_n - f_{n+1}) < \infty.$$

The Hölder inequality ([5], p. 80) implies that, for each $\mu \in M$,

$$\int\limits_{\Omega} |f_n - f_{n+1}| \, d\mu \leqslant \|f_n - f_{n+1}\|_{\Phi}^{\mu} N_{\Psi}^{\mu}(\varkappa_{\Omega}) \, = \, \frac{1}{\Psi^{-1}(1)} \, \|f_n - f_{n+1}\|_{\Phi}^{\mu}.$$

Thus if $p_k(\mu)$ is so large that

$$\sum_{n=p_k}^{\infty} \|f_n - f_{n+1}\|_{\sigma}^{\mu} < \Psi^{-1}(1) \, 4^{-k},$$

then.

$$\sum_{n=p_k}^{\infty} \int\limits_{\Omega} |f_n - f_{n+1}| d\mu < 4^{-k},$$

so that for $m > p_k(\mu)$,

$$\mu\{\omega: |f_{n_k}(\omega) - f_{n_{k+1}}(\omega)| + \ldots + |f_{m-1}(\omega) - f_m(\omega)| \ge 2^{-k}\} < 2^{-k}.$$

Studia Mathematica XXXV.1

icm[©]

Ιf

$$E_{k,m} = \{\omega \colon |f_{p_k}(\omega) - f_{p_k+1}(\omega)| + \ldots + |f_{m-1}(\omega) - f_m(\omega)| \geqslant 2^{-k}\}$$

and

$$E_{\mu} = igcap_{k=1}^{\infty} igcup_{m=p_k+1}^{\infty} E_{k,m},$$

then $\mu(E_{\mu}) = 0$, and it is easily seen that $\{f_n\}$ is pointwise Cauchy on $\Omega - E_{\mu}$. Hence there is an f such that $f_n \to f$ except on an M-null set (namely, $\bigcap_{n \in M} E_{\mu}$), and it follows by M-completeness that f is Σ -measurable.

However, for each $\mu \in M$, $L_{\sigma}(\mu)$ is complete under $\|\cdot\|_{\sigma}^{\mu}$, so there is a function $f_{\mu} \in L_{\sigma}(\mu)$ with $\|f_n - f_{\mu}\|_{\sigma}^{\mu} \to 0$ as $n \to \infty$. This implies

$$\int |f_n - f_\mu| \, d\mu \to 0,$$

which in turn implies that $f_n \to f_\mu$ in μ -measure, so that there exists a subsequence $\{f_{n_k}\}$ with $f_{n_k} \to f_\mu$, μ -almost everywhere, as $k \to \infty$. It must therefore be $f_\mu = f[\mu]$, whence $f \in \bigcap_{\Phi} L_{\Phi}(\mu)$ and

$$||f_n-f||^{\mu}_{\Phi}\to 0$$
.

Since $0 \le F_n \uparrow F$ (pointwise) implies $N_{\theta}^G(F_n) \uparrow N_{\theta}^G(F)$, and for all $\mu \in M$,

 $F_{(l_n-l)}(\mu) = \|f_n - f\|_{\sigma}^{\mu} = \lim_{m \to \infty} \|f_n - f_m\|_{\sigma}^{\mu} = \lim_{m \to \infty} F_{(l_n-l_m)}(\mu) \leqslant \sum_{k=n}^{\infty} F_{(l_k-l_{k+1})}(\mu),$ one obtains

$$\begin{split} N_{\vartheta}^{\theta,G}(f_n-f) &= N_{\vartheta}^G(F_{(f_n-f)}) \leqslant N_{\vartheta}^G\Big(\sum_{k=n}^{\infty} F_{(f_k-f_{k+1})}\Big) \\ &= \lim_{m \to \infty} N_{\vartheta}^G\Big(\sum_{k=n}^m F_{(f_k-f_{k+1})}\Big) \leqslant \lim_{m \to \infty} \sum_{k=n}^m N_{\vartheta}^G(F_{(f_k-f_{k+1})}) \\ &= \sum_{k=n}^{\infty} N_{\vartheta}^G(F_{(f_k-f_{k+1})}) = \sum_{k=n}^{\infty} N_{\vartheta}^{\theta,G}(f_k-f_{k+1}). \end{split}$$

But the last expression goes to zero as $n\to\infty$, i.e. $f\in E_{\Phi}(\theta,G)$ and $N_{\Phi}^{\theta,G}(f_n-f)\to 0$, q.e.d.

 $E_{\Phi}(\theta,G)$ will be called the *Orlicz space based on M relative to* (Φ, θ, G) . Clearly, if $M = \{\mu_0\}$, then $E_{\Phi}(\theta, G) = L_{\Phi}(\mu_0)$, the ordinary Orlicz space.

 $B_{\sigma}(\theta,G)$ will denote the unit ball $\{f\colon N_{\Phi}^{\theta,G}(f)\leqslant 1\}$. It is easily seen that $|f|\leqslant |g|$ implies $N_{\Phi}^{\theta,G}(f)\leqslant N_{\Phi}^{\theta,G}(g)$; hence every ball $\alpha B_{\sigma}(\theta,G)$ is solid.

1.5. Theorem. (a) If $\Phi_1(x)\leqslant \Phi_2(cx)$ for all $x\geqslant x_0$ $(c>0,\ x_0\geqslant 0),$ then

$$N_{\phi_1}^{\theta,G}(\,\cdot\,)\leqslant c\left[1+\varPsi_2ig(arphi_2(cx_0)ig)
ight]N_{\phi_2}^{\theta,G}(\,\cdot\,),$$

where Ψ_2 is the complementary function to Φ_2 and where φ_2 is the left derivative of Φ_2 . Hence $E_{\Phi_2}(\theta, G) \subset E_{\Phi_1}(\theta, G)$, whenever $\Psi_2(\varphi_2(cx_0)) < \infty$.

(b) If $\theta_1(x) \leq \theta_2(cx)$ for all $x \geq 0$ (c > 0), then $N_{\varphi}^{\theta_1,G}(\cdot) \leq cN_{\varphi}^{\theta_2,G}(\cdot)$. Hence $E_{\varphi}(\theta_2,G) \subset E_{\varphi}(\theta_1,G)$.

(c) If $G_1 \leqslant cG_2$, then $N_{\phi}^{\theta,G_1}(\cdot) \leqslant \max(c,1) N_{\phi}^{\theta,G_2}(\cdot)$, so that $E_{\phi}(\theta,G_2) \subset E_{\phi}(\theta,G_1)$.

Proof. (a) According to [5], p. 113, for every $\mu \in M$,

$$\|\cdot\|_{\boldsymbol{\sigma}_{1}}^{\mu} \leqslant c\left[1+\mu\left(\Omega\right)\,\boldsymbol{\varPsi}_{2}\left(\varphi_{2}\left(cx_{0}\right)\right)\right]\,\|\cdot\|_{\boldsymbol{\sigma}_{2}}^{\mu}.$$

Since $\mu(\Omega)=1$, applying N_{θ}^{G} to both sides gives the desired result. (b) If $\theta_{1}(x)\leqslant\theta_{2}(cx)$, then

$$\begin{split} N_{\phi}^{\theta_1,G}(f) &= \inf \left\{ K > 0 \colon \sum_{\mu \in M} \theta_1 \bigg(\frac{\|f\|_{\phi}^{\mu}}{K} \bigg) G(\mu) \leqslant 1 \right\} \\ &\leqslant \inf \left\{ K > 0 \colon \sum_{\mu \in M} \theta_2 \bigg(\frac{c \|f\|_{\phi}^{\mu}}{K} \bigg) G(\mu) \leqslant 1 \right\} = c N_{\phi}^{\theta_2,G}(f) \,. \end{split}$$

(c) $G_1(\mu) \leqslant cG_2(\mu)$ for all $\mu \in M$ implies, for $a = \max(c, 1), b = N_{\phi}^{\theta, G_2}(f)$,

$$\begin{split} \sum_{\mu \in M} \theta \left(\frac{\|f\|_{\phi}^{\mu}}{ab} \right) G_{1}(\mu) &\leqslant c \sum_{\mu \in M} \theta \left(\frac{\|f\|_{\phi}^{\mu}}{ab} \right) G_{2}(\mu) \\ &\leqslant \frac{c}{a} \sum_{\mu \in M} \theta \left(\frac{\|f\|_{\phi}^{\mu}}{b} \right) G_{2}(\mu) \leqslant \frac{c}{a} \leqslant 1, \end{split}$$

and so $N_{\phi}^{\theta,G_1}(f) \leqslant ab = \max(c,1) N_{\phi}^{\theta,G_2}(f)$, q.e.d.

When

$$heta(x) = \left\{ egin{array}{ll} 0\,, & |x| \leqslant 1\,, \ \infty\,, & |x| > 1\,, \end{array}
ight.$$

 l_{θ}^{G} consists of the bounded functions, in which case $E_{\sigma}(\theta, G)$ consists of the functions f in $\bigcap_{\mu \in M} L_{\sigma}(\mu)$ such that

$$\sup\{\|f\|_{\varphi}^{\mu}\colon \mu\,\epsilon M\}<\infty;$$

in fact, $N_{\Phi}^{\theta(G)}(f) = \sup\{\|f\|_{\Phi}^{\theta}: \mu \in M\}$. This space $E_{\Phi}(\theta, G)$ (which does not depend on G) will be denoted merely by E_{Φ} (norm by $N_{\Phi}(\cdot)$, unit ball by B_{Φ}). In particular, if $\Phi(x) = |x|^p$, $1 \leq p < \infty$, then $E_{\Phi} = E_p$ of [8].

1.6. Proposition. If either θ is discontinuous or 1/G is bounded, then $E_{\Phi}(\theta,G) \subset E_{\Phi}$.

Proof. Observe that θ is discontinuous iff θ^{-1} is bounded, and that in any case θ^{-1} is finite and non-decreasing. It follows easily that the above hypothesis is equivalent to: $\theta^{-1}(1/G(\cdot))$ is bounded. This, together with 1.3, implies that

$$\sup\{\|f\|_{\boldsymbol{\Phi}}^{\mu}\colon\,\mu\,\epsilon M\}\leqslant\beta N_{\boldsymbol{\Phi}}^{\boldsymbol{\theta},\boldsymbol{G}}(f)\,,$$

where

$$\beta = \sup \left\{ \theta^{-1} \left(\frac{1}{G(\mu)} \right) \colon \mu \in M \right\} < \infty;$$

i.e. $E_{\varphi}(\theta, G) \subset E_{\varphi}$, q.e.d.

Two special cases of Φ should be discussed here, as they clarify the situations in what follows. Define

$$arPhi_{\infty}(x) = egin{cases} 0\,, & |x| \leqslant 1\,, \ \infty\,, & |x| > 1\,. \end{cases}$$

The complementary function to Φ_{∞} is given by

$$\Phi_1(x) = |x|$$
 for all x .

Of course, $L_{\phi_{\infty}} = L_{\infty}$ and $L_{\phi_{1}} = L_{1}$.

If Φ is discontinuous, then by [12], p. 82, $L_{\sigma}(\mu) = L_{\infty}(\mu)$ with $a\|\cdot\|_{\omega}^{\mu} \leqslant \|\cdot\|_{\omega}^{\mu} \leqslant b\|\cdot\|_{\omega}^{\mu}$ for all $\mu \in M$ and some a,b>0 which (since $\mu(\Omega)=1$ for all μ) do not depend on μ . Hence $E_{\sigma}(\theta,G)=E_{\infty}(\theta,G)$ with $aN_{\infty}^{\theta,G}(\cdot) \leqslant N_{\sigma}^{\theta,G}(\cdot) \leqslant bN_{\infty}^{\theta,G}(\cdot)$. For this reason, when Φ is discontinuous, it can (and will) be replaced by Φ_{∞} . If $\Phi(x)/|x|$ is bounded, then $L_{\sigma}(\mu)=L_{1}(\mu)$ ([12], p. 82) with $c\|\cdot\|_{1}^{\mu} \leqslant \|\cdot\|_{\sigma}^{\mu} \leqslant d\|\cdot\|_{1}^{\mu}$ for all $\mu \in M$ and some c,d>0 independent of μ . Hence $E_{\sigma}(\theta,G)=E_{1}(\theta,G)$ with $cN_{1}^{\theta,G}(\cdot) \leqslant N_{\sigma}^{\theta,G}(\cdot) \leqslant dN_{1}^{\theta,G}(\cdot)$. Thus any Φ with $\Phi(x)/|x|$ bounded can (and will) be replaced by Φ_{1} .

Note that 1.5 (a) is of no consequence when $\Psi_2\left(\varphi_2(cx_0)\right)=\infty$; but since by the equality in Young's inequality, $\Psi_2\left(\varphi_2(cx_0)\right)=cx_0\varphi_2(cx_0)-\Phi_2(cx_0)$, this can happen only if Φ_2 is discontinuous. The preceding remarks show that, in this case, $a\|\cdot\|_{\infty}^{\mu} \leq \|\cdot\|_{\Phi_2}^{\mu} \leq b\|\cdot\|_{\infty}^{\mu}$. Also, by [12], p. 82, $L_{\infty}(\mu) \subset L_{\Phi}(\mu)$ for any Φ and any $\mu \in M$, with $\|\cdot\|_{\Phi}^{\mu} \leq c\|\cdot\|_{\infty}^{\mu}$ for some c>0 independent of μ . Therefore

$$\|\cdot\|_{\boldsymbol{\sigma}}^{\mu} \leqslant c\|\cdot\|_{\infty}^{\mu} \leqslant \frac{c}{a}\|\cdot\|_{\boldsymbol{\sigma}_{2}}^{\mu}, \qquad N_{\boldsymbol{\sigma}}^{\theta,G}(\cdot) \leqslant cN_{\infty}^{\theta,G}(\cdot) \leqslant \frac{c}{a}N_{\boldsymbol{\sigma}_{2}}^{\theta,G}(\cdot),$$

and

$$E_{\Phi_2}(\theta,G) \subset E_{\Phi}(\theta,G)$$

(compare with 1.5 (a)).

1.7. Lemma.
$$||f||_{\Phi}^{\mu} = \inf_{K>0} \frac{1}{K} (1 + \int_{0}^{\pi} \Phi(Kf) d\mu).$$

Proof. This has been proved ([5], p. 92) for the case Φ continuous,

$$\lim_{x\to 0} \frac{\varPhi(x)}{|x|} = 0, \quad \lim_{x\to \infty} \frac{\varPhi(x)}{|x|} = \infty.$$

If Φ is discontinuous, i.e., (by convention) $\Phi = \Phi_{\infty}$, then

$$\begin{split} \inf_{K>0} \frac{1}{K} \left(1 + \int_{\Omega} \Phi(Kf) d\mu \right) &= \inf_{K>0} \frac{1}{K} \left(1 + \int_{|f|>1/K} \infty d\mu \right) \\ &= \inf \left\{ \frac{1}{K} \colon \mu \left[|f| > \frac{1}{K} \right] = 0 \right\} = \mu \text{-ess sup } |f| \\ &= \|f\|_{\Omega}^{\mu} = \|f\|_{\Omega}^{\mu}. \end{split}$$

If Φ is continuous,

$$\lim_{x\to\infty}\frac{\varPhi(x)}{|x|}=\infty,$$

but

$$\lim_{x\to 0}\frac{\varPhi(x)}{|x|}=a>0\,,$$

then define

$$\tilde{\Phi}(x) = \Phi(x) - \alpha |x|$$

(clearly a Young function), so that $\tilde{\Phi}$ is continuous,

$$\lim_{x\to\infty}\frac{\tilde{\varPhi}(x)}{|x|}=\infty,\quad \lim_{x\to0}\frac{\tilde{\varPhi}(x)}{|x|}=\alpha-\alpha=0.$$

Now

$$\inf_{K>0} \frac{1}{K} \left(1 + \int_{\Omega} \Phi(Kf) d\mu \right) = \inf_{K>0} \frac{1}{K} \left(1 + \int_{\Omega} \tilde{\Phi}(Kf) d\mu + \alpha K \int_{\Omega} |f| d\mu \right)$$

$$= \inf_{K>0} \frac{1}{K} \left(1 + \int_{\Omega} \tilde{\Phi}(Kf) d\mu \right) + \alpha \int_{\Omega} |f| d\mu$$

$$= ||f||_{\tilde{\Phi}}^{\mu} + \alpha \int_{\Omega} |f| d\mu.$$

An easy computation shows that $\Psi(x) = \tilde{\Psi}(|x|-a)$, so that also

$$\begin{split} \|f\|_{\sigma}^{\mu} &= \sup \left\{ \int\limits_{\Omega} |fg| \, d\mu \colon \int\limits_{\Omega} \Psi(g) \, d\mu \leqslant 1 \right\} \\ &= \sup \left\{ \int\limits_{\Omega} |fg| \, d\mu \colon \int\limits_{\Omega} \tilde{\Psi}(|g| - a) \, d\mu \leqslant 1 \right\} \\ &= \sup \left\{ \int\limits_{\Omega} |f| (|g| + a) \, d\mu \colon \int\limits_{\Omega} \tilde{\Psi}(g) \, d\mu \leqslant 1 \right\} \\ &= \|f\|_{\tilde{\sigma}}^{\mu} + a \int\limits_{\Omega} |f| \, d\mu. \end{split}$$

Finally, if

$$\lim_{x\to\infty}\frac{\varPhi(x)}{|x|}<\infty,$$

then $\Phi(x)/|x|$ is bounded, i.e. (by convention) $\Phi=\Phi_1$. Then

$$\begin{split} \inf_{K>0} \frac{1}{K} \Big(1 + \int_{\Omega} \Phi(Kf) \, d\mu \Big) &= \inf_{K>0} \frac{1}{K} \Big(1 + K \int_{\Omega} |f| \, d\mu \Big) \\ &= \inf_{K>0} \frac{1}{K} + \int_{\Omega} |f| \, d\mu = \int_{\Omega} |f| \, d\mu \\ &= \|f\|_{H}^{\mu} = \|f\|_{\Phi}^{\mu}, \quad \text{q.e.d.} \end{split}$$

1.8. Lemma. If $\mu, \mu' \in M$, $0 \le \alpha \le 1$ and $\nu = \alpha \mu + (1 - \alpha) \mu'$, then $\alpha \|f\|_{\Phi}^{\mu'} + (1 - \alpha) \|f\|_{\Phi}^{\mu'} \le \|f\|_{\Phi}^{\mu} \le \|f\|_{\Phi}^{\mu} + \|f\|_{\Phi}^{\mu'}$

for any $f \in L_{\Phi}(\mu) \cap L_{\Phi}(\mu')$.

Proof. By definition,

$$\begin{split} \|f\|_{\sigma}^{\nu} &= \sup \big\{ a \int\limits_{\Omega} |fg| \, d\mu + (1-a) \int\limits_{\Omega} |fg| \, d\mu' \colon a \int\limits_{\Omega} \Psi(g) \, d\mu + (1-a) \int\limits_{\Omega} \Psi(g) \, d\mu' \leqslant 1 \big\} \\ &\leqslant a \sup \big\{ \int\limits_{\Omega} |fg| \, d\mu \colon a \int\limits_{\Omega} \Psi(g) \, d\mu \leqslant 1 \big\} + \\ &\quad + (1-a) \sup \big\{ \int\limits_{\Omega} |fg| \, d\mu' \colon (1-a) \int\limits_{\Omega} \Psi(g) \, d\mu' \leqslant 1 \big\} \\ &\leqslant \sup \big\{ \int\limits_{\Omega} |f(ag)| \, d\mu \colon \int\limits_{\Omega} \Psi(ag) \, d\mu \leqslant 1 \big\} + \\ &\quad + \sup \big\{ \int\limits_{\Omega} |f(1-a)g| \, d\mu' \colon \int\limits_{\Omega} \Psi((1-a)g) \, d\mu' \leqslant 1 \big\} = \|f\|_{\sigma}^{\mu} + \|f\|_{\sigma}^{\mu'}. \end{split}$$

On the other hand, using 1.7,

$$\begin{split} \|f\|_{\varPhi}^{\nu} &= \inf_{K>0} \frac{1}{K} \Big\{ \alpha \Big(1 + \int_{\varOmega} \varPhi(Kf) \, d\mu \Big) + (1-\alpha) \left(1 + \int_{\varOmega} \varPhi(Kf) \, d\mu' \right) \Big\} \\ &\geqslant \underset{K>0}{\operatorname{ainf}} \frac{1}{K} \Big(1 + \int_{\varOmega} \varPhi(Kf) \, d\mu \Big) + (1-\alpha) \underset{K>0}{\operatorname{inf}} \frac{1}{K} \Big(1 + \int_{\varOmega} \varPhi(Kf) \, d\mu' \Big) \\ &= \alpha \|f\|_{\varPhi}^{\mu} + (1-\alpha) \|f\|_{\varPhi}^{\mu'}, \ \text{q.e.d.} \end{split}$$

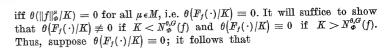
1.9. Proposition. If M contains at least two distinct measures and is convex (i.e., $\mu, \mu' \in M$, $0 \le a \le 1$ imply $a\mu + (1-a) \mu' \in M$, so that M has infinitely many distinct members), then

$$N_{\phi}^{\theta,G}(f) = \inf\{K > 0 : \sup_{\mu \in M} \|f\|_{\phi}^{\mu} \leqslant K\theta^{-1}(0)\}.$$

Consequently, $E_{\sigma}(\theta,G)=E_{\sigma}$ whenever $\theta^{-1}(0)>0$, and $E_{\sigma}(\theta,G)=\{0\}$ when $\theta^{-1}(0)=0$.

Proof. Note that

$$\sup_{\mu \in M} \|f\|_{\boldsymbol{\varphi}}^{\mu} \leqslant K \theta^{-1}(0)$$



$$\sum_{\mu \in M} \theta \left(\frac{F_f(\mu)}{K} \right) G(\mu) = 0 \leqslant 1,$$

so that $K \geqslant N_{\phi}^{\theta,G}(f)$. Conversely, let $\theta(F_f(\mu_0)/K) > 0$ for some $\mu_0 \epsilon M$, and fix $\beta \epsilon(0, 1)$. Then for $\mu' \epsilon M$, $\mu' \neq \mu_0$, and any $\alpha \epsilon [\beta, 1]$, use of 1.8 gives

$$\theta\left(\frac{F_f\big(a\mu_0+(1-a)\,\mu'\big)}{\beta K}\right)\geqslant \theta\left(\frac{F_f\big(a\mu_0+(1-a)\,\mu'\big)}{aK}\right)\geqslant \theta\left(\frac{aF_f(\mu_0)}{aK}\right)>0\;.$$

Since infinitely many measures in M, of the form $a\mu_0 + (1-a)\mu'$, are obtained by varying a in $[\beta, 1]$, it is seen that

$$\sum_{\mu \in M} \theta \left(\frac{F_I(\mu)}{\beta K} \right) G(\mu) = \infty.$$

Hence $N_{\phi}^{\theta,G}(f) \geqslant \beta K$ for all $\beta \in (0, 1)$, which implies $K \leqslant N_{\phi}^{\theta,G}(f)$. If $\theta^{-1}(0) > 0$, then obviously

$$N_{m{\phi}}^{ heta,G}(f) = rac{1}{ heta^{-1}(0)} \sup_{\mu \in M} \|f\|_{m{\phi}}^{\mu},$$

so that $E_{\phi}(\theta, G) = E_{\phi}$. If $\theta^{-1}(0) = 0$, it is clear that $N_{\phi}^{\theta, G}(f) = 0$, i.e. $E_{\phi}(\theta, G) = \{0\}$, q.e.d.

- 2. Compactness and reflexivity. In this section a compactness condition for the set of measures M will be introduced, and then various properties of $E_{\sigma}(\theta, G)$, including reflexivity, will be investigated.
- **2.1.** LEMMA. If $\mu \in M$ and $h \in L_{\Psi}(\mu)$, then $l(h, \mu) \colon E_{\Phi}(\theta, G) \to R$ defined by $l(h, \mu)(f) = \int_{\Gamma} fh d\mu$ is a continuous linear functional, and

$$\|l(h,\mu)\|\leqslant heta^{-1}igg(rac{1}{G(\mu)}igg)N^\mu_arphi(h)\,.$$

Proof. $l(h, \mu)$ is obviously linear. By Hölder's inequality and 1.3,

$$|l(h,\mu)(f)| = \left| \int_{\Omega} fh d\mu \right| \leqslant \|f\|_{\Phi}^{\mu} N_{\Psi}^{\mu}(h) \leqslant \left[\theta^{-1} \left(\frac{1}{G(\mu)} \right) N_{\Psi}^{\mu}(h) \right] N_{\Phi}^{\theta,G}(f).$$

Hence

$$\|l(h,\,\mu)\| = \sup\{|l(h,\,\mu)\left(f\right)| \colon N_{\,\boldsymbol{\theta}}^{\theta,G}(f) \leqslant 1\} \leqslant \theta^{-1}\left(\frac{1}{G(\mu)}\right)N_{\,\boldsymbol{\Psi}}^{\mu}(h), \quad \text{ q.e.d.}$$

- **2.2.** Definition. \mathscr{E}_{Ψ} denotes the (real) linear space spanned by the functionals $l(h, \mu)$ for $\mu \in M$ and $h \in K_{\Psi}(\mu)$, where $K_{\Psi}(\mu)$ is the closed subspace determined by the bounded functions in $L_{\Psi}(\mu)$.
- **2.3.** THEOREM. \mathscr{E}_{Ψ} is a total subspace of $(E_{\Phi}(\theta,G))^*$, the adjoint space of $E_{\Phi}(\theta,G)$. Thus $E_{\Phi}(\theta,G)$ is a Hausdorff space under the \mathscr{E}_{Ψ} -topology of $E_{\Phi}(\theta,G)$.

Proof. By 2.1, $\mathscr{E}_{\mathscr{V}} \subset (E_{\mathscr{V}}(\theta, G))^*$. If $l(h, \mu)(f) = 0$ for all $\mu \in M$, $h \in K_{\mathscr{V}}(\mu)$, then, in particular, $\int_{\Omega} f \varkappa_A d\mu = 0$ for all $\mu \in M$ and $A \in \Sigma$ which implies f = 0 [μ] for all $\mu \in M$, i.e., f = 0. In other words, $\mathscr{E}_{\mathscr{V}}$ is a total subspace. Since any topology induced by a total subspace of the dual space is Hausdorff, the second statement follows, q.e.d.

2.4. Definition. (\mathcal{Q}, Σ, M) is said to be (θ, G) -compact if and only if for some Young's function Φ , the unit ball $B_{\Phi}(\theta, G)$ of $E_{\Phi}(\theta, G)$ is \mathscr{E}_{Ψ} -compact.

It will be shown that under a mild restriction on (θ, G) , every (Ω, Σ, M) where M is a dominated set of measures, is (θ, G) -compact. A special case is defined by Pitcher [8], when θ is a two-valued (0 and ∞) Young function. Pitcher also demonstrates that the compactness condition is really more general than domination.

For any $\mu \in M$, $c \ge 0$, $cB_{\Phi}(\mu)$ will denote the set

$$\{f \in L_{\varphi}(\mu) : ||f||_{\varphi}^{\mu} \leqslant c\}.$$

Writing c_{μ} for $\theta^{-1}(1/G(\mu))$, 1.3 takes the form

$$B_{\Phi}(\theta,G) \subset \bigcap_{\mu \in M} c_{\mu} B_{\Phi}(\mu).$$

2.5. Definition. $\varDelta_{\phi}^{\theta,G}$, or simply \varDelta , is the diagonal map of $B_{\varphi}(\theta,G)$ into $\prod_{\mu \in M} c_{\mu}B_{\varphi}(\mu)$, i.e., $\varDelta_{\phi}^{\theta,G}(f) = \{f_{\mu}\}_{\mu \in M}$, where $f_{\mu} = f \, [\mu]$.

In the following, for each $\mu \in M$, the topology considered on $c_{\mu}B_{\varphi}(\mu)_{\circ}$ is the weak topology induced by the $l(h, \mu), h \in K_{\Psi}(\mu)$; $\prod_{\mu \in M} c_{\mu}B_{\varphi}(\mu)$ is then endowed with the corresponding product topology.

2.6. LEMMA. If $B_{\sigma}(\theta, G)$ is \mathscr{E}_{Ψ} -compact, then $\Delta(B_{\sigma}(\theta, G))$ is closed in the product topology of $\prod_{\mu \in M} c_{\mu}B_{\sigma}(\mu)$. The converse holds providing Ψ is continuous.

Proof. Clearly, Δ is a one-to-one map. Consider the topology induced on $\Delta(B_{\sigma}(\theta,G))$ by defining $U \subset \Delta(B_{\sigma}(\theta,G))$ to be open if and only if $\Delta^{-1}(U)$ is \mathscr{E}_{Ψ} -open. In this topology, a base at 0 consists of sets of the form

$$\left\{ \left\{ f_{\mu} \right\}_{\mu \in M} : f_{\mu} = f[\mu], f \in B_{\Phi}(\theta, G), |I(h_i, \mu_i)(f)| < \varepsilon, i = 1, \ldots, n \right\},$$

where $h_i \in K_{\Psi}(\mu_i)$. But these sets are just the intersections with $\Delta(B_{\Phi}(\theta, G))$ of the sets in the base at 0 of the product topology, i.e.,

$$\left\{\left\{f_{\mu}\right\}_{\mu\in M}\colon |l\left(h_{i},\,\mu_{i}
ight)\left(f_{\mu_{i}}
ight)|$$

Hence the given topology is the restriction to $\Delta(B_{\Phi}(\theta, G))$ of the product topology. So if $B_{\Phi}(\theta, G)$ is \mathscr{E}_{Ψ} -compact, then $\Delta(B_{\Phi}(\theta, G))$ is compact in the product topology (Δ being continuous); but since each $c_{\mu}B_{\Phi}(\mu)$ is Hausdorff, so is $\prod_{\mu \in M} c_{\mu}B_{\Phi}(\mu)$, and $\Delta(B_{\Phi}(\theta, G))$ is closed.

If Ψ is continuous, then for $\mu \in M$ every continuous linear functional on $K_{\Psi}(\mu)$ is of the form ([5], p. 128)

$$l^*(f,\mu)(h) = \int_{\Omega} f h \, d\mu, \quad f \in L_{\Phi}(\mu),$$

and the correspondence $f \to l^*(f, \mu)$ is an isometric isomorphism of $L_{\sigma}(\mu)$ with $(K_{\Psi}(\mu))^*$. Since $l^*(f, \mu)(h) = l(h, \mu)(f)$, it is seen that the given topology on $B_{\sigma}(\mu)$ is equivalent to the weak*-topology on the unit ball of $(K_{\Psi}(\mu))^*$, in which that unit ball is compact, by Alaoglu's Theorem. Thus $c_{\mu}B_{\sigma}(\mu)$ is compact and, by Tychonoff's Theorem, so is $\prod_{\mu \in M} c_{\mu}B_{\sigma}(\mu)$.

It follows that if $\Delta(B_{\varphi}(\theta, G))$ is closed in the product topology, then it is compact, and (since Δ^{-1} is continuous) $B_{\varphi}(\theta, G)$ is \mathscr{E}_{Ψ} -compact, q.e.d.

The requirement that Ψ be continuous, for the converse part of the preceding lemma, is essential, for the following reason. When Ψ is discontinuous, then, as has been noted, $K_{\Psi}(\mu) = L_{\infty}(\mu)$ for each $\mu \in M$, and ([4], p. 296) the dual space $(L_{\infty}(\mu))^*$ is isometrically isomorphic with the space $ba(\mu)$ of finitely additive (real-valued) set functions on the μ -completion of Σ which are of bounded variation and vanish on μ -null sets. The $L_{\infty}(\mu)$ -topology on $ba(\mu)$ is thus the weak*-topology (hence Hausdorff). $B_1(\mu)$, the unit ball of $L_1(\mu)$, is a subset of $ba(\mu)$ (under isometric isomorphism); in order for $B_1(\mu)$ to be $L_{\infty}(\mu)$ -compact, it must therefore be an $L_{\infty}(\mu)$ -closed subset of $ba(\mu)$. But an example given by Doob [3], p. 631, shows this need not be true.

2.7. LEMMA. If $\{\mu_1,\ldots,\mu_n\}\subset M$, $f\in\bigcap_{i=1}^n L_{\Phi}(\mu_i)$, and if for all $\varepsilon>0$ and $h_i\in K_{\Psi}(\mu_i),\,i=1,\ldots,n$, there is a $g\in B_{\Phi}(\theta,G)$ with

$$\left|\int\limits_{\Omega} (f-g)h_i d\mu_i\right| < arepsilon, \quad i=1,...,n,$$

then

$$\sum\limits_{i=1}^n heta(\|f\|_{m{arphi}}^{\mu_i})G(\mu_i)\leqslant 1$$
 .

Proof. Choose δ in (0,1); then by definition, for each $i=1,\ldots,n$, there is an $h_i^{\delta} \in K_{\Psi}(\mu_i)$ with $\int\limits_0^{\cdot} \Psi(h_i^{\delta}) \, d\mu_i \leqslant 1$, satisfying

$$\left|\int\limits_{\Omega}fh_{i}^{\delta}d\mu_{i}\right|>\delta\left\|f
ight\|_{arphi}^{\mu_{i}},$$

since ([5], p. 87) the latter space is norm-determining. Now given $\varepsilon > 0$, there is by hypothesis, a $g \in B_{\sigma}(\theta, G)$ with

$$\left|\int\limits_{\Omega} (f-g)\,h_i^\delta d\mu_i
ight|$$

Combining the above,

$$\delta \|f\|_{\sigma}^{\mu_i} < \left| \int\limits_{\varOmega} f h_i^{\delta} d\mu_i \right| \leqslant \left| \int\limits_{\varOmega} (f-g) \, h_i^{\delta} d\mu_i \right| + \left| \int\limits_{\varOmega} g h_i^{\delta} d\mu_i \right| < \varepsilon + \left\| g \right\|_{\sigma}^{\mu_i}.$$

Then

$$\textstyle\sum_{i=1}^n \theta\left(\delta^2 \|f\|_{\theta^i}^{\mu_i}\right) G(\mu_i) \leqslant \sum_{i=1}^n \theta\left(\delta \|g\|_{\theta^i}^{\mu_i} + \delta \varepsilon\right) G(\mu_i)\,.$$

But since $g \in B_{\varphi}(\theta, G)$, Lemma 1.3 implies that

$$\delta \|g\|_{\Phi}^{\mu_i} \leqslant \delta \theta^{-1} \left(\frac{1}{G(\mu_i)} \right) \leqslant \delta \alpha,$$

where

$$\alpha \equiv \max_{1 \leqslant i \leqslant n} \theta^{-1} \left(\frac{1}{G(\mu_i)} \right) \leqslant \beta = \sup \left\{ x \geqslant 0 \colon \theta(x) < \infty \right\}$$

(the "jump point" of θ , if it jumps), and so $\delta \alpha < \beta$. Since δ does not depend on ε , one can take $\varepsilon < \beta/\delta - \alpha$. θ is convex and continuous on $(0, \beta)$, so $\theta(\delta \|g\|_{\theta}^{pi} + \delta \varepsilon) - \theta(\delta \|g\|_{\theta}^{pi}) \le \theta(\delta \alpha + \delta \varepsilon) - \theta(\delta \alpha)$, and

$$\textstyle \sum_{i=1}^n \theta(\delta^2 \|f\|_{\sigma}^{\mu_i}) G(\mu_i) \, \leqslant \sum_{i=1}^n \theta\left(\delta \|g\|_{\sigma}^{\mu_i}\right) G\left(\mu_i\right) + \left[\theta\left(\delta a + \delta \varepsilon\right) - \theta\left(\delta a\right) \right] \sum_{i=1}^n G\left(\mu_i\right).$$

But

$$\sum_{i=1}^{n} \theta(\delta \|g\|_{\Phi}^{\mu_i}) G(\mu_i) \leqslant 1$$

since $g \in B_{\sigma}(\theta, G)$, and $\theta(\delta \alpha + \delta \varepsilon) - \theta(\delta \alpha) \to 0$ as $\varepsilon \to 0$, because δ does not depend on ε and θ is continuous on $[0, \beta)$. Therefore,

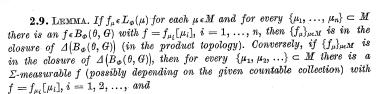
$$\sum_{i=1}^n \theta(\delta^2 ||f||_{\boldsymbol{\sigma}}^{\mu_i}) G(\mu_i) \leqslant 1,$$

and letting $\delta \to 1$, the result follows, q.e.d.

2.8. THEOREM. $B_{\varphi}(\theta, G)$ is \mathscr{E}_{ψ} -closed.

Proof. Follows easily from 2.7.

The next Lemma is important for a key result of this section.



$$\sum_{i=1}^{\infty} \theta(\|f\|_{\Phi}^{\mu_i}) G(\mu_i) \leqslant 1.$$

Proof. Given $\{\mu_1, \ldots, \mu_n\}$ and $f \in B_{\Phi}(\theta, G)$ as in the first statement, then for any $h_i \in K_{\Psi}(\mu_i)$, $i = 1, 2, \ldots, n$, clearly $l(h_i, \mu_i) (f - f_{\mu_i}) = 0$, so that $\{f\}_{\mu \in M}$ $(= \Delta(f))$ is in every neighborhood of $\{f_{\mu}\}_{\mu \in M}$ of the form

$$\{\{g_{\mu}\}_{\mu \in M} \colon |l(h_i, \mu_i)(g_{\mu_i} - f_{\mu_i})| < \varepsilon, i = 1, ..., n\},$$

where h_i and $\varepsilon > 0$ may vary. Since by selecting the various finite subsets of M, one obtains in this way all basis neighborhoods centered at $\{f_{\mu}\}_{\mu \in M}$, and each such neighborhood contains an element of $\Delta(B_{\Phi}(\theta, G))$, it follows that $\{f_{\mu}\}_{\mu \in M}$ is in the closure of $\Delta(B_{\Phi}(\theta, G))$.

Now suppose $\{f_{\mu}\}_{{\mu}\in M}$ is in the closure of $\Delta(B_{\Phi}^{\prime}(\theta,G))$, and let $\{\mu_{1}, \mu_{2}\}$

$$\mu_2, \ldots \} \subset M$$
. Let $\nu = \sum_{i=1}^{\infty} 2^{-i} \mu_i$, and define

$$A_{n,m}=\left\{\omega\colon rac{d\mu_n(\omega)}{d
u}>0\,,\,\,rac{d\mu_m(\omega)}{d
u}>0
ight\};$$

then

$$rac{d\mu_n}{d\mu_m} = rac{d\mu_n}{d
u} igg/rac{d\mu_m}{d
u}$$

is finite and strictly positive on $A_{n,m}$. Let

$$C_{n,m} = \{\omega \in A_{n,m} : f_{\mu_m}(\omega) > f_{\mu_m}(\omega)\}$$

and, for k = 1, 2, ...

$$C_{n,m}(k) = \left\{ \omega \in C_{n,m} : 0 < \frac{d\mu_n(\omega)}{d\mu_m} \leqslant k \right\}.$$

Clearly,

$$\mu_m(C_{n,m}) = \lim_{k \to \infty} \mu_m(C_{n,m}(k)),$$

so if $\mu_m(C_{n,m}) > 0$, then, for some k_0 , $\mu_m(C_{n,m}(k_0)) > 0$. If g denotes the indicator function of $C_{n,m}(k_0)$, then g and $g(d\mu_n/d\mu_m)$ are bounded Σ -measurable functions and hence belong to $K_{\Psi}(\mu)$ for all $\mu \in M$. Since $\{f_{\mu}\}_{\mu \in M}$ is in the closure of $\Delta(B_{\Phi}(\theta, G))$, for any $\varepsilon > 0$ there is an $f_{\varepsilon} \in B_{\Phi}(\theta, G)$

Orlicz spaces

such that

$$\left|\int\limits_{\Omega} \left(f_{\mu_n} - f_{arepsilon}\right) g d\mu_n \right| < arepsilon/2$$

and

$$\bigg|\int\limits_{\varOmega} (f_{\mu_m} - f_{\varepsilon}) g d\mu_n \, \bigg| = \bigg|\int\limits_{\varOmega} (f_{\mu_m} - f_{\varepsilon}) g \, \frac{d\mu_n}{d\mu_m} \, d\mu_m \, \bigg| < \varepsilon/2 \, .$$

. If follows that

$$\int\limits_{C_{n,m}(k_0)} (f_{\mu_n} - f_{\mu_m}) \frac{d\mu_n}{d\mu_m} \, d\mu_m \, = \Big| \int\limits_{\varOmega} (f_{\mu_n} - f_{\mu_m}) \, g d\mu_n \Big| < \varepsilon \,,$$

and, since the left side is independent of ε ,

$$\int\limits_{C_{n,m}(k_0)} (f_{\mu_{\!n}}\!-\!f_{\mu_{\!m}})\,\frac{d\mu_n}{d\mu_m}\,d\mu_m\,=\,0\,,$$

which is a contradiction since $\mu_m(C_{n,m}(k_0)) > 0$ and the integrand is strictly positive on $C_{n,m}(k_0)$. Thus $\mu_m(C_{n,m}) = 0$ and, similarly,

$$\mu_m\{\omega \in A_{n,m}: f_{\mu_n}(\omega) < f_{\mu_m}(\omega)\} = 0.$$

This implies that

$$\mu_m\{\omega \in A_{n,m}: f_{\mu_m}(\omega) \neq f_{\mu_m}(\omega)\} = 0.$$

Next, let

$$D_n = \left\{ \omega : rac{d\mu_n(\omega)}{d
u} > 0 \,, \,\, rac{d\mu_j(\omega)}{d
u} = 0 \,\,\, ext{for all} \,\, j < n
ight\},$$

and define

$$f = \sum_{n=1}^{\infty} \chi_{D_n} f_{\mu_n}.$$

Since f_{ν_n} are Σ -measurable, and clearly the $D_n \in \Sigma$ (and are disjoint), f is Σ -measurable. Also, note that

$$\begin{split} \{\omega \colon & f(\omega) \neq f_{\mu_n}(\omega)\} \\ & \subset \left\{\omega \colon \frac{d\mu_n(\omega)}{d\nu} = 0\right\} \cup \bigcup_{j=1}^{n-1} \left\{\omega \in D_j \colon \frac{d\mu_n(\omega)}{d\nu} > 0 \,, \, f_{\mu_j}(\omega) \neq f_{\mu_n}(\omega)\right\} \\ & \subset \left\{\omega \colon \frac{d\mu_n(\omega)}{d\nu} = 0\right\} \cup \bigcup_{j=1}^{n-1} \left\{\omega \in A_{j,n} \colon f_{\mu_j}(\omega) \neq f_{\mu_n}(\omega)\right\}. \end{split}$$

But obviously

$$\mu_n\left\{\omega:\frac{d\mu_n(\omega)}{d\nu}=0\right\}=0,$$

and it has been shown that

$$\mu_n\{\omega \in A_{j,n}: f_{\mu_j}(\omega) \neq f_{\mu_n}(\omega)\} = 0;$$

thus $f = f_{\mu_n}[\mu_n], n = 1, 2, ...$

Furthermore, $f \in \bigcap_{i=1}^{\infty} L_{\Phi}(\mu_i)$, since by definition $f_{\mu_i} \in L_{\Phi}(\mu_i)$, i = 1, 2, ...Fixing $n, \varepsilon > 0$, and $h_i \in K_W(\mu_i)$, i = 1, ..., n, then since $\{f_{\mu}\}_{\mu \in M}$ is in the closure of $\Delta(B_{\Phi}(\theta, G))$, there is a $g \in B_{\Phi}(\theta, G)$ with

$$\left|\int\limits_{\mathcal{Q}} (f-g)h_i d\mu_i \right| = \left|\int\limits_{\mathcal{Q}} (f_{\mu_i}-g)h_i d\mu_i \right| < arepsilon, \quad i=1,\,...,\,n.$$

Hence, by 2.7,

$$\sum_{i=1}^n \theta(\|f\|_{\varphi}^{\mu_i}) G(\mu_i) \leqslant 1.$$

But n is arbitrary, so

$$\sum_{i=1}^{\infty} \theta(\|f\|_{\varPhi}^{\mu_i}) G(\mu_i) \leqslant 1, \quad \text{ q.e.d.}$$

2.10. Corollary. If $\{f_{\mu}\}_{\mu\in M}$ is in the closure of $\Delta(B_{\Phi}(\theta,G))$, then

$$\sum_{\mu \in M} \theta\left(\left\|f_{\mu}\right\|_{\Phi}^{\mu}\right) G(\mu) \leqslant 1$$
.

Proof. For any $\{\mu_1,\,\mu_2,\,\ldots\}\subset M,$ one obtains by 2.9 an f with $f=f_{\mu_i}[\mu_i],\,i=1,\,2,\,\ldots,$ and

$$\sum_{i=1}^{\infty} \theta(\|f\|_{\boldsymbol{\varphi}}^{\mu_i}) G(\mu_i) \leqslant 1,$$

so that

$$\sum\limits_{i=1}^{\infty} heta\left(\left\|f_{\mu_{i}}
ight\|_{\phi}^{\mu_{i}}
ight)G(\mu_{i})\leqslant 1$$
 .

But this holds for any countable subset, so the proof is done, q.e.d.

2.11. Proposition. If M is countable and Ψ is continuous, then $B_{\Phi}(\theta, G)$ is \mathscr{E}_{Ψ} -compact.

Proof. By 2.6, it suffices to show that $\Delta(B_{\Phi}(\theta, G))$ is closed. Suppose $\{f_{\mu}\}_{\mu\in M}$ is in the closure of $\Delta(B_{\Phi}(\theta, G))$; then by 2.9, since M is countable, there is an $f = f_{\mu}[\mu]$ for all $\mu \in M$, and

$$\sum_{\mu \in M} \theta(||f||_{\Phi}^{\mu}) G(\mu) \leqslant 1,$$

i.e., $f \in B_{\sigma}(\theta, G)$. Hence $\{f_{\mu}\}_{\mu \in M} \in \Delta(B_{\sigma}(\theta, G))$, and $\Delta(B_{\sigma}(\theta, G))$ is closed, q.e.d.

The first main result of this section can now be given in the following:

2.12. THEOREM. On $B_{\infty}(\theta,G)$, the \mathscr{E}_{Ψ^-} and \mathscr{E}_{∞} -topologies are equivalent for any Ψ . If (Ω,Σ,M) is (θ,G) -compact, then $B_{\infty}(\theta,G)$ is \mathscr{E}_1 -compact. Conversely, if $B_{\infty}(\theta,G)$ is \mathscr{E}_1 -compact and contains a (strictly) positive function, then $B_{\Phi}(\theta,G)$ is \mathscr{E}_{Ψ^-} -compact, whenever Ψ is continuous.

Proof. Since $K_{\mathscr{V}}(\mu)$ contains all μ -essentially bounded measurable functions, the $\mathscr{E}_{\mathscr{V}}$ -topology is stronger than the \mathscr{E}_{∞} -topology. Now if $l(h, \mu) \in \mathscr{E}_{\mathscr{V}}$, let

$$h^{(n)}(\omega) = \begin{cases} h(\omega), & |h(\omega)| \leqslant n, \\ 0, & |h(\omega)| > n; \end{cases}$$

then $l(h^{(n)}, \mu) \in \mathscr{E}_{\infty}$ for n = 1, 2, ... If $f \in B_{\infty}(0, G)$, then, by 1.3,

$$|f| \leqslant heta^{-1} \left(\frac{1}{G(\mu)} \right) [\mu],$$

so that

$$\begin{split} |l(h,\mu)\left(f\right) - l(h^{(n)},\mu)\left(f\right)| &= \left|\int\limits_{\Omega} f(h-h^{(n)}) \, d\mu\right| \\ &\leqslant \int\limits_{\Omega} |f| \, |h-h^{(n)}| \, d\mu \leqslant \theta^{-1} \bigg(\frac{1}{G(\mu)}\bigg) \int\limits_{|h| > n} |h| \, d\mu, \end{split}$$

which goes to 0, uniformly in f, as $n \to \infty$, since $K_{\mathscr{V}}(\mu) \subset L_{\mathscr{V}}(\mu) \subset L_{1}(\mu)$ ([12], p. 82). Hence, all $l(h, \mu)$, and therefore all elements of \mathscr{E}_{ψ} , can be uniformly approximated on $B_{\infty}(\theta, G)$ by elements of \mathscr{E}_{∞} , so that the topologies are in fact equivalent on $B_{\infty}(\theta, G)$.

Suppose $(\varOmega, \varSigma, M)$ is (θ, G) -compact, i.e., for some \varPhi , $B_{\sigma}(\theta, G)$ is $\mathscr{E}_{\mathscr{V}}$ -compact. The inequality $N_{\sigma}^{\theta,G}(\cdot) \leqslant cN_{\infty}^{\theta,G}(\cdot)$, for some c>0, has been noted earlier; in other terms, $B_{\infty}(\theta, G) \subset cB_{\sigma}(\theta, G)$. But $cB_{\sigma}(\theta, G)$ is $\mathscr{E}_{\mathscr{V}}$ -compact (since scalar multiplication is continuous) and, by 2.8, $B_{\infty}(\theta, G)$ is $\mathscr{E}_{\mathscr{V}}$ -closed, hence $\mathscr{E}_{\mathscr{V}}$ -closed, by the first part of this theorem. Thus $B_{\infty}(\theta, G)$ is $\mathscr{E}_{\mathscr{V}}$ - (and so $\mathscr{E}_{\mathscr{V}}$ -) compact.

Now assume that Ψ is continuous, and that $B_{\infty}(\theta, G)$ is \mathscr{E}_1 -compact and contains a function $f_0 > 0$. Let $\{f_{\mu}\}_{\mu \in M}$ be in the closure of $A_{\sigma}(B_{\sigma}(\theta, G))$. By 2.9, for all $\{\mu_1, \ldots, \mu_n\} \subset M$ there is an f' with $f' = f_{\mu_{\bar{i}}}[\mu_{\bar{i}}], i = 1, \ldots, n$. If $f^{(N)}$ denotes the truncation of the function f as in (*), then

$$\frac{1}{N}f_0(f')^{(N)} = \frac{1}{N}f_0f_{\mu_i}^{(N)}[\mu_i], \quad i = 1, ..., n,$$

for every integer N > 0. But since $|(f')^{(N)}| \leq N$, it follows that

$$\frac{1}{N}f_0(f')^{(N)} \in B_{\infty}(\theta, G)$$

by the fact that the ball is solid. Again by 2.9, this means that $\{N^{-1}f_0f_{\mu}^{(N)}\}_{\mu\in M}$ is in the closure of $\Delta_{\infty}(B_{\infty}(\theta,G))$ for each N. Now, according to 2.6, $\Delta_{\infty}(B_{\infty}(\theta,G))$ is closed, so for each N there is a $g_N \in B_{\infty}(\theta,G)$ such that

$$g_N = rac{1}{N} f_0 f_\mu^{(N)}[\mu] \quad ext{for all } \mu \, \epsilon M \, .$$

Since for each $\mu \in M$, $f_{\mu}^{(N)} \to f_{\mu}$, and $f_{\mu}^{(N)} = (Ng_N/f_0) [\mu]$, the sequence $\{Ng_N/f_0\}$ must converge μ -almost everywhere to a measurable function f, which must then satisfy $f = f_{\mu}[\mu]$ for all $\mu \in M$. By 2.10, this implies

$$\sum_{\mu \in M} \theta(||f||_{\Phi}^{\mu}) \ G(\mu) \leqslant 1,$$

i.e., $f \in B_{\Phi}(\theta, G)$, and so $\{f_{\mu}\}_{\mu\in M} \in \mathcal{A}_{\Phi}(B_{\Phi}(\theta, G))$. Thus $\mathcal{A}_{\Phi}(B_{\Phi}(\theta, G))$ is closed; so 2.6 and the continuity of $\mathcal{\Psi}$ imply that $B_{\Phi}(\theta, G)$ is $\mathscr{E}_{\mathcal{\Psi}}$ -compact, a.e.d.

The condition in 2.12 that there exist $0 < f_0 \in B_{\infty}(\theta, G)$ is essentially the same as requiring that $\theta^{-1}(0) > 0$. More precisely,

2.13. LEMMA. If $\theta^{-1}(0) > 0$ (i.e., if $\theta(x_0) = 0$ for some $x_0 > 0$), then $B_{\infty}(\theta, G)$ contains a function $f_0 > 0$. If M is uncountable, then the converse holds.

Proof. If $x_0>0$ and $\theta(x_0)=0$, define $f_0\equiv x_0$. Then $\|f_0\|_\infty^\mu=x_0$ for all $\mu\in M$ and

$$\textstyle\sum_{\mu \in M} \theta(\|f_0\|_{\infty}^{\mu}) \; G(\mu) = \sum_{\mu \in M} \theta(x_0) \; G(\mu) \, = \, 0 \leqslant 1 \, ,$$

so $f_0 \epsilon B_{\infty}(\theta, G)$.

Conversely, let M be uncountable, and suppose $0 < f_0 \in B_{\infty}(\theta, G)$. This means that

$$\sum_{\mu \in M} \theta(\|f_0\|_{\infty}^{\mu}) G(\mu) \leqslant 1,$$

and so there must be a $\mu_0 \in M$ such that $\theta(\|f_0\|_{\infty}^{\mu_0}) = 0$. But since $f_0 > 0$, $\|f_0\|_{\infty}^{\mu}$ is also > 0. Hence $\theta^{-1}(0) > 0$, q.e.d.

The following result will be found useful later on:

2.14. LEMMA. If (Ω, Σ, M) is (θ, G) -compact, $B_{\infty}(\theta, G)$ contains an $f_0 > 0$, and $\{f_{\mu}\}_{\mu \in M}$ are measurable functions such that for every $\{\mu_1, \ldots, \mu_n\}$ $\subset M$ there is a measurable function f' with $f' = f_{\mu_i}[\mu_i]$, $i = 1, \ldots, n$, then there is a measurable f such that $f = f_{\mu}[\mu]$ for all $\mu \in M$.

Proof. The proof here is essentially extracted from the proof of 2.12 (the part where $B_{\infty}(\theta,G)$ is assumed \mathscr{E}_1 -compact). By the first part of 2.12, it follows from the above hypothesis that $B_{\infty}(\theta,G)$ is indeed \mathscr{E}_1 -compact. Although $\{f_{\mu}\}_{\mu\in M}$ is not assumed here to be in the closure of anything, the assumption of the existence, for each $\{\mu_1,\ldots,\mu_n\}$, of

an f' as above, sufficiently compensates for this. One now proceeds exactly as in 2.12 to obtain the desired function f, g.e.d.

In the sequel, different sets of measures M will be considered on (Ω, Σ) ; this will be indicated as, for example, $B_{\sigma}(\theta, G; M)$. If G is defined on M and $M' \subset M$, G will also stand for the restriction of G to M'. Also, f = g[M] or $[f]_M = [g]_M$ will mean $f = g[\mu]$ for all $\mu \in M$.

2.15. THEOREM. If $B_{\sigma}(\theta,G;M)$ is $\mathscr{E}_{\Psi}(M)$ -compact, and $M' \subset M$ is such that for all $[g]_{M'} \in B_{\sigma}(\theta,G;M')$ there is an f = g[M'] with $[f]_{M} \in B_{\sigma}(\theta,G;M)$, then $B_{\sigma}(\theta,G;M')$ is $\mathscr{E}_{\Psi}(M')$ -compact.

Proof. Consider the map $[f]_M \to [f]_{M'}$ of $B_\sigma(\theta,G;M)$ into $B_\sigma(\theta,G;M')$. It is well-defined since $f_1=f_2[M]$ implies $f_1=f_2[M']$. It is continuous in the $\mathscr{E}_{\mathscr{V}}(M)$ - and $\mathscr{E}_{\mathscr{V}}(M')$ -topologies, since the inverse image of the open set

$$\{[f]_{M'}: |l(h_i, \mu_i)(f)| < \varepsilon, \ i = 1, \ldots, n\}, \quad \mu_i \in M', h_i \in K_{\Psi}(\mu_i),$$

is $\{\lceil f \rceil_M \colon |l(h_i, \mu_i)(f)| < \varepsilon, \ i = 1, \ldots, n\}.$

Furthermore, by hypothesis, the map is onto. But this means that $B_{\sigma}(\theta, G; M')$ is the continuous image of a compact set, and so is $\mathscr{E}_{\Psi}(M')$ -compact, q.e.d.

- 2.16. THEOREM. If Y is continuous, and M has a subset M' such that
- (a) $B_{\varphi}(\theta, G; M')$ is $\mathscr{E}_{\Psi}(M')$ -compact;
- (b) $[f]_M \in B_{\Phi}(\theta, G; M)$ implies f = 0 [M M'];
- (c) $[g]_{M'} \in B_{\sigma}(\theta, G; M')$ implies that there is an f = g[M'] with f = 0[M-M'];

then $B_{\Phi}(\theta, G; M)$ is $\mathscr{E}_{\Psi}(M)$ -compact.

Proof. Since Ψ is continuous, one may assume, by 2.6, $\Delta(B_{\sigma}(\theta, G; M'))$ is closed and show that $\Delta(B_{\sigma}(\theta, G; M))$ is closed. So suppose $\{f_{\mu}\}_{\mu \in M}$ is in the closure of $\Delta(B_{\sigma}(\theta, G; M))$; then for all $\{\mu_{1}, \ldots, \mu_{n}\} \subset M$, $\varepsilon > 0$, $h_{t} \in K_{\Psi}(\mu_{i}), i = 1, \ldots, n$, there is an $[f']_{M} \in B_{\sigma}(\theta, G; M)$ with

$$\left|\int_{\Omega} (f_{\mu_i} - f') h_i d\mu_i\right| < \varepsilon, \quad i = 1, ..., n.$$

By (b), f'=0 [M-M'], which implies that for all $\mu \in M-M'$, $\varepsilon>0$, $h \in K_{\Psi}(\mu)$,

$$\left|\int\limits_{\Omega}f_{\mu}h\,d\mu\right|$$

so that $f_{\mu}=0$ $[\mu]$ for each $\mu \in M-M'$. Furthermore, it is clear that $[f']_{M'} \in B_{\phi}(\theta, G; M')$, since

$$\textstyle\sum_{\boldsymbol{\mu} \in \boldsymbol{M}'} \theta(\|\boldsymbol{f}'\|_{\boldsymbol{\Phi}}^{\boldsymbol{\mu}}) \; G(\boldsymbol{\mu}) \; \leqslant \sum_{\boldsymbol{\mu} \in \boldsymbol{M}} \theta(\|\boldsymbol{f}'\|_{\boldsymbol{\Phi}}^{\boldsymbol{\mu}}) \; G(\boldsymbol{\mu}) \leqslant 1 \, .$$

It follows that $\{f_{\mu}\}_{\mu\in M'}$ is in the closure of $\Delta(B_{\Phi}(\theta,G;M'))$, and since the latter is closed, there is a $[g]_{M'} \epsilon B_{\Phi}(\theta,G;M')$ with $f_{\mu}=g[\mu]$ for all $\mu \epsilon M'$. But by (c), it may be assumed that g=0[M-M'], and so $g=f_{\mu}=0[\mu]$ for all $\mu \epsilon M-M'$. Thus it is seen that $[g]_{M} \epsilon B_{\Phi}(\theta,G;M)$ and $g=f_{\mu}[\mu]$ for all $\mu \epsilon M$. Hence $\{f_{\mu}\}_{\mu\in M}$ is in $\Delta(B_{\Phi}(\theta,G;M))$, the latter is closed, and $B_{\Phi}(\theta,G;M)$ is $\mathscr{E}_{\Psi}(M)$ -compact, q.e.d.

2.17. THEOREM. If M has a subset M' such that

- (a) (Ω, Σ, M') is (θ, G) -compact;
- (b) for every $\mu \in M$ there exist $\{\mu_1, \mu_2, \ldots\} \subset M'$ with $\mu \ll \sum_{n=1}^{\infty} 2^{-n} \mu_n$;
- (c) for some K > 0, $[f]_{M'} \in B_{\infty}(\theta, G; M')$ implies $|f| \leq K[M']$;
- (d) $[f]_{M'} \in B_{\infty}(\theta, G; M')$ implies $[f]_{M} \in B_{\infty}(\theta, G; M);$ then (Ω, Σ, M) is (θ, G) -compact.

Proof. Obviously, every M-null set is M'-null. Conversely, suppose A is M'-null and $\mu \in M$. Select $\{\mu_1, \mu_2, \ldots\} \subset M'$ as in (b); since A is μ_n -null for $n=1,2,\ldots$, it is also μ -null. Hence the M-null and M'-null sets coincide. Now (d) and its converse (which is always true) imply that $B_{\infty}(\theta, G; M')$ is identical with $B_{\infty}(\theta, G; M)$. By (a) and 2.12, $B_{\infty}(\theta, G; M)$ ($= B_{\infty}(\theta, G; M')$) is $\mathscr{E}_{\infty}(M')$ -compact. Thus it remains only to show that the $\mathscr{E}_{\infty}(M')$ - and $\mathscr{E}_{\infty}(M)$ -topologies on $B_{\infty}(\theta, G)$ ($= B_{\infty}(\theta, G; M)$) are equivalent. It suffices to prove that every element of $\mathscr{E}_{\infty}(M)$ is the limit of elements of $\mathscr{E}_{\infty}(M')$, uniformly on $B_{\infty}(\theta, G)$.

If $\mu \in M$, and $\{\mu_1, \mu_2, \ldots\}$ are such that $\mu \ll \sum_{n=1}^{\infty} 2^{-n} \mu_n$, then, by the

Radon-Nikodym theorem, there exists a non-negative f_0 such that

$$\mu(A) = \int\limits_{\mathcal{A}} f_0 d\left(\sum_{n=1}^{\infty} 2^{-n} \mu_n\right) = \sum_{n=1}^{\infty} \int\limits_{\mathcal{A}} f_n d\mu_n$$

for every $A \in \Sigma$, where $f_n = 2^{-n} f_0$. If $h \in L_{\infty}(\mu)$, then there is an $N \geqslant 0$ such that $\mu\{\omega : |h(\omega)| > N\} = 0$, so that, for $n = 1, 2, \ldots$,

$$\mu_n\{\omega\colon |h(\omega)|>N, f_0(\omega)>0\}=0.$$

But since $\min(f_n(\omega), k)|h(\omega)| > kN$ implies $|h(\omega)| > N$ and $f_0(\omega) > 0$,

$$\mu_n\{\omega : \min(f_n(\omega), k) | h(\omega)| > kN\} = 0, \quad n = 1, 2, ..., k = 1, 2, ...,$$

so $\min(f_n, k) h \in L_{\infty}(\mu_n)$. Hence, if $l(h, \mu) \in \mathscr{E}_{\infty}(M)$, then

$$\sum_{n=1}^k l(\min(f_n, k) h, \mu_n) \in \mathscr{E}_{\infty}(M').$$

Studia Mathematica XXXV.1

Orlicz spaces

If $f \in B_{\infty}(\theta, G)$, then, by (c), $|f| \leq K[M]$, so

$$\begin{split} \left| l(h,\,\mu)\left(f\right) - \sum_{n=1}^k l(\min\left(f_n,\,k\right)\,h,\,\mu_n\right) (f) \right| \\ &= \left| \sum_{n=1}^\infty \int_\Omega f h f_n d\mu_n - \sum_{n=1}^k \int_\Omega f h \, \min\left(f_n,\,k\right) d\mu_n \right| \\ &= \left| \sum_{n=k+1}^\infty \int_\Omega f h f_n d\mu_n + \sum_{n=1}^k \int_\Omega f h \left(f_n - \min\left(f_n,\,k\right)\right) d\mu_n \right| \\ &\leqslant \sum_{n=k+1}^\infty \int_\Omega \left| f h | f_n d\mu_n + \sum_{n=1}^k \int_\Omega \left| f h | \left(f_n - \min\left(f_n,\,k\right)\right) d\mu_n \right| \\ &\leqslant KN \left[\sum_{n=k+1}^\infty \int_\Omega f_n d\mu_n + \sum_{n=1}^k \int_\Omega \left(f_n - \min\left(f_n,\,k\right)\right) d\mu_n \right]. \end{split}$$

Since $\sum_{n=1}^{\infty} \int f_n d\mu_n = 1$, the first term here tends to 0 as $k \to \infty$. Now given $\varepsilon > 0$, one can choose n_{ε} so large that

$$\sum_{n=n_{\varepsilon}+1}^{\infty} \int_{\Omega} f_n d\mu_n < \varepsilon/2;$$

then take k_e so large that (for the fixed n_e)

$$\sum_{n=1}^{n_{\varepsilon}} \int_{f_n > k_{\varepsilon}} f_n d\mu_n < \varepsilon/2.$$

It follows that

$$\begin{split} 0 &\leqslant \sum_{n=1}^{k_e} \int\limits_{\Omega} \left(f_n - \min(f_n, k_e) \right) d\mu_n \\ &\leqslant \sum_{n=1}^{\infty} \int\limits_{f_n > k_e} f_n d\mu_n \\ &\leqslant \sum_{n=1}^{\infty} \int\limits_{f_n > k_e} f_n d\mu_n + \sum\limits_{n=n_e+1}^{\infty} \int\limits_{\Omega} f_n d\mu_n < \varepsilon, \end{split}$$

and since s is arbitrary

$$\sum_{n=1}^{k} l(\min(f_n, k) h, \mu_n) \rightarrow l(h, \mu)$$

as $k \to \infty$ uniformly on $B_{\infty}(\theta, G)$, q.e.d.

2.18. Corollary. If M is dominated by a probability measure μ_0 (i.e., $\mu \ll \mu_0$ for all $\mu \in M$), Ψ is continuous, and either

(a) $\theta^{-1}(1/G(\cdot))$ is bounded

or

(b) $[g]_{M} \in B_{\sigma}(\theta, G; M)$ implies that there is an f = g[M] with $[f]_{M \cup \{\mu\}_0} \in B_{\sigma}(\theta, G; M \cup \{\mu_0\})$ for some extension G of G to $M \cup \{\mu_0\}$; then $B_{\sigma}(\theta, G; M)$ is $\mathscr{E}_{\Psi}(M)$ -compact.

Proof. Let $\tilde{M} = M \cup \{\mu_0\}$.

(a) First consider

$$heta_1(x) = \left\{ egin{array}{ll} 0\,, & |x| \leqslant 1\,, \ \infty\,, & |x| > 1\,, \end{array}
ight.$$

so that for any $M' \subset \tilde{M}$,

$$N_{\infty}^{ heta,G}(f;\,M')=\sup_{\mu\in M'}\|f\|_{\infty}^{\mu}.$$

By 2.11, $B_{\infty}(\theta_1, \tilde{G}; \{\mu_0\})$ is $\mathscr{E}_1(\{\mu_0\})$ -compact. Clearly, every $\mu \in \tilde{M}$ is dominated by a countable subset of $\{\mu_0\}$. If $[f]_{(\mu_0)} \in B_{\infty}(\theta_1, \tilde{G}; \{\mu_0\})$, then $\|f\|_{\infty}^{\theta_0} \leqslant 1$, i.e., $|f| \leqslant 1[\mu_0]$; and, moreover, this implies by the domination that $|f| \leqslant 1[\tilde{M}]$, i.e., $[f]_{\tilde{M}} \in B_{\infty}(\theta_1, \tilde{G}; \tilde{M})$. Thus (a)-(d) of 2.17 are satisfied, so that $B_{\infty}(\theta_1, \tilde{G}; \tilde{M})$ is $\mathscr{E}_1(\tilde{M})$ -compact. But now $M \subset \tilde{M}$, and given $[g]_{\tilde{M}} \in B_{\infty}(\theta_1, G; M)$ (i.e., $|g| \leqslant 1[M]$) there is an f = g[M] with $[f]_{\tilde{M}} \in B_{\infty}(\theta_1, \tilde{G}; \tilde{M})$; let

$$f(\omega) = egin{cases} g(\omega), & |g(\omega)| \leqslant 1, \ 0, & |g(\omega)| > 1. \end{cases}$$

It follows from 2.15 that $B_{\infty}(\theta_1,G;M)$ is $\mathscr{E}_1(M)$ -compact. Since $B_{\infty}(\theta_1,G;M)$ contains the constant 1, 2.12 implies that $B_{\sigma}(\theta_1,G;M)$ is $\mathscr{E}_{\Psi}(M)$ -compact.

In general, when $\theta^{-1}(1/G(\cdot))$ is bounded, 1.6 shows that

$$B_{\sigma}(\theta, G; M) \subset cB_{\sigma}(\theta_1, G; M)$$

for some c>0. By 2.8, $B_{\sigma}(\theta,G;M)$ is an $\mathscr{E}_{\Psi}(M)$ -closed subset of the $\mathscr{E}_{\Psi}(M)$ -compact $cB_{\sigma}(\theta_1,G;M)$, hence is itself $\mathscr{E}_{\Psi}(M)$ -compact. This concludes this part of the proof.

(b) If $\{f_{\mu}\}_{\mu \in \tilde{M}}$ is in the closure of $\Delta(B_{\sigma}(\theta, \tilde{G}; \tilde{M}))$, then by 2.9, for every $\mu \in M$ there is a measurable f' with

$$f'=f_{\mu}[\mu], \quad f'=f_{\mu_0}[\mu_0].$$

But since $\mu \ll \mu_0$, the second equation implies $f' = f_{\mu_0}[\mu]$, so that

$$f_{\mu_0} = f_{\mu}[\mu]$$
 for all $\mu \in M$.

Using 2.10, $f_{\mu_0} \in B_{\sigma}(\theta, \tilde{G}; \tilde{M})$, and so $\Delta(B_{\sigma}(\theta, \tilde{G}; \tilde{M}))$ is closed and, by 2.6, $B_{\sigma}(\theta, \tilde{G}; \tilde{M})$ is $\mathscr{E}_{\Psi}(\tilde{M})$ -compact. The conclusion follows from this, the hypothesis, and 2.15, q.e.d.

Special properties of reflexive $E_{\varphi}(\theta, G)$'s will now be discussed. Compactness is more general than reflexivity, in the following sense:

2.19. Proposition. If $E_{\vartheta}(\theta,G)$ is reflexive, then $B_{\vartheta}(\theta,G)$ is \mathscr{E}_{\varPsi} -compact.

Proof. By 2.1, the $\mathscr{E}_{\mathscr{V}}$ -topology on $E_{\mathscr{O}}(\theta, G)$ is weaker than the weak (i.e. $\sigma(E_{\mathscr{O}}(\theta, G), E_{\mathscr{V}}^*(\theta, G))$) topology. By a well-known theorem ([4], p. 425) $E_{\mathscr{O}}(\theta, G)$ is reflexive if and only if $B_{\mathscr{O}}(\theta, G)$ is weakly compact; but by the preceding remark, weak compactness implies $\mathscr{E}_{\mathscr{V}}$ -compactness, q.e.d.

2.20. LEMMA. If $E_{\varphi}(\theta, G)$ is reflexive, then \mathscr{E}_{Ψ} is norm-dense in $E_{\varphi}^*(\theta, G)$, and all $l \in E_{\varphi}^*(\theta, G)$ are absolutely continuous, i.e., $\{f_n\} \subset E_{\varphi}(\theta, G)$, $f_n \downarrow 0$ imply $l(f_n) \to 0$.

Proof. If $\bar{\mathscr{E}}_{\varPsi} \neq E_{\sigma}^{*}(\theta, G)$ and $l_{0} \in E_{\sigma}^{*}(\theta, G) - \bar{\mathscr{E}}_{\varPsi}$, then by the Hahn-Banach theorem there is an $L \in E_{\sigma}^{**}(\theta, G)$ with $L(l_{0}) = 1$, $L(\bar{\mathscr{E}}_{\varPsi}) = 0$. But since $E_{\sigma}(\theta, G)$ is reflexive, there is an $f \in E_{\sigma}(\theta, G)$ $(f \leftrightarrow L)$ with $l_{0}(f) = 1$ and l(f) = 0 for all $l \in \mathscr{E}_{\varPsi}$. This, however, contradicts the fact (2.3) that \mathscr{E}_{\varPsi} is a total subspace of $E_{\sigma}^{*}(\theta, G)$. Hence $\bar{\mathscr{E}}_{\varPsi} = E_{\sigma}^{*}(\theta, G)$.

Now note that each element of $\mathscr{E}_{\mathscr{U}}$ is absolutely continuous; for if $\{f_n\} \subset E_{\mathscr{Q}}(\theta, G), f_n \downarrow 0, \ \mu \in M, \text{ and } h \in K_{\mathscr{Y}}(\mu), \text{ then}$

$$|l(h, \mu)(f_n)| \leqslant \int_{\Omega} f_n |h| d\mu \to 0,$$

by the Dominated Convergence Theorem. If l is an arbitrary element of $E_{\sigma}^{*}(\theta,G)$ and $\varepsilon>0$, then since $\bar{\mathscr{E}}_{\Psi}=E_{\sigma}^{*}(\theta,G)$, there is an $l_{\varepsilon}\in\mathscr{E}_{\Psi}$ with $||l-l_{\varepsilon}||<\varepsilon$. Hence if $\{f_{n}\}\subset E_{\sigma}(\theta,G),\ f_{n}\downarrow 0$,

$$|l(f_n)| \leq |l_s(f_n)| + ||l - l_s|| N_{\phi}^{\theta,G}(f_n) \leq |l_s(f_n)| + \varepsilon N_{\phi}^{\theta,G}(f_1);$$

but since $l_{\epsilon}(f_n) \to 0$ and ϵ is arbitrary, it follows that $l(f_n) \to 0$, q.e.d. In what follows in this section, θ will be restricted to the two-valued case; i.e., $E_{\sigma}(\theta, G) = E_{\sigma}$ (as previously defined) with

$$N_{oldsymbol{\phi}}^{ heta,G}(f) = \sup_{\mu \in M} \|f\|_{oldsymbol{\phi}}^{\mu} = N_{oldsymbol{\phi}}(f).$$

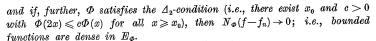
The methods of proof in the following do not seem to extend to the more general case.

2.21. THEOREM. If E_{Φ} is reflexive, $\Phi^{-1}(0) = \Psi^{-1}(0) = 0$, and $f \in E_1$, and if

$$f_n(\omega) = egin{cases} f(\omega), & |f(\omega)| \leqslant n, \ 0, & |f(\omega)| > n, \end{cases}$$

then $N_1(f-f_n) \to 0$; i.e., bounded functions are dense in E_1 . If, moreover, $0 \neq f \in E_{\Phi}$, then

$$\sup_{\mu \in M} \int_{\Omega} \Phi\left(\frac{f - f_n}{N_{\Phi}(f)}\right) d\mu \to 0;$$



Proof. Since $N_1(f-f_n) \leq N_1(f^+-f_n^+) + N_1(f^--f_n^-)$, it may be assumed that $f \geq 0$. Note that $N_1(f-f_n) \downarrow \eta \geq 0$; suppose $\eta > 0$. Since

$$N_1(f-f_n) = \sup_{\mu \in M} ||f-f_n||_1^{\mu},$$

for each n there is a $\mu_n \in M$ with $||f - f_n||_1^{\mu_n} \ge \eta/2$. Define for $g \in E_{\phi}$,

$$l_n(g) = \int\limits_0^{\infty} \Psi^{-1}(f - f_n) g \, d\mu_n, \quad n = 1, 2, ...$$

Then since

$$\begin{split} \int\limits_{\varOmega} \varPsi\Big(\frac{\varPsi^{-1}(f-f_n)}{N_1(f)+1}\Big) d\mu_n \leqslant \frac{1}{N_1(f)+1} \int\limits_{\varOmega} \varPsi\Big(\varPsi^{-1}(f-f_n)\Big) d\mu_n \\ \leqslant \frac{1}{N_1(f)+1} \int\limits_{\varOmega} (f-f_n) d\mu_n \leqslant \frac{1}{N_1(f)+1} N_1(f) \leqslant 1, \end{split}$$

we have

$$|l_n(g)|\leqslant N_{\Psi}^{\mu_n} \left(\Psi^{-1}(f-f_n)\right) ||g||_{\Phi}^{\mu_n}\leqslant \left(N_1(f)+1\right)N_{\Phi}(g).$$

Hence $l_n \\ \epsilon E_{\phi}^*$ (it is clearly a linear functional) and $||l_n|| \\ \leq N_1(f) + 1$ for all n, i.e., $l_n \\ \epsilon (N_1(f) + 1) B_{\phi}^*$, where B_{ϕ}^* is the closed unit ball in B_{ϕ}^* . But by Alaoglu's Theorem, B_{ϕ}^* (and therefore $(N_1(f) + 1) B_{\phi}^*$) is compact in the weak*-topology of E_{ϕ}^* , and so $\{l_n\}$ has a weak* cluster point l in $(N_1(f) + 1) B_{\phi}^*$.

Now $\Phi^{-1}(f) \in E_{\Phi}$, since (by Young's inequality)

$$\|\Phi^{-1}(f)\|_{\Phi}^{\mu}\leqslant\int\limits_{\Omega}\Phi\left(\Phi^{-1}(f)\right)d\mu+1\leqslant\int\limits_{\Omega}fd\mu+1,$$

so that

$$\textstyle N_{\varPhi}\big(\varPhi^{-1}(f)\big) = \sup_{\mu \in M} \|\varPhi^{-1}(f)\|_{\varPhi}^{\mu} \leqslant \sup_{\mu \in M} \smallint_{\varOmega} f d\mu + 1 = N_1(f) + 1 < \infty.$$

Using the fact that ([5], p. 13) $\Phi^{-1}(x)\Psi^{-1}(x) \geqslant x$ for all $x \geqslant 0$, we have

$$\begin{split} l\big(\varPhi^{-1}(f)\big) &= \lim_{k \to \infty} l_{n_k}\big(\varPhi^{-1}(f)\big) = \lim_{k \to \infty} \int\limits_{\varOmega} \varPhi^{-1}(f) \, \varPsi^{-1}(f - f_{n_k}) \, d\mu_{n_k} \\ &\geqslant \lim_{\overline{k \to \infty}} \int\limits_{\varOmega} \varPhi^{-1}(f - f_{n_k}) \, \varPsi^{-1}(f - f_{n_k}) \, d\mu_{n_k} \geqslant \lim_{\overline{k \to \infty}} \int\limits_{\varOmega} (f - f_{n_k}) \, d\mu_{n_k} \geqslant \eta/2 > 0 \,, \end{split}$$

by the way the μ_n were chosen; $\{l_{n_k}\}$ is the subsequence corresponding to $\Phi^{-1}(f)$ by the weak*-compactness of $(N_1(f)+1)B_{\Phi}^*$. However, note that for $n_k > m$ and any $\omega \in \Omega$, either $f(\omega) - f_{n_k}(\omega) = 0$ or $f_{n_k}(\omega) = 0$,

the latter implying $f_m(\omega) = 0$; thus $\Phi^{-1}(f_m) \mathcal{V}^{-1}(f - f_{n_k}) = 0$ whenever $n_k > m$. Hence for each m there is a subsequence $\{f_{n_k}^{(m)}\}$ with

$$l(\Phi^{-1}(f_m)) = \lim_{k \to \infty} \int_{\mathcal{Q}} \Phi^{-1}(f_m) \Psi^{-1}(f - f_{n_k}^{(m)}) d\mu_{n_k}^{(m)} = 0.$$

But since $\Phi^{-1}(0) = 0$,

$$\Phi^{-1}(f) - \Phi^{-1}(f_m) = egin{cases} 0, & |f| \leqslant m \ \Phi^{-1}(f), & |f| > m \end{cases} = \Phi^{-1}(f - f_m) \downarrow 0,$$

so by the absolute continuity of l (2.20),

$$l(\Phi^{-1}(f)) = \lim_{m \to \infty} l(\Phi^{-1}(f_m)) = 0,$$

which is a contradiction. Therefore $\eta=0$ and $N_1(f-f_n)\downarrow 0$. If in fact, $0\neq f\in E_{\sigma}$, then $\Phi(f/N_{\sigma}(f))\in E_1$ since

$$\sup_{\mu \in M} \int\limits_{\Omega} \varPhi \left(\frac{f}{N_{\varPhi}(f)} \right) d\mu \leqslant \sup_{\mu \in M} \int\limits_{\Omega} \varPhi \left(\frac{f}{\|f\|_{\varPhi}^{\mu}} \right) d\mu \leqslant 1.$$

It follows from the first part of this theorem that

$$\sup_{\mu \in M} \smallint_{\Omega} \varPhi \left(\frac{f - f_n}{N_{\varPhi}(f)} \right) d\mu = N_1 \bigg[\varPhi \left(\frac{f}{N_{\varPhi}(f)} \right) - \varPhi \left(\frac{f_n}{N_{\varPhi}(f)} \right) \bigg] \downarrow \ 0 \, .$$

. Finally, suppose $\Phi(2x) \leqslant c\Phi(x)$ for all $x \geqslant x_0$. It follows that for any a > 0, there is a K > 0 such that ([5], p. 23)

$$\Phi(ax) \leqslant K\Phi(x)$$
 for all $x \geqslant x_0$.

This clearly implies that

$$\Phi\left(\frac{ax}{N_{\Phi}(f)}\right) \leqslant K\Phi\left(\frac{x}{N_{\Phi}(f)}\right) + \Phi(ax_0) \quad \text{ for all } x \geqslant 0.$$

Let $\varepsilon > 0$ be given, and set $\alpha = N_{\Phi}(f)/\varepsilon$; then, by the above,

$$\sup_{\mu \in M} \int_{\Omega} \Phi\left(\frac{f}{\varepsilon}\right) d\mu \leqslant K \sup_{\mu \in M} \int_{\Omega} \Phi\left(\frac{f}{N_{\Phi}(f)}\right) d\mu + \Phi\left(\frac{N_{\Phi}(f)x_0}{\varepsilon}\right) < \infty.$$

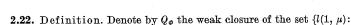
Thus, as before,

$$\sup_{\mu \in M} \int\limits_{\Omega} \varPhi\left(\frac{f - f_n}{\varepsilon}\right) d\mu \downarrow 0,$$

and

$$\lim_{n\to\infty}\sup_{\mu\in M}\left\|\frac{1}{\varepsilon}\left(f-f_{n}\right)\right\|_{\varphi}^{\mu}\leqslant\lim_{n\to\infty}\sup_{\mu\in M}\int\limits_{\Omega}\Phi\left(\frac{1}{\varepsilon}\left(f-f_{n}\right)\right)d\mu+1=1,$$

so $\lim_{n\to\infty} N_{\sigma}(f-f_n) \leqslant \varepsilon$, i.e., $N_{\sigma}(f-f_n) \downarrow 0$, q.e.d.



 $\mu \in M_c$ in E_{ϕ}^* , where M_c is the convex hull of M.

2.23. Lemma. If E_{ϕ} is reflexive, then Q_{ϕ} is weakly compact.

Proof. By reflexivity, B_{ϕ}^* is weakly compact. Since Q_{ϕ} is weakly closed, it is sufficient to show that Q_{ϕ} is bounded. But if $\mu \in M$, then using the Hölder inequality and [5], p. 79,

$$egin{aligned} \|l(1,\mu)\| &= \sup ig\{ \int\limits_{ec \Omega} f d\mu ig| \colon N_{m{\phi}}(f) \leqslant 1 ig\} \leqslant \sup ig\{ \int\limits_{ec \Omega} |f| \, d\mu \colon \|f\|_{m{\phi}}^{m{\phi}} \leqslant 1 ig\} \end{aligned} \ \leqslant N_{\Psi}^{\mu}(1) = rac{1}{\Psi^{-1}(1)} < \infty.$$

If $\mu = a_1 \mu_1 + \ldots + a_n \mu_n \epsilon M_c$, then

$$||l(1,\mu)|| = ||a_1l(1,\mu_1) + \ldots + a_nl(1,\mu_n)|| \leq \sum_{i=1}^n a_i||l(1,\mu_i)|| \leq \frac{1}{\mathcal{Y}^{-1}(1)},$$

q.e.d

2.24. LEMMA. If E_{Φ} is reflexive and $l \in Q_{\Phi}$, then l can be represented as

$$l(f) = \int_{\Omega} f d\nu, \quad f \epsilon E_{\Phi},$$

for some probability measure ν . If $M'_{\phi} = \{\nu: l(1, \nu) \in Q_{\phi}\}$, then $E_{\phi}(M'_{\phi}) = E_{\phi}(M)$; in fact, $N_{\phi}(f; M'_{\phi}) = N_{\phi}(f; M)$ for all $f \in E_{\phi}(M)$.

Proof. Suppose E_{σ} is reflexive and $l \in Q_{\sigma}$; then, given $f \in E_{\sigma}$ and $\varepsilon > 0$, there is a $\mu \in M_{\varepsilon}$ with

$$|l(f)-l(1,\mu)(f)|<\varepsilon$$

If, in particular, f is a fixed non-negative function, then

$$l(1,\mu)(f)=\int fd\mu\geqslant 0,$$

so that $l(f) \ge 0$. Since $l \in E_{\sigma}^*$ and E_{σ} is reflexive, l is absolutely continuous by 2.20. Also l(1) = 1, since for any μ ,

$$l(1, \mu)(1) = \int_{\Omega} d\mu = 1.$$

Since E_{σ} is clearly a vector lattice $(f \epsilon E_{\sigma} \text{ implies } |f| \epsilon E_{\sigma})$, the Daniell extension theorem ([6], p. 21) implies that there is a probability measure ν with

$$l(f) = \int_{\Omega} f d\nu$$
 for all $f \in E_{\Phi}$.

Since $M \subset M'_{\varphi}$, the inequality

$$N_{\Phi}(f; M'_{\Phi}) \geqslant N_{\Phi}(f; M)$$

obviously holds for all $f \in E_{\phi}(M)$. To complete the proof, let $v \in M'_{\phi}$ and $\varepsilon > 0$, and first assume f is bounded. According to [5], p. 86, there is a bounded h^{ε} with

$$\int\limits_{arOmega} arPsi(h^{\epsilon}) \, d
u \leqslant 1 \quad ext{ and } \quad \int\limits_{arOmega} |f h^{\epsilon}| \, d
u > \|f\|_{arOmega}^{
u} - arepsilon \, .$$

If Ψ is continuous, then clearly $\Psi(h^e)$ is bounded; but even for discontinuous Ψ , h^e can be truncated so that $\Psi(h^e)$ is bounded. Then $|fh^e|$ and $\Psi(h^e) \in E_{\varphi}(M)$. Since $l(1, \nu)$ is in the weak (= weak* here) closure of $\{l(1, \mu): \mu \in M_e\}$, there is a sequence $\{\mu_n\} \subset M_e$ with

$$\smallint_{\Omega} |fh^{\varepsilon}| \, d\mu_n \to \smallint_{\Omega} |fh^{\varepsilon}| \, d\nu \quad \text{ and } \quad \smallint_{\Omega} \Psi(h^{\varepsilon}) \, d\mu_n \to \smallint_{\Omega} \Psi(h^{\varepsilon}) \, d\nu \, .$$

Thus, for large enough n,

$$\smallint_{\varOmega} |fh^{\varepsilon}| \, d\mu_n > \|f\|_{\sigma}^{\nu} - \varepsilon \quad \text{ and } \quad \smallint_{\varOmega} \varPsi(h^{\varepsilon}) \, d\mu_n \leqslant 1 + \varepsilon \,.$$

Letting $\overline{h}^{\varepsilon} = h^{\varepsilon}/(1+\varepsilon)$, one obtains (using convexity of Ψ)

$$\int\limits_{ec{o}}|f\overline{h}^{arepsilon}|d\mu_n>rac{||f||_{arophi}^{arepsilon}-arepsilon}{1+arepsilon}\quad ext{and}\quad\int\limits_{ec{o}}arPsilon(\overline{h^{arepsilon}})d\mu_n\leqslantrac{1+arepsilon}{1+arepsilon}=1\,.$$

It follows that

$$N_{oldsymbol{\sigma}}(f;\,M_c)\geqslant \|f\|_{oldsymbol{\sigma}}^{\mu_n}>rac{\|f\|_{oldsymbol{\sigma}}^{oldsymbol{\sigma}}-arepsilon}{1+arepsilon},$$

and since ε is independent of ν and f,

$$N_{\Phi}(f; M_c) \geqslant ||f||_{\Phi}^{\nu}$$

For general $f \in E_{\varphi}(M)$, let

$$f_m = egin{cases} f, & |f| \leqslant m, \ 0, & |f| > m; \end{cases}$$

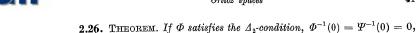
then $N_{\sigma}(f; M_c) \geqslant N_{\sigma}(f_m; M_c) \geqslant ||f_m||_{\sigma}^{"}$, and using the fact ([5], p. 91) that $||f_m||_{\sigma}^{"} \uparrow ||f||_{\sigma}^{"}$ as $m \to \infty$,

$$N_{arphi}(f;\,M_c)\geqslant \sup_{{}^{p_{oldsymbol{\sigma}}}}\lim_{m o\infty}\|f_m\|_{arphi}^{p}=N_{arphi}(f;\,M_{arphi}')\,.$$

But it easily follows from 1.9 that $N_{\sigma}(f; M_c) = N_{\sigma}(f; M)$, and therefore $N_{\sigma}(f; M'_{\sigma}) = N_{\sigma}(f; M)$, q.e.d.

2.25. THEOREM. If $E_{\varphi}(M)$ is reflexive, then M'_{φ} is dominated.

Proof. The proof is essentially identical to the corresponding one given by Pitcher [8].



and
$$E_{\phi}$$
 is reflexive, then for each $f \in E_{\phi}$ there is a $\mu \in M'_{\phi}$ with

Proof. It will first be shown that if $l(1, \mu)$ is a weak limit point of $\{l(1, \mu_n)\}$ in B_{ϕ}^* , then

 $||f||_{\Phi}^{\mu} = N_{\Phi}(f).$

$$||g||^{\mu}_{\Phi} \geqslant \lim_{n \to \infty} ||g||^{\mu}_{\Phi}^n$$

for all bounded g.

Define

$$h(K) = \frac{1}{K} \left(1 + \int_{0}^{\infty} \Phi(Kg) d\mu \right) \quad \text{for all } K > 0.$$

Since g is bounded and Φ must be continuous (by the \varDelta_2 -condition), it follows that each $\Phi(Kg)$ is bounded, hence ϵE_{σ} . Given $\epsilon > 0$, choose $K_{\epsilon} > 0$ such that $h(K_{\epsilon}) < \inf_{K>0} h(K) + \epsilon$. Then (by assumption) for every $\epsilon > 0$ there exists a subsequence $\{\mu_{n_i}(\epsilon)\}$ of $\{\mu_n\}$ such that

$$\lim_{j\to\infty}\int\limits_{\Omega}\Phi(K_{\varepsilon}g)\,d\mu_{n_{j}}(\varepsilon)=\int\limits_{\Omega}\Phi(K_{\varepsilon}g)\,d\mu.$$

Define

$$h_j(\varepsilon) = \frac{1}{K_{\bullet}} (1 + \int\limits_{\Omega} \Phi(K_{\varepsilon} g) d\mu_{n_j}(\varepsilon)).$$

Then, using 1.7,

$$\lim_{n\to\infty}\|g\|_{\phi}^{un}\leqslant \lim_{j\to\infty}\|g\|_{\phi}^{un_{j}(\epsilon)}\leqslant \lim_{j\to\infty}h_{j}(\epsilon)=h(K_{\epsilon})<\inf_{K>0}h(K)+\epsilon=\|g\|_{\phi}^{\mu}+\epsilon.$$

Since the left end does not involve ε , the assertion is proved.

Now let $\{\mu_n\} \subset M$ with $\|f\|_{\phi}^{m} \uparrow N_{\phi}(f)$, and let $\mu_{\epsilon} M_{\phi}'$ be such that $l(1, \mu)$ is a weak limit point of $\{l(1, \mu_n)\}$ (this exists by 2.23). If f_m is the usual bounded approximation to $f_{\epsilon} E_{\phi}$, then using the first part of this proof and 2.21,

$$\begin{split} \|f\|_{\theta}^{\theta} &= \lim_{m \to \infty} \ \|f_m\|_{\theta}^{\mu} \geqslant \lim_{m \to \infty} \lim_{n \to \infty} \|f_m\|_{\theta}^{\mu_n} \\ &\geqslant \lim_{\overline{m} \to \infty} \lim_{n \to \infty} (\|f\|_{\Phi}^{\mu_n} - \|f - f_m\|_{\Phi}^{\mu_n}) \\ &\geqslant \lim_{\overline{m} \to \infty} \lim_{n \to \infty} (\|f\|_{\Phi}^{\mu_n} - N_{\Phi}(f - f_m)) \\ &= \lim_{n \to \infty} \|f\|_{\theta}^{\mu_n} - \lim_{m \to \infty} N_{\Phi}(f - f_m) = N_{\Phi}(f). \end{split}$$

Equality holds since, by 2.24, $\|f\|_{\Phi}^{\mu} \leqslant N_{\Phi}(f; M_{\Phi}) = N_{\Phi}(f; M)$, q.e.d.

Returning now to the more general $E_{\sigma}(\theta,G)$, a sufficient condition that $E_{\sigma}(\theta,G)$ be reflexive will be established; this condition will involve only Φ , θ , and (possibly) G, but not the family of measures. In what follows, Z will denote the Young function complementary to θ . Use will be made of an auxiliary space $\hat{E}_{\sigma}(\theta,G)$, defined as follows:

2.27. Definition. $\hat{E}_{\sigma}(\theta, G) = \{\hat{f}_{\epsilon} \prod_{\mu \in M} L_{\sigma}(\mu) : F_{\hat{f}} \epsilon b_{\theta}^{G} \}, \text{ where } F_{\hat{f}}(\mu) \equiv \|\hat{f}(\mu)\|_{\sigma}^{\sigma}.$

All the considerations used in proving that $E_{\sigma}(\theta, G)$ is a Banach space carry over to $\hat{E}_{\sigma}(\theta, G)$, with obvious alterations, e.g., F_f is replaced by $F_{\hat{f}}$ and $N_{\sigma}^{\theta,G}(f)$ by the norm $\hat{N}_{\sigma}^{\theta,G}(\hat{f}) = N_{\theta}^{G}(F_{\hat{f}})$, the zero element is the \hat{f} such that $\hat{f}(\mu) = 0[\mu]$ for all $\mu \in M$, etc. Hence $\hat{E}_{\sigma}(\theta, G)$ is a Banach space (under $\hat{N}_{\sigma}^{\theta,G}(\cdot)$) containing $E_{\sigma}(\theta, G)$, and note that $N_{\sigma}^{\theta,G}(\cdot) = \hat{N}_{\sigma}^{\theta,G}(\cdot)$ on $E_{\sigma}(\theta, G)$. It follows that $E_{\sigma}(\theta, G)$ is a closed subspace of $\hat{E}_{\sigma}(\theta, G)$.

2.28. THEOREM. Suppose Φ satisfies the Δ_2 -condition, and either (a) $\theta(2x)/\theta(x)$ is bounded on $(0,\infty)$

or.

(b) $\theta(2x)/\theta(x)$ is bounded on every $(0, a], a < \infty$, and 1/G is bounded. Then $(\hat{F}_{x}(\theta, G))^{*}$, and $\hat{F}_{x}(Z, G)$ are kinearly, and topologically

Then $(\hat{E}_{\sigma}(\theta,G))^*$ and $\hat{E}_{\pi}(Z,G)$ are linearly and topologically isomorphic.

Proof. Note that either (a) or (b) implies

$$l_{ heta}^G = ig\{ F \colon \sum_{\mu \in M} hetaig(F(\mu) ig) G(\mu) < \infty ig\} \equiv ilde{l}_{ heta}^G.$$

For any $\mu \in M$ and $f_{\mu} \in L_{\Phi}(\mu)$, define $\hat{f_{\mu}} \in \hat{E}_{\Phi}(\theta, G)$ by

$$\hat{f}_{\mu}(\mu') = egin{cases} [f_{\mu}]_{\mu} & ext{if } \mu' = \mu, \ [0]_{\mu'} & ext{if } \mu'
eq \mu. \end{cases}$$

If $l \in (\hat{E}_{\sigma}(\theta, G))^*$, then for $f_{\mu} \in L_{\sigma}(\mu)$, define

$$l_{\mu}(f_{\mu}) = \frac{l(\hat{f_{\mu}})}{G(\mu)}.$$

 l_{μ} is clearly a linear functional on $L_{\Phi}(\mu)$; and, furthermore,

$$\hat{N}^{ heta,\sigma}_{m{\phi}}(\hat{f}_{\mu}) = \inf \left\{ K > 0 \colon heta \left(rac{\|f_{\mu}\|_{m{\phi}}^{\mu}}{K}
ight) G(\mu) \leqslant 1
ight\} = rac{\|f_{\mu}\|_{m{\phi}}^{\mu}}{ heta^{-1}(1/G(\mu))} \, ,$$

so l_{μ} is continuous (since l is continuous), i.e., $l_{\mu} \epsilon (L_{\sigma}(\mu))^*$. But since Φ satisfies the Δ_2 -condition, there is ([5], p. 128) a (unique) $\hat{l}(\mu) \epsilon L_{V}(\mu)$

with

(*)
$$\frac{l(\hat{f}_{\mu})}{G(\mu)} = l_{\mu}(f_{\mu}) = \int_{\Omega} f_{\mu}(\omega)\hat{l}(\mu)(\omega)d\mu(\omega)$$

for all $f_{\mu} \in L_{\Phi}(\mu)$.

Now ([5], p. 135)

$$N_{\mathcal{P}}^{\mu}(\hat{l}(\mu)) = \sup\left\{\left|\int_{0}^{\infty} f_{\mu}(\omega)\hat{l}(\mu)(\omega)d\mu(\omega)\right|: \|f_{\mu}\|_{\Phi}^{\mu} \leqslant 1\right\},$$

so one can choose, for each $\mu \in M$, an $f_{\mu} \in L_{\Phi}(\mu)$ with

$$\|f_{\mu}\|_{\Phi}^{\mu}\leqslant 1, \quad \int\limits_{0}^{\infty}f_{\mu}(\omega)\hat{l}(\mu)(\omega)d\mu(\omega)\geqslant rac{1}{2}N_{\Psi}^{\mu}(\hat{l}(\mu)).$$

Fix these f_{μ} , and for any $F \in l_{\theta}^{G}$ (= \tilde{l}_{θ}^{G}), set

$$f_{\mu}^{F} = |F(\mu)|f_{\mu}$$
 for all $\mu \in M$.

Then $f_{\mu}^{F} \in L_{\phi}(\mu)$, and since by hypothesis $\theta^{-1}(0) = 0$, it follows that $F(\mu)$, whence f_{μ}^{F} , can be non-zero for at most countably many μ 's.

It will now be shown that the linear map $l \to \hat{l}$, defined above, is a continuous operator on $(\hat{E}_{\sigma}(\theta, G))^*$ into $E_{\varphi}(Z, G)$. Thus let $l \in (\hat{E}_{\sigma}(\theta, G))^*$, and $F \in l_{\sigma}^G$ with $N_{\sigma}^G(F) \leq 1$. Then

$$\begin{split} &(1) & \sum_{\mu \in M} |F(\mu)| \, \|\widehat{l}(\mu)\|_{\Psi}^{\mu} G(\mu) \\ &\leqslant 2 \sum_{\mu \in M} |F(\mu)| \, N_{\Psi}^{\mu} (\widehat{l}(\mu)) G(\mu) \leqslant 4 \sum_{\mu \in M} |F(\mu)| \left(\int_{\Omega} f_{\mu}(\omega) \widehat{l}(\mu)(\omega) \, d\mu(\omega) \right) G(\mu) \\ &= 4 \sum_{\mu \in M} \left(\int_{\Omega} f_{\mu}^{F}(\omega) \, \widehat{l}(\mu)(\omega) \, d\mu(\omega) \right) G(\mu) = 4 \sum_{\mu \in M} l(\widehat{f_{\mu}^{F}}), \end{split}$$

the last equality coming from (*). If $\{\mu_1, \check{\mu}_2, \ldots\}$ are the measures for which $f_{\mu}^F \neq 0$, then clearly the latter sum is just

(2)
$$\sum_{k=1}^{\infty} l(\hat{f}_{\mu_k}^{\widehat{F}}) = \lim_{n \to \infty} l\left(\sum_{k=1}^{n} \hat{f}_{\mu_k}^{\widehat{F}}\right).$$

But for any $\mu \in M$,

$$\sum_{k=1}^n \hat{f}_{\mu_k}^F(\mu) = \begin{cases} [f_{\mu_k}^F]_{\mu_k} & \text{if } \mu = \mu_k \text{ and } k = 1, \dots, n, \\ [0]_{\mu} & \text{otherwise.} \end{cases}$$

Since

$$\sum_{k=1}^{\infty} heta(\|f_{\mu_k}^F\|_{\Phi}^{\mu_k}) G(\mu_k) \leqslant \sum_{k=1}^{\infty} hetaig(F(\mu_k)ig) G(\mu_k) \leqslant 1$$
 ,

we have

$$\sum_{\mu \in \mathcal{M}} \theta\left(\|f_{\mu}^F - \sum_{k=1}^n \hat{f}_{\mu_k}^F(\mu)\|_{\phi}^{\mu}\right) G(\mu) = \sum_{k=n+1}^{\infty} \theta\left(\|f_{\mu_k}^F\|_{\phi}^{\mu_k}\right) G(\mu_k) \to 0$$

as $n \to \infty$. Denoting for now $h(\mu) = f_{\mu}^F$, the fact that $l_{\theta}^G = \tilde{l}_{\theta}^G$ implies

$$\lim_{n\to\infty} \hat{N}_{\phi}^{\theta,G} \left(h - \sum_{k=1}^{n} \widehat{h(\mu_k)} \right) = 0.$$

Thus by the continuity of l, and the fact that $\hat{N}_{\phi}^{\theta,G}(h) \leqslant 1$,

(3)
$$\lim_{n\to\infty} l\left(\sum_{k=1}^n \hat{f}_{\mu_k}^{\hat{F}}\right) = l(h) \leqslant ||l||,$$

so combining (1)-(3),

$$\hat{N}_{\mathscr{V}}^{Z_{\ell}G}(\hat{l}) = N_{Z}^{G}\left(\|\hat{l}(\cdot)\|_{\mathscr{V}}^{C}\right) \leqslant \sup\left\{\sum_{\mu \in M} |F(\mu)| \, \|\hat{l}(\mu)\|_{\mathscr{V}}^{\mu}G(\mu) \colon N_{\theta}^{G}(F) \leqslant 1\right\} \leqslant 4\|l\|,$$

which proves the continuity of $l \to \hat{l}$.

Given $\hat{g} \in \hat{E}_{\Psi}(Z, G)$, let the linear functional $\lambda(\hat{g})$ on $\hat{E}_{\sigma}(\theta, G)$ be defined by

$$\left(\lambda(\hat{g})\right)(\hat{f}) = \sum_{\mu,M} \left(\int_{\Omega} \hat{f}(\mu) \, \hat{g}(\mu) \, d\mu\right) G(\mu), \quad \hat{f} \, \epsilon \, \hat{E}_{\Phi}(\theta, G).$$

(This makes sense because $\hat{f}(\mu) = 0$ except for countably many $\mu \in M$.) Then if $\hat{N}^{\theta,G}_{\Phi}(\hat{f}) \leq 1$, using Hölder inequalities twice,

$$\begin{split} \left| \left(\lambda(\hat{g}) \right) (\hat{f}) \right| &\leqslant \sum_{\mu \in \mathcal{M}} \left(\int_{\Omega} |\hat{f}(\mu)| \hat{g}(\mu)| \, d\mu \right) G(\mu) \leqslant \sum_{\mu \in \mathcal{M}} ||\hat{f}(\mu)||_{\Phi}^{\mu} ||\hat{g}(\mu)||_{\Psi}^{\mu} G(\mu) \\ &\leqslant 2 \, N_{\theta}^{G} \left(||\hat{f}(\cdot)||_{\Phi}^{G} \right) N_{Z}^{G} \left(||\hat{g}(\cdot)||_{\Psi}^{G} \right) = 2 \hat{N}_{\Phi}^{\theta, G} (\hat{f}) \, \hat{N}_{\Psi}^{Z, G} (\hat{g}) \leqslant 2 \, \hat{N}_{\Psi}^{Z, G} (\hat{g}). \end{split}$$

Thus λ is a continuous linear map of $\hat{E}_{\Psi}(Z,G)$ into $(\hat{E}_{\Phi}(\theta,G))^*$ with $\|\lambda(\hat{g})\| \leq 2N_{\Psi}^{Z,G}(\hat{g})$.

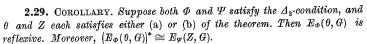
It remains to show that $l \to \hat{l}$ and λ are mutually inverse. So if $\hat{g} = \hat{l} \in \hat{E}_{\mathcal{F}}(Z, G)$ $(l \in (\hat{E}_{\Phi}(\theta, G))^*)$, then for any $\hat{f} \in \hat{E}_{\Phi}(\theta, G)$,

$$\begin{split} \big(\lambda(\hat{g})\big)(\hat{f}) &= \sum_{\mu \in M} \big(\int_{\Omega} \hat{f}(\mu) \hat{l}(\mu) d\mu \big) G(\mu) \\ &= (\text{as in (1)-(3) above, letting } f_{\mu} = \hat{f}(\mu)/|F(\mu)|) \ l(\hat{f}); \end{split}$$

in other words, $\lambda(\hat{g}) = l$. On the other hand, if $l = \lambda(\hat{g}) \epsilon (\hat{E}_{\Phi}(\theta, G))^*$ $(\hat{g} \epsilon \hat{E}_{\Psi}(Z, G))$, then for every $\mu \epsilon M$ and $f_{\mu} \epsilon L_{\Phi}(\mu)$, (*) implies

$$\int_{\Omega} f_{\mu} \hat{l}(\mu) d\mu = rac{igl(\lambda(\hat{g})igr)(\hat{f}_{\mu}igr)}{G(\mu)} = rac{1}{G(\mu)} \sum_{\mu' \in M} \Big(\int_{\Omega} \hat{f}_{\mu}(\mu') \hat{g}(\mu') d\mu' \Big) G(\mu')$$
 $= rac{1}{G(\mu)} \Big(\int_{\Omega} f_{\mu} \hat{g}(\mu) d\mu \Big) G(\mu) = \int_{\Omega} f_{\mu} \hat{g}(\mu) d\mu,$

so that $\hat{l} = \hat{g}$. Therefore, $l \to \hat{l}$ is a linear, topological isomorphism of $(\hat{E}_{\varphi}(\theta, G))^*$ onto $\hat{E}_{\psi}(Z, G)$, q.e.d.



Proof. By 2.28, $(\hat{E}_{\sigma}(\theta, G))^* \cong \hat{E}_{\varphi}(Z, G)$ and $(\hat{E}_{\varphi}(Z, G))^* \cong \hat{E}_{\sigma}(\theta, G)$, the isomorphisms being given in the proof of 2.28. To show that $\hat{E}_{\sigma}(\theta, G)$ is reflexive, it need only be proved that the composite isomorphism $\hat{E}_{\sigma}(\theta, G) \cong (\hat{E}_{\varphi}(Z, G))^* \cong (\hat{E}_{\sigma}(\theta, G))^{**}$ coincides with the natural embedding of $E_{\sigma}(\theta, G)$ in $(E_{\sigma}(\theta, G))^{**}$.

Thus, for any $\hat{f} \in \hat{E}_{\Phi}(\theta, G)$, the corresponding $\lambda(\hat{f}) \in (\hat{E}_{\Psi}(Z, G))^*$ is given by

$$(\lambda(\hat{f}))(\hat{l}) = \sum_{\mu \in \mathcal{M}} \left(\int\limits_{\Omega} \hat{f}(\mu) \hat{l}(\mu) d\mu \right) G(\mu) \quad \text{ for all } \hat{l} \cdot \hat{E}_{\mathcal{V}}(Z, G).$$

But the correspondence between $l \in (\hat{E}_{\varphi}(\theta, G))^*$ and $\hat{l} \in \hat{E}_{\varphi}(Z, G)$ implies (writing $f_{\mu} = \hat{f}(\mu)$), in the notation of the preceding proof,

$$\int_{\Omega} \hat{f}(\mu) \hat{l}(\mu) d\mu = \frac{l(\hat{f}_{\mu})}{G(\mu)} \quad \text{for all } \mu \, \epsilon M.$$

Denoting by $L_{\hat{f}}$ the image of $\lambda(\hat{f})$ in $(\hat{E}_{\Phi}(\theta, G))^{**}$ (under the isomorphism induced by the correspondence $l \to \hat{l}$), one obtains, by combining the above,

$$L_{\hat{f}}(l) = (\lambda(\hat{f}))(\hat{l}) = \sum_{\mu \in M} l(\hat{f}_{\mu}).$$

However, as noted in the proof of the theorem,

$$\sum_{\mu \in M} l(\hat{f}_{\mu}) = l(\hat{f}), \quad ext{i.e.}, \quad L_{\hat{f}}(l) = l(\hat{f}),$$

which shows that $L_{\hat{f}}$ is just the natural image of \hat{f} . Hence $\hat{E}_{\sigma}(\theta, G)$ is reflexive; but $E_{\sigma}(\theta, G)$, being a closed subspace of $\hat{E}_{\sigma}(\theta, G)$, is then also reflexive ([4], p. 67).

Finally, note that $E_{\Phi}(\theta, G) \cong (E_{\Psi}(Z, G))^*$ and $E_{\Psi}(Z, G) \cong (E_{\Phi}(\theta, G))^*$ (where \cong denotes a topological, linear embedding), since it is easily seen that the mapping λ , defined in the proof of 2.28, maps $E_{\Phi}(\theta, G)$ into $(E_{\Psi}(Z, G))^*$ and $E_{\Psi}(Z, G)$ into $(E_{\Phi}(\theta, G))^*$. Then, using the Hahn-Banach theorem and the reflexivity of $E_{\Psi}(Z, G)$ (which follows by the symmetry of the hypotheses),

$$E_{\Psi}(Z,G) \cong (E_{\Phi}(\theta,G))^* \cong (E_{\Psi}(Z,G))^{**} \cong E_{\Psi}(Z,G).$$

Hence $(E_{\varphi}(\theta,G))^* \cong E_{\Psi}(Z,G)$, q.e.d.

3. Convexity properties. Theorems describing sufficient conditions that $E_{\Phi}(\theta, G)$ have the properties of rotundity (also called strict convexity) and of uniform rotundity (uniform convexity) are developed in

this section. These convexity properties, unlike reflexivity, are not topological properties: in fact, every Orlicz space on a probability space is isomorphic to a strictly convex Orlicz space ([10], Th. 1). Therefore, in this connection, a statement of the particular norm involved is essential.

3.1. Definition. A normed linear space \mathfrak{X} , with norm $\|\cdot\|$, is called rotund if $x, y \in \mathfrak{X}$, $\|x\| = \|y\| = 1$, $x \neq y$ imply $\|x+y\| < 2$. This clearly is equivalent to: $\|x\| = \|y\|$ and $x \neq y$ imply $\|x+y\| < 2$ $\|x\|$.

Suppose

$$\theta(x) = \int_{0}^{|x|} \vartheta(t) dt$$

and $\vartheta(1) > 0$. Define the normalized Young's function

$$\bar{\theta}(x) = \frac{1}{\vartheta(1)} \theta(x).$$

A new norm $\overline{N}_{\theta}^{G}$ equivalent to N_{θ}^{G} ([13], p. 173) on l_{θ}^{G} is defined by

$$\overline{N}_{\theta}^{G}(F) = \inf \Big\{ K > 0 \colon \sum_{\mu \in M} \theta \left(\frac{F(\mu)}{K} \right) G(\mu) \leqslant \theta(1) \Big\}.$$

Since $\overline{N}_{\theta}^G = \overline{N}_{\theta}^G$, θ can (and will) be assumed to be normalized, a property which has many advantages for computational simplicity. Now define

$$\overline{N}_{\phi}^{\theta,G}(f) = \overline{N}_{\theta}^{G}(F_{t}), \quad F_{t}(\mu) = ||f||_{\Phi}^{\mu}, \quad f \in E_{\Phi}(\theta, G).$$

It is clear from the preceding that $N_{\phi}^{\theta,G}$ and $\overline{N}_{\phi}^{\theta,G}$ are equivalent norms on $E_{\theta}(\theta,G)$.

3.2. LEMMA. If ϑ is continuous and strictly increasing, then l_{ϑ}^G is rotund under $\overline{N}_{\vartheta}^G$.

Proof. Note that since points of M have finite positive m_G -measure, m_G has the finite subset property (i.e., every set of positive m_G -measure contains a set of finite, positive m_G -measure). Since ϑ is strictly increasing, $\vartheta(1) > 0$, so that θ may be assumed normalized. Hence the hypotheses of Theorem 4 in [9] are met, and by that result, l_0^G is rotund under \overline{N}_{θ}^G , q.e.d.

Any increasing function will be called continuous in the extended sense if it has no jump discontinuities.

- **3.3.** LEMMA (Milnes [7]). If μ is a probability measure, then $L_{\Phi}(\mu)$ is rotund under $\|\cdot\|_{\Phi}^{\mu}$ whenever Ψ and ψ (= Ψ') are continuous in the extended sense.
- **3.4.** THEOREM. If ϑ is continuous and strictly increasing, and ψ and Ψ are continuous in the extended sense, then $E_{\varphi}(\theta, G)$ is rotund under $\overline{N}_{\varphi}^{\theta,G}$.

Proof. Suppose $\overline{N}_{\phi}^{\theta,G}(f) = \overline{N}_{\phi}^{\theta,G}(g) = 1$ and $\overline{N}_{\phi}^{\theta,G}(f+g) = 2$, i.e., if $\overline{f}(\mu) = \|f\|_{\phi}^{\mu}, \overline{g}(\mu) = \|g\|_{\phi}^{\mu}, \overline{h}(\mu) = \|f+g\|_{\phi}^{\mu}$ for all $\mu \in M$, then

$$N^G_{ heta}(ar{f}) = \overline{N}^G_{ heta}(ar{g}) = 1, \quad \overline{N}^G_{ heta}(ar{f} + ar{g}) \geqslant \overline{N}^G_{ heta}(ar{h}) = 2.$$

Hence, by 3.2, $\bar{f} = \bar{g}$, i.e., $||f||_{\Phi}^{\mu} = ||g||_{\Phi}^{\mu}$ for all $\mu \in M$. Now

$$\overline{h}(\mu) = \|f + g\|_{\Phi}^{\mu} \leq \|f\|_{\Phi}^{\mu} + \|g\|_{\Phi}^{\mu} = 2\|f\|_{\Phi}^{\mu} = 2\overline{f}(\mu),$$

and there is *strict* inequality by 3.3, whenever $f \neq g[\mu]$. Suppose there is some $\mu_0 \in M$ with $f \neq g[\mu_0]$; then since θ is strictly increasing, it holds for any K > 0 that (by(*))

$$\theta\left(\frac{\overline{h}(\mu_0)}{K}\right) < \theta\left(\frac{2\overline{f}(\mu_0)}{K}\right).$$

Obviously, for any $\mu \in M$ and K > 0,

$$\theta\left(\frac{\overline{h}(\mu)}{K}\right) \leqslant \theta\left(\frac{2\overline{f}(\mu)}{K}\right).$$

Thus, by (**) and the fact (as in the proof of Theorem 4 in [9]) that

$$\sum_{\mu \in \mathcal{M}} heta\left(rac{F(\mu)}{\overline{N}_{ heta}^G(F)}
ight) G(\mu) = heta(1),$$

one obtains

$$\sum_{\mu \in M} \theta(\overline{f}(\mu)) G(\mu) > \sum_{\mu \in M} \theta\left(\frac{\overline{h}(\mu)}{2}\right) G(\mu) = \theta(1),$$

i.e., $\overline{N}_{\theta}^{G}(\overline{f}) > 1$, a contradiction. Therefore, it must be $f = g[\mu]$ for every $\mu \in M$, i.e., f = g, q.e.d.

3.5. Definition. A Banach space \mathfrak{X} , with norm $\|\cdot\|$, is called *uniformly rotund* if for every $0 < \varepsilon \le 2$ there is a $0 < \delta(\varepsilon) < 1$ such that whenever $x, y \in \mathfrak{X}$, $\|x\| = \|y\| = 1$ and $\|x - y\| \ge \varepsilon$, then $\|x + y\| < 2(1 - \delta(\varepsilon))$.

 $\delta(\varepsilon)$ can always be assumed to be a non-decreasing function of ε , such that $\delta(\varepsilon) \to 0$ as $\varepsilon \to 0$; merely substitute δ_1 for δ , where

$$\delta_1(\varepsilon) = \frac{\varepsilon}{3} \sup_{0 < \varepsilon' \leqslant \varepsilon} \delta(\varepsilon').$$

3.6. Definition. Any function $\delta(\cdot)$ as above is called a *modulus* of uniform rotundity (m.u.r.) for the given space (with the given norm).

Obviously, every uniformly rotund space is rotund and, moreover, it is known ([2], p. 113) that uniform rotundity implies reflexivity.

It has been proved by Milnes [7] that, under certain conditions on Φ , the spaces $L_{\Phi}(\mu)$ are uniformly rotund. However, for the present work,

a seemingly stronger result will be needed – namely, that the modulus of uniform rotundity of such a space may be taken to be independent of the particular probability measure μ involved. Milnes makes no mention of the modulus, and certain constants appearing in his proof do apparently depend on μ . But a careful reworking of the proof (which will be omitted) shows that the m.u.r. does indeed not depend on μ ; in the following

$$arPhi(x) = \int\limits_0^{|x|} arphi(t) \, dt \quad ext{ and } \quad arPsi(x) = \int\limits_0^{|x|} arphi(t) \, dt.$$

3.7. THEOREM. Suppose $\mu(\Omega) = 1$, ψ is continuous, $\Phi(2x) \leq N\Phi(x)$ for all $x \geq 0$, and for every $\alpha \in (0, 1)$,

$$\lim_{x\to\infty}\frac{\varphi(x)}{\varphi((1-\alpha)x)}>1.$$

Then $L_{\sigma}(\mu)$ is uniformly rotund under $\|\cdot\|_{\sigma}^{\mu}$, and the m.u.r. is independent of μ (for details, see [11]).

3.8. LEMMA. Suppose

$$\theta(x) = \int_{0}^{|x|} \vartheta(t) dt,$$

where ϑ is continuous. If θ satisfies the Δ_2 -condition (for all values of its argument), and if for every $0 < \varepsilon < 1$, there is a constant $K_\varepsilon > 1$ such that $\vartheta((1+\varepsilon)x) \geqslant K_\varepsilon \vartheta(x)$ for all x > 0, then l_θ^G is uniformly rotund under the norm \overline{N}_θ^G (introduced previously).

Proof. Since $\theta(2x) \leqslant c\theta(x)$ for all $x \geqslant 0$, it follows that $\vartheta(1) > 0$, and so θ can be assumed to be normalized (in the sense already discussed). Also, as before, m_G has the finite subset property. Thus all conditions of Theorem 5 in [9] are satisfied, and so l_{θ}^G is uniformly rotund under \overline{N}_{θ}^G , q.e.d.

3.9. THEOREM. If

$$\theta(x) = \int\limits_0^{|x|} \vartheta(t)dt, \quad \varPhi(x) = \int\limits_0^{|x|} \varphi(t)dt, \quad \varPsi(x) = \int\limits_0^{|x|} \psi(t)dt,$$

and

- (a) $\theta(2x) \leqslant c\theta(x)$, $\Phi(2x) \leqslant c\Phi(x)$ for all $x \geqslant 0$;
- (b) ϑ and ψ are continuous;
- (c) for all $0 < \varepsilon < 1$,

$$\inf_{x>0} \frac{\vartheta((1+\varepsilon)x)}{\vartheta(x)} > 1 \quad \text{and} \quad \lim_{x\to\infty} \frac{\varphi((1+\varepsilon)x)}{\varphi(x)} > 1;$$

then $E_{\Phi}(\theta, G)$ is uniformly rotund under $\overline{N}_{\Phi}^{\theta, G}$.

Proof. The space l_{θ}^{G} is a "proper function space", i.e., a normed linear space of real-valued functions such that if $F \in l_{\theta}^{G}$ and $0 \leq F_{1} \leq F$, "then $F_{1} \in l_{\theta}^{G}$ and $\overline{N}_{\theta}^{G}(F_{1}) \leq \overline{N}_{\theta}^{G}(F)$. Comparing the hypotheses here with those of 3.7 and 3.8, it is seen that l_{θ}^{G} is uniformly rotund under $\overline{N}_{\theta}^{G}$, and all $L_{\Phi}(\mu)$, $\mu \in M$, are uniformly rotund under $\|\cdot\|_{\Phi}^{G}$, with m.u.r. independent of μ . But these facts, applied to the space $\hat{E}_{\Phi}(\theta, G)$ (cf. 2.27) with the norm \tilde{N}_{θ}^{G} , given by $\tilde{N}_{\theta}^{G}(\hat{f}) = \overline{N}_{\theta}^{G}(\|\hat{f}(\cdot)\|_{\Phi}^{G})$ imply by Theorem 3 in [1] that $\hat{E}_{\Phi}(\theta, G)$ is uniformly rotund under the given norm.

It is a trivial consequence of 3.5 that every subspace of a uniformly rotund space is uniformly rotund (under the restriction of the norm). Since the restriction of $\widetilde{N}_{\phi}^{gG}$ to the subspace $E_{\phi}(\theta, G)$ is \overline{N}_{ϕ}^{gG} , the proof is complete, q.e.d.

References

- [1] M. M. Day, Uniform convexity, III, Bull. Amer. Math. Soc. 49 (1943), p. 745-750.
- 21 Normed linear spaces, Berlin 1958.
- [3] J. L. Doob, Stochastic processes, New York 1953.
- [4] N. Dunford and J. T. Schwartz, Linear operators, Part I, New York 1958.
- [5] M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex functions and Orlicz spaces (translation), Groningen 1961.
- [6] P. A. Meyer, Probability and potentials, Waltham, Mass., 1966.
- [7] H. W. Milnes, Convexity of Orlicz spaces, Pac. J. Math. 7 (1957), p. 1451-1483.
- [8] T. S. Pitcher, A more general property than domination for sets of probability measures, ibidem 15 (1965), p. 597-611.
- [9] M. M. Rao, Smoothness of Orlicz spaces, II, Indag. Math. 27 (1965), p.681-690.
- [10] Almost every Orlicz space is isomorphic to a strictly convex Orlicz space, Proc. AMS 19 (1968), p. 377-379.
- [11] R. L. Rosen berg, Compactness in Orlicz spaces based on sets of probability measures, Thesis, Carnegie—Mellon University, 1968.
- [12] A. C. Zaanen, Linear analysis, Amsterdam 1953.
- [13] A. Zygmund, Trigonometric series, Vol. I (second edition), Cambridge 1959.

CARNEGIE - MELLON UNIVERSITY PITTSBURGH, PENNSYLVANIA

Reçu par la Rédaction le 20. 1. 1969