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On conditional bases in non-nuclear Fréchet spaces
by

W. WOJTYNSKI (Warszawa)

In the present paper we give some criteria for the nuclearity of
Fréchet spaces with bases. Our main result is the following:

A. Let X be a Fréchet space with a basis. Then X is nuclear if and
only if every basis of X 1s absolute (the basis {e,} is absolute if
2 [tanl] < oo for each z = Zt e, and each pseudonorm |-|| on X).
n=1 n=1

For countably Hilbert spaces this result is strengthened as follows:

B. A Hilbertian Fréchet space X with a basis is nuclear if and only

if every basis {e,} of X is unconditional (ie. Y |4"(fr:)] < oo for each
[ =1
@ = ) tneneX, and each linear functional z* e X™).
n=1

Observe that the part “only if” of our results is a consequence of
the Dynin-Mitiagin theorem {3] which asserts that in a nuclear space
each basis is unconditional. We do not know whether the converse is
true, however, we believe the following holds:

CONJECTURE (see [9]). A Fréchet space X with a basis is nuclear
provided each basis in X is unconditional.

The conjecture is already established for Banach spaces, because
the class of nuclear Banach spaces coincides with the class of finite-
dimensional spaces, and, by result of Pelezyiiski and Singer [9], in every
infinite-dimensional Banach space with a basis there exists a conditional
basis.

Statement B can be regarded as a generalization of a result due to
Babenko asserting that in a Hilbert space there exists a conditional basis;
[1], cf. also [4], [6] and [7].

Statement A is a generalization of an unpublished result of professor
J. Rutherford (presented on-the conference on functional analysis in
Sopot 1968) that a Fréchet space satisfying the assumption of A is
a Schwartz space.
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The present paper consists of five sections. The first two have pre-
liminary character. In section 3 we eompute the “degree of conditionality”
of the Babenko basis in 7 and of some conditional bases in 1P-spaces.
Section 4 is devoted to a construction of non-nuclear “regular” subspaces
of non-nuclear Kothe spaces. The proof of the main result iy completed
in section 5.

The paper is a part of the doetoral dissertation written at the Uni-
versity of Warsaw under the direction of Professor A. Pelezyriski. The
author wishes to thank Professor A. Pelezyngki for his guidance in the
topic and much help, and Professor O. Bessaga and Doctor 8. Kwapienl
for their valuable remarks and help during the preparation of this paper.

1. Notation and terminology. A topological linear space X is called -

Fréchet iff the topology of X is given by a denumerable system of pseudo-
normes ([|luy # = 1,2, ...) and it X is complete.

I (|l » =1,2,...) is another denumerable system of pseudonorms
on X which induces the topology of X, then those two systems are equi-
valent in. the following sensé: for each n A" (A — the set of natural numbers)
there exist an m and a constant O = C(n, m) such thatb

Il < 0::11355 ¢

and |
el < € max |zl

Tor each system (|-|i ieA) of pseudonorms on X there exists an
equivalent system (|||, net”) Which is monotone, i.e. @l < [#]m for
each n < m and z<X. )

A 3equence {6n}n.s of elements of & Fréchet space X is a basis of X iff
for each <X there exists a unique sequence of sealars {1, (%) }nes Such that

(1L.1) T == 2’ A () €5«

L
A series Y @,, 7,¢X, is said to be unconditionally convergent iff for

n=1 0

any permutation o of the set 4 the series. Y @,y is convergent.
’ 1

Nz
A basis {enjns of & Fréchet space X is unconditional if the series
(1.1) is unconditionally convergent for each zeX. The basis is conditional
it it is not unconditional. o
The basis {én}nes of X is absolute if the series (L.1) is absolutely
-convergent for zeX, ie.

3 @il < +oo

for each pseudonorm ||, on X.
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The functions A,(-) will be called the coefficient functionals of the
basis {ey}nes They are linear and continuous.
Let X and Y bg Banach spaees. A linear operator 4:X - Y

is nuclear it 4 = 3 A,, where 4,:X - Y are l-dimensional, and
oo Nn=1
21 l4al < +co.

If X is a Fréchet space with the topology given by monotone sequence
of pseudonorms (|||, west"), then

Yo = {weX: o], = 0}

are closed linear subspaces of X. Let X, denote the completion of the
gpace X /Y, with respect to the norm induced by psendonorm ||-[,. Since
the sequence (| ‘|l., ne#") is monotone, there are defined the ecanonical
homomorphisms B,: X, ; - Xy

The Fréchet space X is nuclear if & monotone gystem of pseudonorms
can be chosen such that all the operators B, are nuclear.

Let I' be an abstract set and 1 < p < co. By I we denote the space
of all complex-valued functions on I" for which the quantity

(SN it p<eo,
W= swp f(r)l P =oo

is finite, with the topology given by the norm |-||.

In particular, if I' = 4, we denote the space &% by I¥, and if I' is
a finite set of n elements, we denote I by %,

Let [@mnlmns De a Teal, non-negative-valued infinite matrix (for
the sake of brevity we call it a Kdithe matriz).

The Kothe space I'[am,,] is the space of all complex sequences {&u}nes
for which

(1.2) {éatlm = (ng Gy Eal?) P < 00

with a topology given by the system of pseudonorms (1.2).

A Kithe matrix is said to be monotone (we denote it by M.K.M.)
if Gy Gy for my,n =1,2, ...

More generally, let [a,,] be a Kothe matrix, and X, be a sequence
of Banach spaces. Then by ¥ ([@mn]; X.) we denote the linear space
of all sequences {Z,}n.s Such that:

(a) apeX, for n =1,2,...,

(b) for any med”

(1.3) ol = (5 am P < 0.
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The topology on I”([@m.l; X,) is given by the system of pseudo-

norms (1.3).
The Kothe space I [ay,q] as well as I ([tnn]; Xyn) are Fréchet spaces.

2. Some facts concerning the nuclearity of the spaces. Let [ay,,] be
an M.K.M. Then ([6], p. 71-72) the Kothe space I”[amq] 15 nuclear iff
for each me " there exists ke such that

a
_fmn - Loo

2.1
( ) et Amt-ken

(here by 0/0 we mean 0). , o

Let B[] denote the dense linear subspace of I [am.] consisting
of all sequences with finite number of mon-zero terms. For a real a let
us define an operator A4%: I} [@mn] = 1 [Gmn] Y

A* (@) = {”u fn}ns./V for » = {En}neﬂ € lﬁ [am,n] .

In the sequel we shall use the following

Levma 2.1, Let [amq] be an M.K.M. If the operator A®:15[ann]
1 [annl s continuous for some positive a, then the space ¥ [amq] 45
nuclear. :

Proof. Assume that A” is continuous for some « > 0. Since 4°0 A°
= A% we get that A** is continuous for ke.#. Thus without lost of gen-
erality we may assume that a >1. By continuity of A% for any me
there exists kest” and a positive constant ¢ such that, fqr zely [amnls

14 (@)l < Cll@llmir-
Hence, putting # = {65}, We obtain

(O i)1? 8" < O (1) for p < 00

and
“m,iin < Oa’m—}-n,i for P = oo.
Hence
00
UL
—— < 00,
=1 am+h,n

Thus the space I”[am,,] is nuclear.

Let [amn] be an MK M., and let {X,}., be a sequence of finite-
dimensional Banach spaces. By 1§ ([#m,4]; X.) we denote the dense linear
subspace of 1°([@nn]; Xn) consisting of all sequences {#,}n.y With finite
number of non-zero terms.
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Let {4,}n.s be a sequence of linear operators A,: X, — X,. Then

by @ A4, we denote the cartesian product of Ay, le. for z = {Tylnes

n=1 ]

we put @ Ay (@) = {4y (%n)}nes In the special case, 4, = [ dim X.]°I
N=1 0

(I — the identity operator in X,), we shall abbreviate ® A, by B~
N=1

The following proposition is a generalization of Lemma 2.1:
PROPOSITION 2.2. Lét [Gm,n] be an M. K. M., {X,}, net, be a sequence
of finite-dimensional Banach spaces, and let A,: X, - X, be a sequence
of linear operators such that for some a >0
(2.2)

If
(2.3)

1420 = [n-dim X, 1°.

dim Xy, > dim X,

and the operator @ Ay: g ([tmnl; X) = B ([tmn]; Xn) 48 continuous, then
M=l
the space P ([amn]; Xn) is nuclear.
Proof. Similarly as before we assume that « > 1. By continuity of

o]
@ Ay, we obtain that for each m there exist a k and a positive constant
N1

O such that [|@4n(@)ln < COllllnys for any o in P([a,,]; X,).

Assume that p <C co. (The proof for p = oo is similar.)
Take o X, such that [|4,(a5)] = |4, and |#3] = 1. Hence putting
= {&.ah}, where {£,} belongs t0 & [4,,], we have

Z’l a'm;n”An];p }fnlp < Op 4_‘:1 am.}.k,nlfnlﬁy

and, by (2.2),

(2.4) n‘g O, [ Xy - 0] P < OF ngl By ejn | Enl”

Hence we get that the operator A: If [ay, ] — 1 [@m,»] is continuous,
and so, by Lemma 2.1, the space I”[ay,,] I8 nuclear.

It is known ([6], p. 71-72) that in this case the identity operator is
an isomorphism of 1§[am,,] onto B [am ] for any p. It is easy to see that
the same holds for lﬁ([am’n]; X,) and B ([@mn]; X.). Therefore we can
assume without loss of generality that p = 1.

It is known ([10], p. 120) that in a finite-dimensional Banach space
E with a norm ||-|| there exists a basis {e}25" with coefficient functionals
{£)8E for which ||e;]] = [Ifil] =1 (i = 1, 2, ..., dim F). Such a basis we shall
call Auerbach basis. Having Auerbach basis in B we can define two new

Studia Mathematica XXXV.1 6
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norms on B, putting [lol, = 3 |fi(2)| and |j@lo = S?P‘fi(m)\' We get

(2.5) I2lleo < llll <l
and
(2.6) lelly < dim B [lo!los

Let us denote by X, the space X, equipped with the norm (R
' - 1 . |
‘We shall prove that the spaces Ll([q,n,n]; X,) and l“([;m,ngv,cX;% tz;;g
isomorphic. Indeed, putting in (2.4) (with p = 1) & = dn,
[ AN XY < Otbnyis for 4, meA",
and hence, by (2.5) and (2.6),

o 5]] < 033 < s A K ]} < € el -

Summing these inequalities, we geb
00 [=1] 00
2 tmallwll < 2 G llnlly < ”2'1 @0 [l
fi==1 M=l e

Hence the identity is an isomorphism of T ([amn]; Xn) and ([ @mnl; Xn).
Tt is easy to see that the space X, is isometric t0 lymx,, and so

the spaces I*([tmal; Xn) a0d 1'([Gma]; limx,) are isomorphic.

The space Io([mnl; lmx,) is isomorphic to 1 [bmn], Where bumg
n—1 n

= @y, for Y AmX; <k< 21 Aim X;.

) =1 i= ] _

Putting in (2.4) (with p = 1) &, = |, We get that the (’)pemtor
B B ([tmnl; Xn) > lp([0ma]; Xn) is eontinuous. The same remains true
for the space I ([Gmn]; limx,)-

Sinee k< D dimX; implies k< ndimX,, the continunity of B*:

= .

A ([amm]; l%limxn)z—> ll([a'm,n]; l%limxi) implies that of A% lﬁ [bm,%] - Zé [bm,n]'
Hence, by Lemma 2.1, the space I' [bm, ], and so the space I" ([amu]; Xu)
are nuclear.

Remark. In Proposition 2.2 we may assume instead of (2.2)
and (2.3), .
(2.2") 4l = [dimX,1*  for some f>0.

(2.3 dimX, , > dimX, > n,
Tndeed, assuming (2.2') and (2.3') we have [dimX,]J > ndimX,

and so dimX, > [n dimX,]". Thus ||4,)]> [dimX,]" implies [4all
> [n dim X,1°", and (2.3) holds.
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3. Bases in the spaces [”. Let X be a Banach space with a basis
{extrer; where either I = {1,2,...,n} for &imX < oo or I =4 for

dim X = co.
For a finite set of indices ¢ the projection P, in X is defined as
follows:

P,(x) = kZEkek for ¢ = kg; Eep.

If 6o ={1,2,...,7}, we write P, instead of P, For a basis {exh.
let us put :

Kin} = suplP]
and el

K {ex} = sup IPs]  for n=1,2,...
gy !

Of course, Ky*'{e;} > Ky{ex}, s0 there exists the limit HmK7{e,}.
We shall denote it by K, {e}. bt

We call K basis constant, and K, unconditional basis constant. Tt ig
known that K {e;} is finite, and K, {e,} is finite if and only if {ex}rs is an
unconditional basis.

LEMMA 3.1. There ewists a basis {dz}, in I* such that

1° For any wed" the space By, = span{d,, ..., dn} 48 isometric with 1,;

2° Ku{di} > D(e)n'*~%, ned, for each s >0 and for some Dfs).

Proof. Let {d;}7, be the sequence

dy = (17 07 0, --')s
dr=1(0,0,..., —1,1,0,...), k=2,3,...
BT

By {ex}ii. let us denote the usual basis of unit vectors, ie.
n

e = {6F)%,. Since e, =k2 dy, 1° holds.
=1

Let {£x}i-: be the sequence of coefficient functionals of the basis
{er}i=1, and let {o;}>, be the sequence of functionals biorthogonal to
{@}, (e a;(di) = &F).

Let P, be the projections in 7, defined at the beginning of this
section, corresponding to the sequence {dy}. Since, for ket & = ap— a1,
and d; = 6, d = ex—ey_; for k= 2,3,..., we have

M‘I

Pr(z) = 3 ar(@)dy = ‘11(5'7)31‘|‘k§o a () (er— ex_1)

I‘!?:‘
LE

= 3 (o(®)— a1 (®)) 66+ ar (@) €y

&
i
—

I
M R

(ak (m) — Oy (w)) o+ Opyy ($) & = ké; & (.’l}) ex+ Aryy (m) Er.

&
I
-
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k
Since ax(z) = Y &(®), we have |ax(®)| < |lall, ket” Therefore

r
P @)l < || X &nla) enl| + laral < 2l
k=1
Tt follows that {dx)>, is a basis in I
Let y be a fixed real number, y > 4. For
@y = {&7"— (b+1)7"}

we have
@y el and ap(m) = 1/K7, ke .

Let ¢ be the set of indices {1, 3,5, ...,2m—1}. Consider the pro-

jection
P, (0) = Z dap—1 (@) a1+
Since
Y for k< 2m—1andk odd,
( %)) otherwise,
we obtain
Y for k< 2m—1 andk odd,
E(Po(my)) =1 —(B+1)""  fork<2m—1Landk even,
0 otherwise.
Thus . —
2m _ 2m _ (Zm) ~-y_ 9
”P mu Z kY = f & ydﬂ/‘ —‘T:)‘/'————‘ .
On the other hand,
am
(k41— &
P, m \ & = e
P2 (20)] LZ POy
21m am 1-2y
1 o (2m) —1 1
< .
P Ll b v S i
Since P, (@) = Po(Pom ()}, We have
P (Pom (2 P, (2
1> [PeBm@)] _ 1P (@)l
) (1 Pam (20)]| [ Paim ()l
Thus if y is close to }, we obtain
(2m) =Y — 21—
ez E 2T gy ),
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It follows that for any e >-0 there exists a positive constant D(e)
independent of m such that

1Pl = D(g)m'*~*
Thus
Kuy{dh} = D(e)n™, n=1,2,3,...,
q.e.d.
LEMMA 3.2. Let {exhros e a basis in P, 1< p<2, with [l = 1.

Let {ty}nr denote the sequence of coefficient functionals of the basis {ex}.
Then there exists a positive constant D, such that

( l (@)
(3.1) E"{ex} > Dysup =

P JJao]]

uL\/_];

y n=1,2,..

Proof. Let us denote by G the set of all infinite sequences g = {ex}i2,
with terms equal +1 or —1, and with all but finite number of terms
equal +1. To each sequence ge@ we assign the linear involution 4,
in ¥ defined by

Ag(m) :]cz‘lﬁktk(m)é’k- ]
Let us put P, = $(I—A4,) (I is the identity operator). Obviously,
P, iz a finite-dimensional projection. Denote by G, a subset of G eon-
sisting of all sequences {e} such that ¢ =1 for &k >n.

‘We have
Ey{e} = sup [P
geGy,

By the definition of P,
n 1 1
Kufert = sup— | I— 4, = - (sup [|4,]]—1).
geG,,,?J 2 geGp

Now we use the following inequality due to Orliez [8]: Let {mx}f.,
be any sequence in I, 1 < p < 2; then there exists a positive constant O,
such that

sup]| 5 evse] > €4 5, )

k=1

In the special case, pubting 2, = % (x)er for ¥ =1,2,...,n and
o = 0 for & >n, we obtain

sup {1 4,(=)| > Gp(Z It () ") .
9eGy, k=1
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212
mmwmmﬁﬁangwﬂ
wi g ol et )

So we have

(ZWMW

@WW)
pSUD ~ o

Ky{er} > 017 el 2P Tl

1pp
for net’, where D, is a sufficiently small positive constant, qg.e.d.

The first example of a conditional basis in a Hilbert space has been
given by Babenko [1]. He has proved that the sequence {f.r}, & =0,
+1, —1, +2, —2,..., where f,(s) = [s|¢™ with fixed ¢, —} < a X %,
is a conditional basm in the space L*(—r, w).

Using inequality (3.1) we shall prove the following

Levva 8.3. Let 1< a<<} and let {f.i} be the Babenko basis in
I}(—m, n). Then for any n

(8.2) Ky {foi} = Dan™ 2,

where D i8 a positive constant independent of n.

Proof. Let {f,x} be the sequence of coefficient functionals for the
basis {f,x}. It is easy to see that for @ = #(s), wel?(—m, n), we have

Fopp(@) = ~f w(s) e~ " s~ ds.

Let us put #,(s) = |s|™%. We obtain

™

. . ™
To, 1 (%) = f e~ s| " s = Zf cos s s™*ds
—1 0
cosw dw = cosw
— e o) [
f ] 2u % ¢ of o dw

Since
f"" cosw e

= 0
g Wt 2 (2a)sinma >

there exists a positive constant 4, such that

Fairlo) = A,
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By (3.1), we have

D k12 .
(3.3) Eu{fur}> 2 (Z ‘ta’k(w)lz)u-
R
But
kid n
(2 estea " (Z‘””W‘A(YWﬂW>AU§“ﬁ
k=1 k= E=1
gla—1 \1/2
( . 4—.a~1) ’
Therefore for n'>> 3 and « >} there exists a positive constant A,
such that .
n
(34) (3 o (@) = Aon® .
=1

Sinee Ky {for} =
(3.2) holds, q.e.d.

Let T be the unit circle on the complex plane, e.g. the set {z: |z] =1},
and let IP(T) be the space of all complex-valued funotmns, - mte—
grable with respect to the Lebesgue measure on 7. Denote by T, the set
{&n13 Enzy - -+ Enn}s WheTe g,; = exp{j-2nin~"}. The space 1% is isometrie
to ;? — the space of functions on Ty, with norm defined by

1 for any nedt’, from (3.3) and (3.4) we infer that

1 ¢ ,
. o =[5 21
Let Ay be a linear operator from the subspace of IP(T), spanned by
the functions 2" for —k <n <k, into Z,,, defined for the functions 2"
by the formula
Ay(2") = {(eary1) ol
The theorem of Marcinkiewicz [11], p. 46, states that [ldx<
and ||4z'|< 0, for the some constant €, independent of k. erte
el — { 2k 1) "},k“L1 Tt is known that for each 1 < p < oo the functions
ffe) =% n =0,1, —1,2, —2, ..., form a basis in I"(T). Hence it follows
by the Marcmklemcz theorem that all bases {eX*1)1¥4! have basis
constants uniformly bounded in k.

LEMMA 3.4. For each 1 <p <2
For the basis {eF TV in BE,,

K { 0k+1 'ik+1

there exists a constant C(p) such thai

> (2 1)HP,
Proof. Let fyelab,; be defmed_. by

1 1_1117"%1 1 .
= e+t
fo (2k+—1) &
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It is easy to see that
Foloaisrg) = Ohesa (2417,

and hence ||fyll, = 1. Therefore, by (3.1), we obtain

1 \I-UPpR e
K () > Q%Hﬂ@gﬂ |) = perspomm.

Remark. The analogous result for 2 <p < oo can be obtained
from Lemmsa 3.4 by the standard dual argument.

For further application we summarize the results of this section
in the following ’

COROLLARY 3.5. For each 1< p < oo there ewists positive constants
' (p), €' (p), a(p), and bases {ex}i_, in the spaces U, such that

E{}<0'(p) and  Ku{g}>C"(p)n"®

4. A basic lemma. Let [a,,,] be MK .M. Any matrix of a form [z m, ]y
where {my}r. and {1} are increasing sequences of indiees, is called
a submatric of [amn]. We call MUK M. [anq] nuclear (non-nuclear), if the
space I'[an,] is nuclear (non-nuclear).

The main result of this section is

THEOREM 4.1. Let [an ] be o non-nuclear M.K.M. Then there is a non-
nuclear submatriz [amkn] such that for each p>1 ‘the space I° [aumy, n,] 18
isomorphic with the space T ([dmal; T (n)) for some M.K.M. [dnn] and
for a sequence of indices {g(n)} with g(n-+1)> q(n) = n.

To prove this theorem we ghall need several lemmas. We omit
gimple proofs of the first two lemmas.

LeMMA 4.2, For each non-nuclear M.K.DM. there ewists a non-nuclear
submairizc [byn] such that b # 0 for each my,ned .

LemvA 4.3. Let [6n,n] be MK M. such that am, 5 0 for cach m and n.
Then for each k eA” the spaces I [am,n] and I° [byuz] (where by, s = Gy 0nn)
are isomorphio.

Levva 4.4, Let [ann)] be on M.EM. with a, =1 such that
li.min;ﬁ U < oo for m = 2,3, ...; then either

1° there exists a submatriz Lam, n .1 which s non-nuclear and llm g,

= oo for any % Kl

or

2° there ewists a subma,tmw [amn] such that 11m SUP @mn; < A-00 Jor
any m,

Non-nuclear Fréchet spaces 89

Proof (%). Let us denote by 7 the family of all finite subsets of 4,
by #%. the family of all subsets o = .#° such that

SUP Gy < 00,
e
by % the family of all subsets o such that

1
D < e,
nec Om,n

and let gem = {Red : Gpn < k). SiNCE Gy py < Gyr 5 fOTr m, Rt

B> By H3 D .y
Z cH,cZc

(49) T By, m=1,2,..,

T %y, m=1,2,...,
3?,,11 ~AZp, =  formy=m,

and, moreover, the families 7, Zp, Zu, € = (| Zm are ideals of subsets
of . =1
It is easy to see that 2° holds iff ﬂ By, # T . So let us suppose thatb

ﬂ B = J. We shall prove that 1° h olds For some m, the ideal Z o %, B,y

m=1

generated by the sum £ < %, is proper. Indeed, let us Suppose on the
contrary that, for each m, 4 is a member of the ideal % U #,. Then

" for each m we have & = 2, w oy, for some opeF,, and 2z, e %y (Without

loss of generality we may assume that m' >m).

Thlis, by induction, a monotone sequence of indices {kn}nes and
tWo Sequences {Ontncss {#nines OF subsets of # may be constructed such
that opeBy,, 2w eZ, 1 and oy, v 2, = 4. Since liminfa, , < oo, o, are
infinite. oo

By (4.1), %0 ~ 04y167 . Hence o\ oy is finite. Now, by the standard
diagonal procedure, an infinite set ¢ may be constructed such that o\on

oo
is finite for each m. Hence oe () %\, and this contradiets the

m=1
supposmon Thus, there are o, and m, such that uoéﬁ" A Buy; therefore
oo\ Ok, ,,10¢9f for each %. This makes it possible to find for each & a finite
seb o < 0\ gr,mg such that

- >Fk.

Neoy, Gge,n

(%) The author is indebted to S. Kwapiei for the present form of the proof.
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Let 6 = | o3 Then the sequence of those numbers which are enume-
k=1

rated in an increasing order, has the desired properties of 1°. Indeed, -

by the construction, &~ gy, moeﬂ' for each &, and so hm gy = 00,
Hence hm O,y = 00 for m > m, Moreover,

« 1 1
2—~—~ = Z"—‘ >k for each & >m >m,.
j=1 “m,nj nes kn

This implies
w1

=1 dmn

—:OO’

5T
and thus the matrix [amg, ] i8 non-nuclear. This completes the proof.
LeMmA 4.5. Let {aplnes and {bylnes be two sequences such that

(i) 0<b, < Gy,
(ii) . hmam=().
Moreover, let {g,}zw be a sequence of pairwise dzsyomt subsets of A
such that
(iii) > D by = o0
T ey
and
. c
(iv) bn<?{“ for meg;,

where 0 >0 and 0 <« <1 are constants independent of i.
Then there exists o sequence {0} of finite, pairwise disjoint subsels
of A such that

(1) each o; is contained in some g;,

(2) 2 2 by, ='00;

7 7iedy
(3)  card o; >j,

(4) bn\D/ZJ for fedj, where D >0 and 0 < f <

constants inde-
pendent of j,

<1 are
(B)  awfan<2 for cach j and n, meo;.

Proof. Let us put 0, = supa, and define the sets
n

c C) -
Or = {neﬁf:—2,§< a, < Zk_ll} fork=1,2,.::
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Let us put £ = 0; ~ 0. The sets {1} x4 are finite and pairwise
disjoint.

For neZ;; we have by, < max (0, 20,) /2R Indeed, if max(i, k)
= 14, then the desired inequality is an immediate consequence of (iv),
if max(i, k) = &, then, by the definition of the sets dx and %y,

max(C, 20)

20,
b o max(i, "

n\2k<

Let us rearrange the double sequence {%;:}is., into a single one
putting #; = ¥, where

s(i, k) = (’:J“k_l)z(”k_g) +k

Then max(i, k) = % [s(4, k)]'* and hence for ne¥’,
max(C, 2C,) D
(4.2) by < W/z— >

where 8 = fa, and D is a positive..consfant. .
Putting B = {seA": card ¥, < 1} we obtain

D d< anrd'if <DD's (»«) < 4oo.

seR ne¥ g seR se A"

Let us denote by {0} the sequence {¥ }, 4 r ernumerated in
the same order. B

The sequence {a;},., satisfies all assumptions of the lemma. Indeed,
(1) and (2) follow by the construetion of the sets #;;. Condition (3) is
a consequence of (iii) and (4.3). Since 7", = o; implies s = j, we have
card o; = card ¥, > s >>j, and this implies (4). Moreover, by (4.2), we
get for neo; =7

(4.3)

D D
—

bn < 18 27‘!3

(]

This proves that (5) is also satisfied.
LeMMA 4.6. Let [Gm,n] be an M.K.M. such that ajn =1 for each n,

Lim, a,,, = oo and 2’1/0&,,,,L = oo for each m.
N—>00 =]

Then there emsts a sequence {oures of finite, pairwise disjoint subsets
of & with the following properiies:

(a) card oy, = card og = k;
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(b) for each m there ewists a constant K (m) such that for any % and
Mgy N € 0%

am 1

< K(m);

. am Ty

¢) Y 3 Ly, = oo for each m.

k 1 neoy

Proof. Let us write dun = 1/tyn. Let {nm}mf . be a monotone
gequence of natural numbers such that n, = 1 and

Ty ~1

D dma>1.

?’L:’Ibm

Define the sequence {¢,}ncs DY PULLING 6n = by for m4, <
Since the matrix [an,] is monotone, ¢, < dmy for n > Ny

Now, we apply Lemma 4.5 to the sequences {d.}nes {0utnes
and the sequence of sets {D;};y, where D) =" and D,; =@ for
j >1. We obtain the sequence {D,};, of finite pairwise disjoint sets
satisfying conditions (1)-(5) of Lemma 4.5.

Let us choose a number j, such that

<< Mg

i
Y o>1,
=1 nsDz,i
and d;, > o, for j >j>1 and 'nngy‘-.
Applying Lemmsa 4.5 to the sequences {@3 n}ners {Ontnesr and the
sequence of sets {Dq Yiesrs Where D” = Ds 54, We get the sequence
{Ds j}ien Of the sets satistying conditions (1)-(5) of Lemma 4.5.

@ Let us write %k, = card D, and let j, be a natural number such
at .
I *

D D a1,
Je=ky meDy ;
and dyn > ¢, for j >4, and n €D,y ;.

Continuing this process by induction, we get sequences of finite
sets {Dm,,:}y-s wym=2,3,..., and the sequence of mnatural numbers
1=k <ji<ky<jy<.. such that

(I d‘m-;.z,u > ¢, for j >jm and ’VLE-DmH

(IT) the sets {Dy;} for ky <j <jum and m = 1,2,... are pairwise

disjoint;
(III) ak:”llak;"z \<~ 2 fOT k > m, ] > km alnd ’)’01, TlcéEDk iy
im . "
vy Y 3 e>1,

Ik, n<Dpyg1 g
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m—1
Let o, = D, ; for k = 3 (§,— k) +j—Fm
=1

B
The sequence {ox}r.4 has properties (a)-(c) of the Lemma. Indeed,
property (b) is a consequence of (II) and (TIL), property (e) follows from
(I) and (IV). .
Since o = D,,; implies k< j, we have card oy = card Dpn ;> izk
Having the sequence {ox}r.s of finite sebs for which card o; > k, We can
reorder it so that the new sequence satisfies condition (e).

COROLLARY 4.7. Under the assumplion of Lemma 4.6 there evists
a non-nuclear submatriz [mq] of the matriv [am ], & sequence of indices ky
Sfor which knyp1 = ko2 ny and MEM [dpnlnnesr Such thai 1" [amn] is iso-
morphic 10 T ({dnx]; Ik,)-

Proof. Let us pub dmx = miam,, and %, = cardo,. Define [a.m nl

as a submatrix congisting of all a,,,,n Wl’nh meoy for some k. The required
isomorphism is provided by the properties (a), (b) and (¢) of Lemma 4.6.
Now we are ready to prove Theorem 4.1.
Let [@mn] e a non-nueclear M.K.M. By Lemma 4.2, there exists
a non-nuclear submatrix [a,,, »] such that amn # 0 for m, net". Since
[am,n] is non-nuclear, there exists an m, sueh that

’
G

=oco for m >mg.
am,,n -

Hence, by Lemma 4.3, it is enough to prove Theorem 4.1 under
the assumption of Lemma 4.4. But then [an.] satisties 1° or 20,

First, assume that [@m ] has a submatrix [Bun,n] such that bpn < Mm
for m = 1,2, ... If s0, then ¥ [by, ] is isomorphic to I". On the other hand,
P(lemnl; l?,i [" Where Omg =1 for m, ne#". This implies the assertion -
of Theorem 4.1.

Now, assume that [an,] satisfies 2°. Then [am’ﬁ] has a submatrix
with properties of Lemma 4.6. Applying Corollary 4.7 we get the proof.

5. The main results. The considerations of the preceding sections
lead to the following theorem:

THEOREM 5.1. There exisis a conditional basis in each non-nuclear
Kithe space T [Gmn].

Proof. By Theorem 4.1, the problem is reduced to the case of non-
nuclear space I ([Dmnl; hny), Where [bmn] is M.K.M and {E)nes 18
a sequence of indices such that k(n--1) > k() = n.

Indeed, Theorem 4.1 implies that the space’ T [tm,] is 2 direct sum

-of a space isomorphic 10 P([bmal; lem) and the space P [dm ), Where

[dm,n] is MEM.

r
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Tor each k let {ef ’f=1 be a basis in the space I with the basis constant
less than €, and the unconditional basis constant greater than ¢,k
The existence of positive constants €, €; and « universal for all % ig
provided by Corollary 3.5.

Now, define a basis in the space.I” ([by,n]; i) by
where ¢ <

k(n)+1, k(m-+1),

and let .
0, 0™ 0,0, ...

The sequence {d;};., is a basis, since all the basis constants of
{f™}%™ are uniformly bounded by C,. ;

Let P;, be a projection in the space Uy with [P, [ = $0,[k(n)]*
(compare the definition of unconditional basis constant). If the basis

{d;}s.s is unconditional, then the operator @ P,, is continuous in & ([by,,];

lkm), and this, by Proposition 2.2, contra,dlcts the non-nuclearity of
P([bm,n]; %). This completes the proof

As a consequence of Theorem 5.1 we get two further results.

COROLLARY 5.2. If all bases of a Fréchet space X with a basis are abso-
lute, then X is nuclear.

Proof. If a basis {eu}n.s in a Fréchet space X is absolute, then X
ig isomorphic with some Kothe space I'[am ). Now, Corollary 4 follows
from Theorem. 5.1.

CoROLLARY 5.3. If all bases of a countably-Hilbert space X with a basis
are unconditional, then X is nuclear.

Proof. Let {€:}u.s be an unconditional basis of X and let {||- Hm}mw
be a monotone system of Hilbertian pseudonorms on X.

Let us denote by 7°°-the group of all. complex sequences & = {e;}nesy
lenl = 1, with coordinatewise multiplication as a group operation and
'l‘yehonoff product topology. Then 7 is a compact topological group.

Since the basis {e,} is unconditional, for each m there exist My > m
and positive eonsmnt K guch that ‘

T = Ztn(m)en

Ne=]

for each zeX,
and for each sequence {e,}eT the inequality

(5.1)
holds.

|3 evta @)l < K,

icm
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To each eeT We can now assign a linear bounded operator 4, on X
defined by

0

2 antn(m) én.

N=1

A (x) =

Since 7™ is a group, by (5.1) we obtain that for each m there exist

my and my (m < my << m,) and positive econstants K, and K, such that -

(5.2) ol < Ky llde (2) ]y <

for each weX and eeT™.

It is not difficult to verify that the correspondence (e, z) -> A4, (x)
is & continuous function of & and #. Therefore we can define a new system
of pseudonorms {|||:||[m}mesr Putting

(5.3) [l = Ti 14, ()| de

(integration with respect to the normalized Haar meagure on 7).
By 5.3 we obtain

2l <

X,
= e, < - Wl
Therefore the new system of pseudonorms is equivalent to the previous
one. It is also evident that for the new pseudonorms the parallelogram

equality is valid, and hence they are Hilbertian.

By invariancy of the Haar measure, we have ||[4.2|||m = |||#|||m
for each x, ¢ and m.
Hence [|lex+ éjlllm = |llee—€j]||m for each j, & and m. Therefore for

j # &k and each m

1 )
(6xy 6)m = 7 (lext eilllm— |ller— &) [7) = 0,

and so we have
el = 3 it (@) el

Thus the correspondence # — {fi(#)}r.s gives an isomorphism of
X onto U[amn], Where Gmn = |||en||m
Since X is isomorphic to I*[am,] by Theorem 5.1, it is nuclear.
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A remark on (s, t)-absolutely summing
operators in L,-spaces :
by

NICOLE TOMCZAK (Warszawa)

In this paper we prove a.theorem on the composition of the p-absolu-
tely summing and (s, t)-absolutely summing operators which is a gener-
alization of a theorem proved by Pietsch (see [7]) concerning the compo-
gition of p-absolutely summing operators. The proof of the theorem
follows Pietsch’s proof. '

As an application of this theorem we prove that for some class of
spaces the ideals of (s, ¢)-absolutely summing operators have properties
quite analogous to fthose of idealy of (s, t)-absolutely summing operators
in a Hilbert space provided 1/t—1/s = } and ¢ < 2. The proof is quite
analogous to that of the theorem stating that A,,(, X)ed(l, X) if
r<<2 (see [b]). )

Definition. Let X and ¥ be Banach spaces, let T<B(X, ¥) and
let 1<g<p<<co. Put

apa(T) = it {0 (1T} < O sup (X [ (@) [7)12
. 4 <1
for meX,i=1,...,m and n =1,2,...}.

An operator T is said to be (p, g)-absolutely summing (T edpq(X, X))
i apg(T) < oo oo :

It turns out that A,.(X, ¥) with the norm a,,(:) is the Banach
ideal. : ‘

Prorosrrion. Let X, ¥ and Z be Banach spaces, Tedpy(X, T) t‘md
Sedy (¥, Z). Then the operator ST <B(X, Z) is (1, q)~absolutely summing,
where . . .

z +—-<1
r

RS
«-!)—‘

Ry |
N
R
|-

and a,o(8T) < 54(8) app (T).

Studia Mathematica XXXV.1
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