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1. Introduction. A famous result of Prohorov [8] states that if X
is a Polish space, and M. (X) the space of probability measures on X
provided with the topology of weak convergence, then the relatively
compact subsets of ML (X) are precisely the tight ones. Independently
of each other, P. A. Meyer and L. Schwartz remarked that tightness
implies relative compactness even in the general setting of a Hausdorff
space X and the space of tight probability measures (private commu-
nications). The method consisted in reduction to the compact case. From
counterexamples in Varadarajan [9] and Fernique [4] it is known that
tightness is not a mnecessary condition for relative compactness to hold.

It is the main aim of this paper to characterize the compact subsets
of M, (X) in general situations. The basic tool is Theorem 1 on extension
of a content to a measure. This result is easily derived from the ideas
contained in the proof of Theorem 1.2 in Kisyriski’s paper [7]; in spite
of this we shall include a full proof.

Theorem 1 is also applied to derive some compactness results pre-
viously established in special cases by Dieudonné [2] and by Grothen-
dieck [5].

2. Definitions and terminology. A paving is & non-empty set consisting
of subsets of a given set X. For pavings we shall use a terminology resem-
bling that of P. A. Meyers; we illustrate this by some examples. =7 is
said to be a ({J £, () ¢)-paving if o is closed under finite unions and
countable intersections; if in addition @e o and Xe o we speak of -
a {0, X, Ut, N o)-paving. A (U ¢, C)-paving is the same as a o-field.
A (0, X, N1, U a)-paving is the same as a topology.

A paving o is said to be compact [semicompact] if every family [every
countable family] of sets in 4", which has the finite intersection property,
has a non-empty intersection.

A paving F is filtering to the left it FieF A FoeF = AFeF:
F < F,nF, It is filtering to the left and if F, = (") {F|F<F}, then
we express this notationally by writing # | F,. For pavings filtering to
the right we use the notation # 1} F,.
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A paving ¥ separaies points if to any pair x;, @, of distinet points
in X we can find a pair @y, @, of disjoint sets in # such that x, <@, and
xocly. G separates the sets in A if to any pair K,, K, of disjoint sets in
o, we can find a pair Gy, G, of disjoint sets in ¢ such that K; < G, and
K, c@G,. .

By a set function we shall here mean a non-negative, possibly infinite-
valued function defined on a paving. Let 8 be a set function defined on
the paving «/. In all the definitions given below we only require the
defining relations to holds when they make sense. § is monotone if
A, 4, = A, < BA4,. B is subadditive if f(4, U 4A,) < fA,+ f4, holds.
B is additive it A, N A, =0 = (A4, U 4,) = fA,+4,. f is modular
if Oe o, if pO =0, and if f(A; U 4A;)+B(4; N 4,) = f4,+ B4, holds.
A monotone set function p defined on & is o-smooth [r-smooth] with
respect to the paving A if (A < A) A (A countable [arbitrary]) A
AAHTLAY A (Age o) = A, = inf{fA| AK e #™*: A 2 K}, provided the
r.h.s. in this equation is finite. If @ e »7, and if we only require the last
relation to hold when 4, = @, then we say that g is o-smooth at O
[t-smooth at @] w.r. 1. A". If A = o in the lagt definitions, we obtain the
definitions of set functions which are o-smooth, -smooth, o-smooth at @
or T-smooth at @. § i3 said to be regular w. 7. 1. the paving A it # < « and
if fA =sup {fE| K < A A Keot'} holds. A finite p is tight it 4,2 A4,
=>sup{fA] 4 = A\4,} = f4;—p4,. B is a content it o is a (@, f,
M f}-paving and if § is finite, monotone, additive and subadditive.

A directed set is a set D with a transitive and reflexive relation < such
that any finite subset of D has a majorant. A net on X is a mapping of
a divected set into X. A net (#,),p on X is universal if, for every subset
A of X it is either true that z,c4, eventually- (ie. JpVa = ap: ,e4)

- or else we have z,eC A, eventually. Let (2,).., and (maﬁ)ﬁEE be two nets
on X such that the mapping 8 — a, of B into D satisfies the requirement
that, for any o,eD, we have ag = a,, eventually; then (maﬁ)ﬂeE is called
a subnet of (#,).p. Every net has a universal subnet. The reader may
wish to consult J. L. Kelley, General topology, for further comments on
the notion of nets.

By a fopological space we shall here mean a topological Hausdortt
space. A neb (#,),.p on 2 topological space X is said to be compagct if every
subnet has a further subnet which converges (or, equivalently, if every
universal subnet of (z,) converges). A subset 4 of X is called net-compact
if every net on 4 has a convergent subnet (or, equivalently, if every
universal net on.4 converges). In case X is a regular topological space,
A < X is net-compact if and only if 4 is relatively compact (Bourbaki [1],
chap. I, §10, ex. 1).

A topological space is called a, Gs-space if every closed set is a countable
intersection of open sets.
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In the main results, we shall consider an abstract set X provided
with two, pavings o and ¢. By & = #(A) we denote the smallest o-field
containing every set F < X for which K N Fe 4 VKA. D, (X) denotes
the set of finite, non-negative measures defined on #(x). M (X; X)
denotes the set of measures in 9, (X) which are regular w.r.t. .
M. (X5 o, 7) denotes the set of measures in Mk, (X; ") which are z-smooth
w.r. bt A )

In M. (X), two topologies, called the w-topology and the s-topology,
are of interest to wus.

The w-topology is defined as the weakest topology for which the
mapping u —> uX is continuous and all mappings u — puG are lower semi-
continuons for every G'«%. In other terms, if pe i, (X) and if (u,) is 2 net
on M, (X), then u, converges to u in the w-topology, and we write u, = Ly
if and only if w,X — uX and liminfu,G > u@VG<%.

The s-fopology is defined as the weakest topology for which all
mappings u — ud, where A<, are continuous. In other terms, if u
M, (X) andif (u,) is & net on M (X), then p, converges to u in the
s-topology, and we write u, Y u if and only if u,4 > puAVAA.

The following five axioms are important for the investigations we
are to carry out:

I o is a (@, U £, N ¢)-paving.
II. ¢ is a (@, U £, M f)-paving.
IIL. E\Ge X VEKe i, Ge¥.
IV. ¢ separate the sets in .
V. A is semicompact.
It is convenient to note the following easily established

LEanra. dssume that IV is satisfied. If pe —> p and if e Wy (X5 X)),

then we have
limsupp, E < pEVKe A .

Assume now that X is a topological space. Then we denote by 4 (X)s
F(X), ¥(X), and #(X) the pavings on X of compact sets, closed sets;
open sets, and Borel sets, respectively. We always have ﬂ(z’ X )) 2 #(X)
and, in most cases, equality holds (if X is a k-space, for instance if X
is lbca]ly compact or first countable, then equality holds). By Dt, (X)
we denote the space of finite non-negative measures defined on #(X).
The w-topology on M, (X) is defined via the paving #(X) and the
s-topology on M, (X) is defined via the paving #(X). The w-topology
on M, (X) is nothing but the familiar topology of weak convergence,
which is well-known in, say Polish spaces (see [8]); in that case, and in
others too, it is easy to prove that u, converges in the W-topolo_gy to
u it and only if u.(f) - u(f) for every bounded eontinuous function I
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neM, (X) is regular it p is regular w.r.t. F(X). ueM, (X) is tight
if p is regular w. r. t. # (X). The connection between tight measures
and tight set-functions will be clear from the results of the next section.
weM (X) is v-smooth if p is v-smooth w.r.t. F(X). By M, (X;7), M (X ;1),
and MM, (X;7) we denote the spaces of regular, tight and z-smooth
measures, respectively. A tight measure is regular and z-smooth. If X
is regular, then every z-smooth measure is regular. If X is analytical
(i.e. regular and continuous image of a Polish space), then every measure
ue, (X) is tight (see Hoffmann Jergemsen [6]). If X is a Gy-space,
then every measure is regular. If X is regular, then I, (X; 7) in its
w-topology is also regular. For further details and comments the reader
is referred to Varadarajan [9] or to a forthcoming work by the author
{Lecture notes in mathematics, vol. 133).

In the sequel, when we encounter pavings denoted by letters ., ¥
and &, we shall always assume that sets denoted by the letters K, @
and F are elements in &, 4 and &, respectively.

3. Counstruction of measures.
Lrywa 1. Let X be an abstract set, A a (@, U £, () f)}-paving on X
and 2 a finite set function on A". Assume that A is tight. We then have:
(i) A is monotone and modular.
(ii) If A is o-smooth at O [v-smooth at @), then A is o-smooth [z-smooth]
(ili) If the paving A is semi-compact [compact], then L is o-smooth
{7-smooth].

Pro of.-Clearly, 1 is monotone and A@ = 0. For any subset .4 of X
put ud = sup{iK| K = A}. Then u is an extension of 1 and u satisfies
w(ENKy) = pK;,—uK, VK, 2 K,. For any pair K,, K, of sets in P
we have u(K( U Ky)—puK, = p(E,\K,) = uK,—u(K, 0 K,), thus 2 is

modular. Assume now that 4 is o-smooth at & and let {K,},>; be a decreas-

ing sequence of sets in 4" such that K, = ﬂ K,eA'. To a givene> 0

1
choose K' < K,\K, such that 1K’ + 1K, > AK,—e. Then choose n such
thatl(KnnK)<a Now AR, = MK, U K )+A(K, N K)—AK <K, +
+&e—AE' € 1K +2¢ This argument shows that A is o¢-smooth. The
7-smooth tase is handled in the same way. The last assertion of the lemma
follows easily from (ii). O

TEROREM 1. Let X be an abstract set, A a (@, U £, () ¢]-paving on X
and L a tight conient on A which is o-smoolh at O. Thm A cam be extended
to a measure u (not wecessarily finite) such that 48 regular w.r.t. A
Furthermore, we can achieve that any set in B(A) is measurable (i.e. is
a member of the o-field ow which u is defined).
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Proof. For any subset 4 of X define ud by pAd = sup{iK| K < 4}.
u is an extension of A, 4 is monotone and for disjoint sets 4 and B we
have (4 U B) > ud+ uB. Consider the class
& ={B] uK = p(K N B)+pu(E\E)VEe X).

& is closed under complementation and & contains every set ¥
such that K N He A VEKe X

Let {E,},-, be a sequence of sets in &. Fix, for some time, Ke %"
and ¢ > 0. Choose K, <« K nE, and K, < E\E, such that

(1) uE < uE,+uK, +:27", #nzx1.
We claim that the inequality
n n
2) MU E) +4(N Ky} = AE—
1 8

270

HM:

holds for n > 1. (2) is true for = =1; therefore, in order to prove (2)
for all »>1, it is enough to establish the inequality

n+1 n+1 ™ . kid
MU E)+a(N E) =AU Ei)+ (N Ki)— 270+
1 1 1 1

for # = 1. By lemma 1, this inequality can be rewritten in the form
n n
}-K;L-;—l’*l(K;H»lm U K> MK, v ﬂ E;)—AK, ,— 270D

and in this form the mequahty follows from (1) and the fact that K, , N
N U K; and Kn+1 V] ﬂ K; are disjoint sets both contained in K.

By lemma 1, 2 1s o-smooth and it follows from (2) that, for =
sufficiently large, the inequality

(3) AU K§)+1(O K=
1
holds. On the one hand, it follows from (3) that
‘u(K N Ei)—l—,u(K\LIJ E’t) >
1

and, due to the freedom of choice of ¢ and K, it follows from this that

AK—2¢
AK —2e

Lmj E;c & On the other hand, it follows from (3) and the subadditivity
01'1' A that

Sﬂi’;—}— A(F:] E{) > 2K — 2¢;
we then see that - .

2 uBi+ p(ENY B)>iK
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holds for all He . Thus

o

o0
K< Llj B} < D) uB;.

X

,u((ol_j Ey) = sup {AK

The restriction of x to & has all the required properties. [

Theorem 1 implies that a tight content defined on # (X) where X
is a topological space can be extended to a tight measure on #(X); this
is the result proved by Kisyndski (Theorem 1.2 of [7]).

It is instructive to observe that Theorem 1 also contains the following
abstract extension theorem (Carathéodory’s theorem):

Let X be an abstract set, 7 o ({J 1,C)-paving on X (i.e. an algebra, and
u a finite, and additive set function defined on o such that u s o-smooth
at @; then u can be extended to o measure on o o).

To see this, we just have to define %" as the class of countable in-
tersections of sets in 7 and to define A on o by AK = inf{ud | K
< Ae o}

We have also proved a result of the same type as Theorem 1, but
based on a class of functions instead of a class of sets; this result contains
Daniell’s extension theorem in much the same way as Theorem 1 contains
Carathéodory’s thegrem. The proof is somewhat more technical than
the proof of Theorem 1, and we shall not present it here.

‘We shall now try to construct tight contents by “approximation
from outside”. ’

LeMya 2. Assume that (X, o, 9) satisfies the amioms L IT and 111,
and let v denote a monotone, additive and subadditive set-function defined
on G such that there to any Ke A exists o Ge% with G 2 K and v6 < oo.

Define the set function A on A by 1K =inf{(»@#| G2 K}; Ke.
Then we have

() If 2 is additive, then A is a tight content.

(i) If & separates the seis in , then A is additive.

(iii) If » is o-smooth at @ w.r.t. A [z-smooth at @ w.r.t. A", then
2 s o-smooth [1-smooth].

) Proof. 1 is finite, monotone and subadditive. Agsume that K, = K,
and let >0 be given. Choose G, = K, such that 16y < AK 46 Pub
K = K,\@,. Then Ke . T£ ¢ 2 K, then »6 > WG U Gy)—ofl, = AK,— 6,

=2 JE;—AK,— ¢ and it follows that AK > AK,~ JK,—e. What we have
proved is that

(4) K, 2 K, > sup{lK| K < K \K,} > lifl— AK,.

(i) follows from this. fact.
We omit the simple proof of ().
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To prove (iii) assume that » is, say 7-smooth at @ w. r. t. 2. It follows
that 1 is z-smooth at @. We shall prove from this that 1 is r-smooth.
Let #™ < A and assume that o™ |K, and that Kge#. Given &> 0,
choose G 2= K, such that »G < AK,+. By considering the eclass
{E*\G| E*c ™} we see that K* ¢ #™ can be chosen so that 1(E*\G) < «.
From (4) it follows that Ke.# can be chosen such that K< E* n@
and such that AK > AK*—A(K*\@)—e. It follows that A1K* < AK-+2¢
< vG+2: < AK,+3e This argument shows that 4 is ¢-smooth. The
o-smooth case is handled analogously. [J '

Remarks. We need not assume that ¢ is closed under finite in-
tersections for the proof of (i) and (iii).

‘We need not assume that » is additive for the proof of (i).

If o is a compact paving and if ¥ separates points, then ¥ separates
the sets in .

If » is modular, and if to any pair K', K" of disjoint sets in o
and to any positive ¢ there exists a pair &', G of sets in & such that
& 2 K', ¢ 2 K and such that »(@' () ¢”") < &, then 2 is additive.

THEOREM 2. Assume that (X, A, 9) satisfies the awioms I-IV. Let
v be a monotone, additive and subadditive set function defined on ¥ such that
to any Ke A there exists a Ge¥ with @ 2 K and »G < oo. Lastly, assume
that either A is a semicompact paving or élse v is c-smooth at @ w. r. 1. A .

. Then there ewists a largest measure p regular w.r.1. A such that uG
< vG VG <%. This measure is given by the formula
(5) pd =sup infy@, AeZ(X).
Ked G2E

If v is 7-smooth at @ w.r. 1. A, then the measure y will be v-smooth
wr.t. A

This result follows in a straightforward manner from lemmas 1,2
and Theorem 1 and we leave the details of the proof to the reader.

In case X is a topological space, we may apply Theorem 2 both
to the case where # = A (X), 9 = 4(X) and to the case where X~
= {f7(0)| f continuous and bounded}, ¥ = {C K| Kex}.

In case X is a normal topological space, & = F (X), and ¥ = Z(X),
we obtain another special case of Theorem 2.

TaEOREM 3. Let X be a regular topological space and v a finite,
monotone and modular set function defined on ¥ (X) such that v is r-smooth
at O wrt F(X).

Then there exists a largest measure p in M, (X;#) such that uG
< 1@YG % (X). This measure is given by the formula
(6) ud = sup infrG; AdeZ(X).

Fed GoF

Furthermore, ueM, (X;1).
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<
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Proof. Note that this result is confained in Theorem 2 ir case X

is normal.

Define 2 on #(X) by AF =inf{»@| ¢ =2 F}; By Lemma 2 and
Theorem 1 we only have to prove that A is additive in order to see,
that e M, (X; ), where u is defined by (6).

Let F, and F, be disjoint closed subsets of X and let e > 0 be given.
Consider the class consisting of all sets of the form I, (| F, where F;
and F, are closed, and where the inclusions F; 2 G, 2 F, and F, 2 G,
= F, hold for some pair G, G, of open sets. Since X is a regular space,
we find that this class filters downward toward the empty set. By the
assumption of T-smoothness we can thus find a set F; () F, in our class
and an open set @ containing F; () F, such that »(G) < & holds. This
implies that »(Gy () @) < & hold swhere ¢, and @, are open. sets chosen
such that P; 2 G, 2 F, and F, = G, = I, hold. According to the last
of the remarks to Lemma 2 it follows that A is additive.

Having seen that peWt, (X;z), it is easy to establish the first part
of the theorem. [

4. Compactness in the w-topology. We shall say that =7, dominates
o, and write o> o, f VAdye oA e oy A2 A,.

THEOREM 4. Assume that awioms I-V are satisfied omd consider the
space M, (X ; ) with the w-topology. Let (ty)ep be a net on M, (X; o).
Then (p,) is compact if and only if the following two conditions hold:

(i) Himsupu, X < co.

(il) For every subclass 9’ of % which dominates A we have

inf lim sup mm,ua(CG =0,

& a
where the nfimum is taken over all finite subclasses %' of 4.

Proof. Let us perhaps start to prove the more elementary part
of the Theorem viz. the “only if” part. For this part of the proof we need
not assume that the axioms I-V hold. We assume that (u,) is compact.
Then clearly (') must hold. If (ii) did not hold we would be able to flnd
¢'c ¢ with ¢' > # and > 0 such that to any pair (%", ), Whele g’
is a finite subfamlly of ' and feD there exists an element a(@",B)eD
such that (%", )= f and such that

mi%/‘a(@",,s)(c G)=e

Consider the net (,ua(g .)(@,5, Where we use the natural ordering
In the set of pairs (¢", ). This net is a subnet of (u,); therefore, it has
a convergent subnet. Assume for simplicity that the net (Ko, p) itself
converges, and denote the limit measure by 4. Then
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lim gy, X = pX = supuk
K

<sup inf u@,
E ESGyd’

<sup inf liminfu g Gy
K ES@yy

= sup inf {lmllta(g .5 X —lm sup prug 5 ( (C &)}
K ESGyd

<Im pygr X —e,

a contradiction. Thus (ii) must hold.

Now assume that (i) and (i) hold. Let (u,,)sz be a universal subnet
of (py)sp. Because of (i), lim,u,,ﬁA exists for all A< # (and is finite). Let
v: ¥ >R, be the set function »& = limu, &; Ge¥. Then » is monotone
and modular. According to Theorem 2, u: # — R, defined by

ud =sup inf»G; AeF
KECAG2K

is a measure in M, (X; &) and u<» on 4. To prove that ,u,,ﬁ—iv» 7
we need only prove that g, X — uX. If this were not so we would be
able to find &> 0 and a family (Gg)gey of sets in & such that Gg -
2 K VK e # and such that, for every Ke %, #a(C Gx) > ¢, eventually. If
we put @' {G’K] KeA), then ¢ > o, and we find that, for every
finite subfamily ¢ of ¢’ we have mm{ya C6)] Geg”} > ¢, eventually.
This is a contradiction. Thus s, I w0

COROLLARY 1. Assume that azioms I-V are saiisﬁed and let (Bg)uep
be a net on M, (X; o) such thet Emsupu, X < oo.

(i) If the “tightness condition”

inf limsup i, (C K) = 0
Kext™ o

holds, then (u,) 1s compact.
(i) If (u,) is compact and if A is a compact paving, then
inf Jim sup u,(C @) = 0
G @
holds for every subfamily ¥’ of ¢ with %'+ X. (If we do not assume that A
is compact, we obtain the same conclusion, but only for countable families &),
The simple proof is left to the reader.
COROLLARY 2. Assume that axioms 1-V are satisfied. Let & be a subset
of M (X; ") and consider the following properties:
(i) Z is net-compact, )
(i) suppX < oo,
i
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(i) V  inf supminu(C6@) =0,
FoA HICT P e

(iv) & is “tight?, i.e. inf sup u(C K) =0,
KeX~ pe?
(") V inf supu(C @) =0. ‘
PRS-

Then (1) is equivalent to (i) end (iii), (ii) and (iv) implies (i), and, in
case A is compact, (1) implies (v)..

Proof. Consider the net on M, (X; %) defined by the identity map
id: &# - #, where the domain of id is given the “diffuse” ordering
(s < pp for any pair of measures in £). O

As another corollary to Theorem 2 and the proof of Theorem 4 we
obtain the result that M, (X; ") in the w-topology is a Hausdorff space
when I-V are satisfied (if (z,) is a convergent universal net: u, = o, then
(#,) is compact and u, converges to the measure p from the proof of
Theorem 4. Clearly, ¢ < u holds and, since o(X) = u(X), we must have
¢ = pu).

Remarks. If we in condition (iii) of Corollary 2 only take subclasses
%" of ¢ consisting of one set into consideration, then the condition we
arrive at, in other words, the condition

(n V inf supu(C@) =0

G >H Q¥ pe?
is equivalent to tightnmess of #. Thiy easily follows from the fact that
peM (X;4) A Ke A = pK = inf{uG| G = K} (apply IV). In the case
of Varadarajan’s counterexample ([9], p. 225) one can prove that
Z <M (X; ) is net-compact if and only if sup{uX| pe P} < co and

(8) YV inf  supmin{u(C@,),s{Ca)} =0
G SH GG ued?
hold — and yet these conditions do not imply (7) (equivalent to tight-
ness).

In case X is a locally compact topological space or a complete metric
space (and o = #(X), 4 = ¢(X)), it is easy to see that net-com-
Pactness implies tightness (since, in these cases, (v) implies tightness).
) In Theorem 4 we need not assume that (u,) is a net on M, (X ) —
it is enough to consider a net on M, (X); then the conditions of the the-
orem are the necessary and sufficient conditions that every universal
5_1;1}‘)‘]‘161} of (u,) converge to a measure in M (X; ).

We shall now derive some compactness results in cage 4 is not
assumed to be semicompact. We compensate for the lack of this axiom
‘_by assuming that X e 2. In view of axioms IT and ITT , this new assumption
Is equivalent to the requirement that C Ge " YGe%.
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THEOREM b. Assume that amioms I-IV are satisfied, that X e &, and
that 1¢K = 3K : B' N K =@ A wcK'. Consider the space M, (X; A, 7)
with the w-topology and let (p.)uwp be a net on M, (X o, 7). Then (n.) is
compact ¢f and only if Limsup u, X < oo holds and, for every subclass
of A with '@, the relation

(9) inf limsup u, K =0
A Ee#’ a
holds. ‘

Proof. Assume first that (u,) is compact. Then limsuppu,X < oo
holds. Assume, for the purpose of an indirect proof, that there exist
o' }@ and & > 0 such that to any pair (K, f) with K< ¢ and feD there
exists o(K, B)eD with «(K, )= f and p.x s (K) > . Consider the net
(Huz, ). 0)1 where the set of pairs (K, §) is given the mnatural ordering.
This net is a subnet of (x,) and thus it has a convergent subnet. Assume
for simplicity thab (u.zx,g) itself converges, say #.x, s = p. Then we have

0 = inf uK,> inf limsupp,x K, > e,
Kot Ryet”
a contradiction. The “only if” part is now established.

Now assume that limgupu,X < oo holds, and that (9) holds
Vo' 8. We need an auxillary result and consider a fixed class o~ with
A" |@; define the class A as the class of those Ke 2 for which there
exists a G e and a K e # such that K262 K. Dueto IV and;’oheyadded
assumptions, we see that x 1@. To any &> 0 we can find Ke# such
that limsup‘uaI;’ < & Then we can also find Ke ' and Ge% with G 2 K
such that limsupu, G < e. This argument proves the following:

(10) V inf limsupp,G =0,
KL Gy
where @' is the class of those G containing some seb in .

Let (Ma,,);asE De an universal subnet of (u,)qp- Define the set fanction
y on @ by »G = limu, @; Ge#. Then » is finite, monotone, and modular.
Furthermore, it follows from (10) that » is z-smooth ab @ w.r.t. o Define
& by
pd =sup infr@; AeH.
KSd G2K
By Theorem 2, peM, (X; 4, 1) and p<» on 9. Since Xe F', we
find that uX =X = limu,, X. Thus g, = 0
As an easy consequence of Theorem 2 and the proof above we obtai.n
the result that under the hypothesis of Theorem 3, M (X, 1) is
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a Hausdortf space in the w-topology. It can also be proved without much
difficulty that M, (X; o), and therefore also MM (X; o7, 7) is a regular
space (for this we only need CGe o Y@ <¥ and axiom IV). The relatively
compact subsets of M, (X; #, v) are thus the same as the net-compact
subsets, and by Theorem 5 we find that, under the hypothesis of that
theorem, # & M. (X; &, 7) is relatively compact if and only if suppX

ne
< oo and

VY inf sup uK =0
HNO Bk ped

hold. This result has the interesting corollary that if # is relatively compact,
then co(#), the convex hull of 2, is relatively compact too. The corre-
sponding result for the situation considered in Theorem 4 does not follow
from that theorem and we wonder if it is true.

‘We shall now look into the case where X is assumed to be a topological
space. If 4" = #"(X) and ¥ = 4(X), Theorem 4 and its corollaries apply
directly. We can also apply Theorem 4 with o =% (X) and ¢
a(@,Uf,N f)-paving of open sets that separate points. Note that if
is assumed to separate points and closed sets in the (rather weak) sense
that z¢FeF (X) > AGe%: 2¢G A @ N F = @, then the w-topology in
M. (X; (X)) based on # and the w-topology in M. (X; 2 (X)) based
on %(X) coincide. This remark gives rise to various criteria for weak
convergence.

One application of Theorem 5 arises if X iy a topological space,
A ={ f(0)|f continuous and bounded}, ¥ = {CE| Ke#') (see The-
orem 25, p. 200, of [9]).

The obvious application of Theorem 5 consists in taking as X a normal
topological space and " = # (X), ¥ = #(X). However, one can generalize
the result thus obtained to a regular space. For this purpose we prove
the following: :

Leyma 3. Let X be a regular topological space and (Ua)aep @ mEL ON
M, (X). Then the following three conditions are equivalent:

(i) V inf hmsupyaﬁ' =0,
F\8 FeF'

(i) V inf limsupu,F =0,

FL6 FeF a
(ii}) V inf limsupu,@ = 0,
FBGg o

where 9' = {@<%(X)| @ =2 F for some Feg').
Proof. Clearly, (iil) = (ii) = (i). Now assume that (i) holds and let
F = F(X) satisty #'\0. Put F* = (F*<#(X)| F* 2 F for some FegF').
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Since X is regular, #*|@. Now

inf lim sup p,6 < inf limsup ,ualv; =0.
Geg’ Fegx

THEOREM 6. Let X be a regular topological space and consider M, (X; 7)
with the weak topology. Then a net (u,).p on M. (X; 1) is compact if and
only if imsupu, X < oo holds and the condition of “p-smoothness”,

inf limsup p, F = 0,
FeF

holds for every class #' < F(X) with #' 0.

The proof is based on the same ideas as in the proof of Theorem 5 —
we only appeal to Lemma 3 and to Theorem 3 instead of Theorem 2.

The condition in Theorem 6 seems more manageable than the
corresponding condition in the space M, (X;¢). Moreover, all non-
pathological spaces, for instance all locally compact spaces, all complete
metrizable spaces, and all analytical spaces are regular and satisfy
M, (X;7) =M, (X;1) so that Theorem 6 applies. It is easy to show
that the conditions given in Theorem 6 need not be sufficient for com-
pactness in the space M, (X;1¢) if M, (X;7) is not equal to M (X, 7).
We can even give an example where X is a separable metrizable space.
The idea to construet this example is this: Let X be a subset of R with
X =0 and 1*X =1 and construct a sequence ()n>1 0f probability
measures with finite support such that Mn& A". (A= Lebesque measure).

5. Compactness in the s-topology.

Most of the results of this section have recently been obtained inde-
pendantly and by different methods by P. Génssler: ,,Compaciness and
sequential compactness in spaces of measures”, to appear in Z. Wahrschein-
lichkeitstheorie verw. Geb.

TueorEM 7 (compare with Grothendieck [5], Théoréme 2). Let X
be an abstract space and assume that axioms I-V are satisfied. Consider the
space M, (X5 A7) with the s-topology amd let (uy)sp be a net on M (X ; A7)
with Jimsup p, X < oo. Then the following four conditions are equivalent:

(i) (ua) is compact;
(il) V inf limsup u,(G\K) =0, V inf limsupp,(ANK) = 0;

K (2K AeF K4
(i) V inf limsup g,(@\K) = 0, inf limsup p(CE) = 0;
K ¢2K K
(iv) V inf limsup u,(G\E) = 0, (u,) is compact in the w-topology.

K G2K
Proof. (i) = (ii): Both properties in (ii) are proved indirectly in
a rather straightforward manner, and we leave the details to the reader.
Clearly, (i) = (iii) = (iv)-
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(iv) = (i): Let (,u,,i) be a wuniversal subnet of (y,). Define: »@

—hmyuﬁ G<¥ and ,uA = sup inf+G; Ae%. Then ue, (X; o). For
KA GRE

any K we have

uE = inf limp, @ = inf (lim g, K +limp, (GNEK)) =limp, K.
62K 7" gox 4 4

Then we have

ud =sup pK = sup Lim g, E<limpy, ﬂA
K4
for any A< . Since (u,) is compact in the W~t0pology we also have
pX =limp, X. Therefore, for any A < %, we find

pd =pX—p(CA) = lim,uaﬂX—lilnugﬂ(CA) = limp, A.

We now conclude that ud =limu, AVAeZ O

Remark. If we also assume that CEe% YV Ke X, then (i) in The-
orem 7 is equivalent to the condition

Y inf limsupu,(G\E) = 0.
¢ KC@

Remark. If we change the assumptions of Theorem 7 to those of
Theorem 5 and if we consider the space M, (X; o, v) with the s-topology,
then the four conditions of Theorem 7 are still equivalent. The same remark
applies if we change the assumptions to those of Theorem 6 and consider
M, (X; 7) with the s-topology. .

LevmA 4. Assume again that axioms I-V hold, and consider the space
M, (X; A") with the s-topology. Then a subset # < M, (X; A7) is relatively
compact if and only if the following three conditions hold:

(i) suppX << co.
e
(ii) 2 is net-compact in the w-topology.
(iii) For any sequence (G,),=1 of pairwise disjoint sets in % we have

lim supp@, = 0.
n—>0 ue?

Proof. First remark that we may speak of relative compactness
instead of net-compactness since any space of measures is regular in the
s-topology.

Assume now that £ is relatively compact. Then (i) and (ii) hold.
It (iii) failed we would be able to find & sequence (G,),, of pairwise disjoint
sets, a sequence (u,),, of measures in &, and an & > 0 such that u,G, > ¢
holds for all n> 1. Extract from (u,) & convergent submnet, say Hn, 2

icm°®
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Since p, G = u@, VE =1 and g, (U 6) »p{J G), we find that
2 ltin G G 0.
k=1

Choose k, such that uGy < £/2 Vk>k,. Then choose o such that
o0 N
D |0 Gr— 6] < ¢/2 and such that n,>%k,. We have
1

UGy < on, Ony— Gy |+ 1y, Z | Gr— 0G|+ pGn, < &,
1
a confradiction. Thus (iii) must hold.

We shall now prove the more interesting part of the result and assume
that (i) (ii) and (iii) hold. Due to the equivalence of (i) and (iv) in The-
orem 7, all we have to prove is that

V inf sup w(G\K) = 0.

K G2K pe?
It this did not hold we would be able to find K, o and ¢ > 0 such
that )
' V. A u(@NEy) > e.
GRE, pe® )
Consider any set @ 2 E,. Select pe? such that p(GN\K,) > s
Choose K © G'\K, such that uK > e We can find 6" = K, and G 2 K
such that @’ n G = @. We can then repeat the argument using ¢’ 2 K,
as starting point. Since 2 < ¥ it is easy to start the process; we can now
see that there exist a decreasing sequence (G,),-; with @, 2 K, ¥» and
a sequence (u,),»; of measures in 2, and a sequence (G,),»; such that
G, < GG, and 1,G,, > &; n > 1. Clearly, this contradicts condition (iii).
THEOREM 8. (compare with Grothendieck [5], Théoréme 2). Assume
that azioms I-V hold, and that, furthermore, the condition

(11) Ec6=36¢,¢": E=c@cCq'c@

s satisfied.

Consider the space W, (X; ) with the s-topology. Then a subset &
of M, (X ; ) is relatively compact if and only if the following two conditions
are satisfied: ‘

(i) suppuX << oco.

neP
(i) For every sequence (G,)n=, of pairwise disjoint sets in & we have
lim sup uG, = 0.
n—soa peP

Proof. In view of Lemma 4 we need only prove that (i) and (ii)

imply that £ is net-compact in the w-topology. ‘We prove this by proving

Studia Mathematica XXXVI.3 3
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that # is “ight”. If this were not so, we could find &> 0 such that
VE Jue?: u(CK) > e Choose a sequence (s,),», of positive numbers

such that Z’ &, < &2,

We clalm that we can construct a sequence (K,),., of sets in o,
two sequences (G),>; and (G, ), of sets in %, and a sequence (u,)
of measures in & such that (a)-(f) below hold:

(a) the K,’s are pairwise disjoint,

D) K, zeV¥n=1,

(¢) G, 2 K, Vn=1,

n—-1
(@G =2U K, Vn=1
0

() @,0E =06 VYn>1,
163) sup,u(C(G,'[ VE))<e Vn>1

n2>1

We start the construction by taking as K, any set in ¥ (K, =0
will do).

Assume now, for some 7 >0, that K; for 0 <i< n, that G; for
L<i< n, that @; for 1< ¢ < », and that wlorl<ig n are constructed

50 that the relevant parts of (a)-(f) are satisfied. Since U K;e A, we can
0

. . . n
find p,.\e? with u,,, (C(U K;)) > e. Choose K,,, = C(L") K, such

that u,.,K,. > e By what was proved in Lemma 4, we can find G,LJrl
2 K,,, such that sup{;z(Gnﬂ\K,mL Mpe?t<e,,,. By axiom IV we

may and do assume that G 1 O U EK; = @. Choose, aceording to (11)
G, ., and G, ., such that -

r s ~
K. 16, CGn+1 S Gp

We see that the relevant pazrts of (a)-(f) continue to hold when we

take K, .1, pyy, Gryy and G, into ; - .
thus esta,bhsﬁ (;) ("51 1 consideration. By induction we

Define the sequence (@ w1 DY G =@, 6, =@, A ﬂ G nx=2.

For n < m we find that G.nG, =@ NG =0 so that the G,'s - are
pairwise dlsgomt We now cary out the following calculations, noting
that @, = C( U Ky):

, n—1
:unGn = l‘nGn—l"n(G;,\ ﬂ G;,)
1
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Bl ey
/"’n(LIJ (CG'L N Gn))

n—1
> o= Cl67 v &)

- 3wl o )

Since u,G,>¢/2 Yn>1 we arrive at a contradiction with con-
dition (ii). O

A similar remark as the second remark to Theorem 7 applies to
Theorem 8.

COROLLARY 3 (compare with Dieudonné [2], Proposition 8). Assume
that axioms I-V are satisfied, that ¥ is closed under countable unions, and
that condition (11) from Theorem 8 holds. Let (u,),>, be a sequence on
M, (X; o) and assume that lim p, @ ewists for every Ge%. Then there exmists

n—o0

a measure pe M, (X; A} such that u, 3

Proof. Due to (11), X% and we see that (i) Theorem 8 holds. To
establish (i), Theorem 8 is esgentially equivalent to proving that the
result holds in case X is countable and ¢ = D(X); the main fact needed
in order to prove this is contained in a result of Nikodym (see IIT, 7.4
of [3]). Having seen that (u,),, is compact, it is easy to see that (u,)
converges since any two limit measures agree on the sets in ¢ — and
therefore on all sets in Z. [J

The idea to prove this corollary by establishing = resulf like Theo-
rem 8 is due to Grothendieck.

‘We shall leave it to the reader to see what comes out of the results
in this section in case X is a topological space.

Remark. Throughout this section we have worked with non-negative
measures and not, as is perhaps. more proper, with signed measures.
To indicate briefly how the general case can be handled, we mention the
following result: Assume that axioms I-V are fulfilled and let & <
M (X, ) be given satisfying sup{|ul(X)| pe £} < co (that we may
assume this, is well-known allthough not entirely trivial). Then the follow-
ing conditions are all equivalent:

(i) # is relatively compact (in the s-fopology);
(i) for every sequence (H,),; of pairwise disjoint sets in & we have

lim sup |l (H,) =

n->00 P
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(i) VK inf sup|p/(G\K) = 0 and VAeZinf sup|u|(ANK) = 0.
G2 pef ESd ped
To prove this, one proves the implications (i) = (ii) = (iii) = (i).
The ideas involved in the proof are either contained in this section or
else well-known. from other sources.
I do not know if the compactness results for nets on M, (...) generalize
to mets on M(...). :
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On isometries of normed linear spaces
by

D. KOEHLER (Oxford) and PETER ROSENTHATL* (Toronto) -

1. Introduction. Fixman [2] showed that it was not possible to
develop a general spectral theory for invertible isometries on an arbitrary
Banach space. The purpose of this note is to obtfain a simple charac-
terization of the isomefries on a normed linear space (real or complex),
in terms of semi-inner products. This is then used to show that eigen-
vectors corresponding to distinet eigenvalues of an isometry are “orthog-
onal”, and to establish some facts about the point spectrum of isometries.
In some minor respects, invertible isometries have spectral behavior
like unitary operators on Hilbert space. Also, conditions are found that
are necessary and sufficient for a given operator on a normed linear space
t0 be equivalent to an isometry on an equivalent normed linear
space.

Lumer [8] has shown that in any normed linear space X, one can
construet a semi-inner-product [+, -] (there may be more than one), i.e.,
a mapping from X X X into C such that

) [z, 2] = lelf

(i) [az+by,2] = al=,2]+bly, 2],

(i) [, y1i* < o, #1-1y, ¥].

Giles has shown ([3], p. 437) that it is always possible to choose
a semi-inner-product sueh that

(iv) [z, ay] = al=,y].

We shall assume for the rest of the paper that all semi-inner-products
satisfy (iv).

We shall follow James [6] in saying that # is orthogonal to y if ||z|f
< |lg+ay] for all scalars a.
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