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(i) VK inf sup|p/(G\K) = 0 and VAeZinf sup|u|(ANK) = 0.
G2 pef ESd ped
To prove this, one proves the implications (i) = (ii) = (iii) = (i).
The ideas involved in the proof are either contained in this section or
else well-known. from other sources.
I do not know if the compactness results for nets on M, (...) generalize
to mets on M(...). :
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On isometries of normed linear spaces
by

D. KOEHLER (Oxford) and PETER ROSENTHATL* (Toronto) -

1. Introduction. Fixman [2] showed that it was not possible to
develop a general spectral theory for invertible isometries on an arbitrary
Banach space. The purpose of this note is to obtfain a simple charac-
terization of the isomefries on a normed linear space (real or complex),
in terms of semi-inner products. This is then used to show that eigen-
vectors corresponding to distinet eigenvalues of an isometry are “orthog-
onal”, and to establish some facts about the point spectrum of isometries.
In some minor respects, invertible isometries have spectral behavior
like unitary operators on Hilbert space. Also, conditions are found that
are necessary and sufficient for a given operator on a normed linear space
t0 be equivalent to an isometry on an equivalent normed linear
space.

Lumer [8] has shown that in any normed linear space X, one can
construet a semi-inner-product [+, -] (there may be more than one), i.e.,
a mapping from X X X into C such that

) [z, 2] = lelf

(i) [az+by,2] = al=,2]+bly, 2],

(i) [, y1i* < o, #1-1y, ¥].

Giles has shown ([3], p. 437) that it is always possible to choose
a semi-inner-product sueh that

(iv) [z, ay] = al=,y].

We shall assume for the rest of the paper that all semi-inner-products
satisfy (iv).

We shall follow James [6] in saying that # is orthogonal to y if ||z|f
< |lg+ay] for all scalars a.

* Part of the research by the first author was performed at the U.S.A. F.
Aerospace Research Laboratories while in the capacity of an: Ohio State University
Research Foundation Visiting Research Associate under Contract F 33615 67 C 1758.

The research of the second author was partially supported by a grant from
the National Research Council of Canada.
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2. A characterization of isometries.

TEEOREM 1. Let X be a normed linear space (real or complex) and let
U be an operator mapping X into iiself. Then U is an isomeiry if and only
if there is a semi-inner-product [-, -] such that [Uz, Uy] = [=@, y] for all
z and .

Proof. The proof is similar to a proof given by Sz.-Nagy [9] for
a related theorem (see Theorem 2, below) in the case of Hilbert space.
The sufficiency is clear. T'o see the necessity, let [-, -] be any semi-inner-
product on X. Then observe that {{U"z, U y]}., is a bounded sequence
of complex numbers for each fixed « and y, (since |[U"z, U"y]|
< U= | U y]| = |l=)|ly])- Let Lim be a Banach limit on I, i.e.,, a linear
functional of norm 1 such that Lim{i,1,1,...} =1 and Lim{s,}
= Lim{m,,,} (see [1]). Now define

[[z, ¥]] = Lim{{ T 2, U"yT}.

If is easy to see that [[-, -] is & semi-inner-product that génerates
the given norm. Further, the translation invariance of Lim gives

[Tz, Uy]] = Lim{[U"* 2, U"*'y]} = Lim{[T"%, U"y]} = [[o, y]].

Stampfli [10] has called an invertible operator U on a Banach space
X iso-abelian if there exists a semi-inner-product [-, -] such that [Usw,y]
= [z, Tyl

CoROLLARY 1. U is iso-abelian if and only if it is an invertible isometry,

Proof. Iso-abelian operators are isometric, as Stampfli observes.
Conversely, if U is isometric choose a semi-inner product that is preserved
by U. Then, it Uz =y, [Uz,y] =[Us, Usz] = [&, 2] = [z, U y].

CoroLLARY 2. If X 4s smooth, then U is an isometry if and only if
it preserves the semi-inner-product on X.

Proof. If X is smooth, then it has a unique semi-inner-product.

Corollary 2 appears in [7]. .

TeeoREM 2. Let T' be an operator on a normed linear space X. Then T
s similar to an isometry on an equivalent normed linear space if and only
if there are constants 6 and M such that olla] < |T"| and | T < M for
all positive integers n and xeX.

Proof. Clearly, every operator similar to an isometry satisfies the
f:onditions. To see the converse, define |j|jz||| = Lim {|T"%|}, where Lim
is any Banach limit. It is easy to see that ||| ||| defines a norm equivalent
to | |l. Hence if we let § denote T considered as an operator on the vector
space X with norm [|] |{|, it follows that § is an isometry (because of the
translation invariance of Lim), and that § and 7 are similar.

The case of Theorem 2 where T is invertible is well-known (see [9]
and [4]), with proofs similar to ours.
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3. Point spectrum of isometries.

THEOREM 3. If U is am isometry, ¢ and f are eigenvectors corresponding
to distinct eigenvalues of U, and if [+, -] is any semi-inner-product preserved
by U, then [e,f]1 =[f,e] =0.

Proof. Let Ue = ae, Uf = ff. Then |a| = |f} =1, and af = a/f.
Now [e, f1 = [Ue, Uf] = (a/p}[e,f1. Since a/f 1, [¢,f1=0.

COROLLARY 3. Bigenvectors corresponding to distinet eigenvalues of
an isometry are mutually orthogonal.

Proof. Giles [3], p. 438, observes that [y, #] = 0 for any semi-inner-
product implies that |z iyl > ||z for all scalars A. Hence the result
follows immediately from Theorems 1 and 3.

THEOREM 4. A finite-dimensional eigenspace of an isometry has a com-
plement invariant under the isometry.

Proof. The proof is by induction on. the dimension of the eigenspace.
Let U be an isometry and let B, = {x: Uz = iz}.

Tf the dimension of E, is 1, let z, be a unit vector in &,. Choose
a semi-inner product preserved by U and let M = {&: [z, z,] =0}
Then M is the nullspace of a continuous linear functional and hence
is a complement of E,. Now if ze¢M, then [Uz, Uz} = [Uz, iw,]

= A[Us, z,], and also [Uz, Us,] = [, 2,] = 0. Hence Uze M.

Assume that the result is known when the dimension of the eigenspace
is n, and let E, have dimension’n+1. Choose a unit vector #, in E,. If
N = {&: [»; %,] =0}, then N is a complement of the subspace spanned
by @y, and ¥ is invariant under U (as in the case n = 1). Clearly, the
eigenspace of Uly corresponding to 4 is B, N N, and has dimension ».
By the inductive hypothesis H; N ¥ has a complement M in N which
is invariant under U. Then M is a complement of F, in the original
space. :

' The following corollary is known [4]:

COROLLARY 4. An isometry on a finite-dimensional normed linear
space is diagonable (i.e., the space has a basis consisting of eigenvectors of
the isometry).

Proof. It follows immediately from Theorem 4 that whenever U’
iy an isometry on a finite-dimensional space X, then X is a direct sum
of eigenspaces of U.

Stampfli {10] shows that the following result holds for adjoins-
abelian operators, and observes that his proof goes through for iso-abelian
operators %00. ) :

TemorEM 5. If U is an invertible isometry and A is an isolated point
of the spectrum of U, then 1 is an eigenvalue and the eigenspace of U cor-
responding to A has an invariant complement.
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Proof. This follows from Stampfl’s work and our Corollary 1.
Theorems 4 and 5 suggest the possibility that every eigenspace ‘of an
isometry has an invariant complement. This holds for isometries of Hilbert
space, sinee every isometry of a Hilbert space is the direet sum of a unitary
operator and a unilateral shift (see [3]), but is apparently unknown for
isometries of arbitrary Banach spaces. )
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A characterization of multiplication
by the independent variable on %7

by

PETER ROSENTHAL (Toronto)

1. Introduction. One way of viewing the spectral theorem for Hermitian
operators on complex Hilbert spaces is: every Hermitian operator is
unitarily equivalent to a multiplication operator. This formulation of
the spectral theorem has been popularized by Halmos [2]. The essence
of the spectral theorem is then the statement that an operator A is
a Hermitian operator with a eyclic vector if and only if there is a compact
subset & of R and a finite measure u on & such that 4 is unitarily equiv-
alent to multiplication by the independent variable on £°(%, p). The
proof of this assertion in the case where A is an operator on a real Hilbert
space can proceed exactly as the proof of the complex case in [2] once
it is known that [g(4)] = supig(f)| for all (real) polynomials g.

tea(.d)

In this note we consider the problem of characterizing the operator
M, defined on #*(¥, u) (where & is a compact subset of B and 1< p
< oo) by

(M, f)(®) = zf (x) for fe L7,

That is, we find a necessary and sufficient condition that an operator
A on a Banach space be isometrically equivalent to I, on LS, 1)
Our proof will be very similar to the proof of the ecase p = 2 presented
in [2].

We give a similar characterization of multiplication by 2z on £?(¥, u)
where & is a compact subset of the complex plane.

2. Properties of M. Let s be a finite Borel measure on R with
compact support & and fix p, 1< p < co. We consider some properties
of the operator M, on &P (¥, u). We consider the real and complex
cases simultaneously unless otherwise specified.

Clearly o(M,) =&, and [g(M,)] = su;;]q(m)] for all polynomials g.

e

This means that the map ¢ —¢(M,) is an isometry from the polynomialé
(with sup norm) into the algebra of bounded operators on £ (with
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