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COROLLARY 1. Let X be an &, -space (see [6]). Let L <7 <2, 1<p <2
Then for every Banach space Y we have

A, (X, ) =A4,,X,Y), where 1/ry = 1jr—1/2.

rl,
This corollary is a special case of the Theorem, since %, is a subspace
of %, (p) for some measure u (see [6], Section 7).
COROLLARY 2. Let 1< 72 ond 1 <p <
space Y we have

2. Then for every Banach

Ar,l(lln Y) = Ar1,2 (lm Y)1
Ay (Lp(0, 1), X) = A, (L, (0, 1), T),
where Lfry = 1/r—4%.

Definition. We denote by H, the sp,,uce of Lebusgue -integrable
functions on the circle such that

[e™f(tydas =0 form=1,2,...
(see [3]).
COROLLARY 3. Lot 1 <7< 2 and let Y be an arbitrary Banach space.
Then
1 1 1
Ary (Hyy ¥ Ah,z(ﬂl; Y), where ;; =TTy

"I wish to thank Professor A. Pelezyniski for the inspiration of the
problem and for his kind advices.

References

[1] -M..M. Day; Normed linear spaces, Berlin- 1958.

[2] A. Grothendieck, Résumé de la théorie métrique des produils tensoriels topo-

. - logigues, Bol. Soc. Matem. Sao Paulo 8 (1956), p. 1-79.

{38] K. Hoffman, Banach spaces of analytic functions, Now Jorsoy 1962.

[41 S. Kwapmn, Some remarks on (p q)-summing operators in lp-spaces, Studia
Math. 28 (1968), p. 327-337.

[81 — A remark on p-absolutely swmming operators in l.-spaces, 1bu101u 34 (1900),

< .p. 109-111.

[6] J. Lindenstrausi and A Peloayiinki, Absolutely summing apemtow W
Ly-spaces and their applications, ibidem 29 (1968), p. 276-325.

[7] A. Pietsch, dbsolut p-summierende Abbildungen in normierten Réwmen, ibidem
28 (1967), p. 333-353.

Regu par la Rédaction le 4. 4. 1969

icm°®

STUDIA MATHEMATICA, T. XXXV. (1970)

The estimation of an integral
arising in multiplier transformations
by

ELIAS M. STEIN (Princeton) and STEPHEN WAINGER (Wisconsin)

The aim of this note is to prove the following general estimate:
THEOREM. Let a) < 5 < ... < a, be fized non-negative real numbers
and let by, ...,

b, be real numbers. Then
2 A a dz
{ [ exp (ol + 0o+ B[]} S| < K, 0, 0a),

where K does not depend on by, bsy ...y by

(The integral is defined by integrating over &< |z| <
letting B — co and ¢ —0.)

For fixed real a the symbol [#]* may stand for either |»|* or sgnax |2|®

The proof of the Theorem is based on the following Lemma of Van
der -Corput:

LeMuA 1. Let f(t) be a real-valued differentiable function on u <t << 0.
Suppose f'(f) is monotonic and that |f'(f)] >21 >0 for u<t<v. Then

R and then

]f exp[if(H)]dt < 1/A.

_For the proof of Lemma 1, see [3], p. 197.
To apply Van Der Corput’s Lemma, it is necessary to obtain estimates
on the measure of the set on which an expression of the form

(1.1) g(x) = d a1+ d, a2 ..+

Cm—1 “n
% +z

is small.

LEMMA 2. Let g(x) be defined by (1.1) with d; veal and ¢; = 0. Assume
further that ¢; > ¢;_;+1,2 <j< m, and that oy > 1. Then the graph of
g () for 1 < < oo consists of » intervals {Ir} on each side of which g(x)
is monotonic. On each of the intervals Iy, &k =1,...,7, |g(®) =1 except
on a subinterval of length at most py; and what is most important v and the
numbers py, may be chosen $o as nof to depend on the numbers dy, dyy ...y Gy
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~ 'We ghall first show that the Theorem, follows from Lemmas 1 and 2.
It is easy to show that the integral of our theorem exists for any particular
choice of by, ..., b, Hence it suffices to show

d
(1.2) [ exp{i(h;[w]+...+ Dy [m]a'”)}”‘} K k(ay ...y an),
R

LEIES

where % does not depend on the '8, & or R. We shall show (1.2) by
induction on n. For n = 1 this is done by a change of variables. We now
assume (1.2) holds for all integers less than n, and we shall prove (1.2).
For all combinations of the b’s for which b, = 0, we have (1.2) by the
inductive hypothesis. If b, s 0, we may assume b, =1, and a; > a;_;+1
forj = 2, ..., n and a; > 2 (perhaps changing & and ) by making a change
of varmbles ly|f = byl 2|™ with § large. Now Lemma 1, Lemma 2, and
an integration by parts show that the contribution from the mtervals
1< |z| < R to the integral of (1.2) is uniformly bounded. Since b, = 1,
we have expib, |#|"»= 14-0(|2|™). Thus the interval & <z <1 contributes
to the integral of (1.2) a term which can be handled by the inductive
hypothesis plus a bounded term.
To prove Lemma 2, we shall need an additional lemma,.

Lmyma 3. Let g(x) be defined by (1.1), with some of the o¢; possibly
negative. Then g(x) has at most n zeros for 0 < & < oo,

Proof. The proof is by induction on n. If n =1, the Lemma is
obvious. We wish to show that

g(x) = dlmcl—-}—...—i-d,

C C,
m—1 rm
1% +

has at most n- zeros. If g(#) had more than n zeros, so would @ g (x).
Hence by Rolle’s Theorem
o
@)

would have more than n—1 zeros contradicting the inductive hypothesis.

Proof of Lemma 2. By Lemma 3 the graph of ¢'(z) has at most »
zeros. Therefore the graph of g(z), 1< » < oo, can be divided 1"111‘.(.) m
intervals I on each of which g(#) is monotonic. On each Ij we consider
the operators

Dlg=— {w “g(@)}.
We know that
Dcm~1 Cyp—1 Dl‘m_l.—] L‘,m_ Dcz—-l ”lg(-ﬂ) i V

where y is a non-zero constant depending only on ¢, Gy v+ y Coe Ll

k(@) = Dm—1~1=m—2_ D=1~ D% g ().
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Thus Dm~'~‘m-1} () =y, which we shall assume without loss of
generality to be positive. Hence to finish the proof of Lemma 2 we must
show that if 1(2) = e;a+... 4-g,a' and if |DUz)| >y, >0, on an
interval J < [1, o], then the following conclusion holds: |i(z)| < 1 for
only a finite union of subintervals of J of finite length, and the number
of intervals and their lengths do not depend on ey, e,, vy €. We know
by Lémma 3 that J eonsists of a finite number of intervals on each of
which #~“I(») is monotonic. Suppose we take an interval I on which

#~“I{x) is inereasing. Let a and B be points in I such that I(e) >0 and
f >'a. Then

G l(ﬂ)ﬂ_ —Ha)a~
> f—-— {i(z)z™ "} da

2y(f—a).

So U(f) >1 it p—a> 1y, since a> 0 and # > 1. Similarly, if 6 < q,
and I(a) <0, 1(0)< —1 if a—d<<1fy. A similar argument applies if-
I(2) is decreasing on I. Hence |I(»)] > 1 except for a finite union of inter-
vals of bounded length.

We would like to thank N. Riviere and W. Rudin for helpful dis-
cussions.

REMARK

The above wag written in August 1967. The result presented
probably now deserves some further consideration because of its relation
to certain singular integrals which have recently attracted attention. The
connection of the estimate with which this paper deals to singular
integrals was pointed out.to us by N. Riviére. Applications to singular
integrals require two related additional estimates which may also be
obtained by our method. They are:

(a) ‘ f e(ip* (x)sgna) d?m’gK,

where p*(x) = [#]"P, (loglz|)+...+ [#]*Py(log|x]), ar,...,a are as in
our theorem, and the P, are polynomials. K depends on ay, ..., a and

the degrees of P, ..., Py, but K does not depend on the coefficients of
the P, k3

o0 -

d:
(b) | [ elino) | < mroeuipy  ass o,

—00"

where f is the highest order coefficient in Py.
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To prove (a) one needs an appropria iate analogue of Lemma 2. Thm
may be obtamed by our proof of Lemma 2 if we use not only our D
but also D} and D}, where
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d d d g(z)

dz  do dw a*

for « sufficiently large. This proves a generalized form. of Lemma 2 it
a;j— a;_, i8 sufficiently large. Hence we have (a) if a;—a;. 1 is sufficiently

large, and this is no loss of generality.
(b) follows by & change of variables, Lemma 1, and the o'enemlwed

form of Lemma 2.
Rivitre proved the following theorem from these estimates:
Let k(x) be a function on A" such that
k(T2) = A" (),
where T, = ¢™” is a one-parameter semi-group of n X n matrices with
infinitesimal generator p. Assume the eigenvalues of p are real and positive.
Suppose & is odd and loecally in I' away from 0 or

[k(z)do =0 and [|k(w) log"|k(x) do < oo,
3 2

where 2 is a “gphere” related to the symmetry T;. (See [2], section 3,
for the precise definition.) ‘
Then for f in I*(E") and

Urf= [ k@fy—o)dw, |U.rfla<Alfls
elz|<R

and U,z tends in I, to a function Uf. Moreover,

1Tflls < AN flle-

For odd % this theorem was proved by taking the Fourier Transform
of the kernel k, introducing an appropriate gemeralization of polar co-
ordinates and fo]lowmg the general approach of Calderén and Zygmund [1].
The case of even % is then proved by using generalized Riesz transforms.
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