Large squares and sets of analyticity in tensor algebras

by

D. L. SALINGER (Orsay)

1. Introduction. If X and Y are compact Hausdorff spaces, $V(X \times Y) = C(X) \otimes C(Y)$ will denote the projective tensor product of the Banach algebras C(X) and C(Y). $V(X \times Y)$ is a regular symmetric Banach algebra under the projective norm: for a detailed discussion of its definitions and elementary properties see [11]; a summary of them is to be found in [10]. If E is a closed subset of $X \times Y$, we define the closed ideal I(E) by

$$I(E) = \{ f \in V(X \times Y) : f(z) = 0 \text{ when } z \in E \}.$$

 $V(E) = V(X \times Y)/I(E)$ is the algebra of restrictions to E of functions of $V(X \times Y)$. If $V(E) \cong C(E)$, we call E a V-Helson set.

Let φ be a continuous complex-valued function defined on the interval [-1,1] of the real line. φ is said to operate on the algebra V(E) if $\varphi \circ f \in V(E)$ whenever $f \in V(E)$ has range in [-1,1]. E is called a set of analyticity (for the algebra $V(X \times Y)$) if any function operating on V(E) can be extended to an analytic function in a neighbourhood of [-1,1], i.e. E is a set of analyticity if "only the analytic functions" operate on V(E).

For a compact abelian group G, we define A(G) to be, as usual, the algebra of Gelfand (Fourier) transforms of $L^1(\hat{G})$, where \hat{G} is the dual group of G. If E is a compact subset of G, I(E) and A(E) are defined similarly to the respective cases above. If $A(E) \cong C(E)$, E is called a Helson set. E is a set of analyticity (for the algebra A(G)) if only the analytic functions operate on A(E).

The dichotomy conjecture (cf. [4], [6]) is that every compact subset of a compact abelian group which is not a Helson set should be a set of analyticity. We can pose the same question in the context of the tensor algebra $V(X \times Y)$ and there too the answer is not known, however the following combinatorial characterization of countable V-Helson sets suggests combinatorial sufficient conditions for sets to be sets of analyticity.

If X and Y are compact Hausdorff spaces and n is a positive integer, we call n-squares those subsets of $X \times Y$ of the form $S_n = X_n \times Y_n$, where $X_n \subset X$, $Y_n \subset Y$ and $|X_n| = |Y_n| = n$.

THEOREM 1.1 (Varopoulos [11], 6.4]). A countable closed subset $E \subset X \times Y$ is a V-Helson set if and only if there exists a positive integer λ such that $|E \cap S_n| < \lambda n$ for all n-squares S_n and for all positive integers n.

In this paper, we consider the case of the intersection of a sequence of n-squares $\{S_n\}_{n=1}^\infty$ with $E \subset X \times Y$, showing first that if $|E \cap S_n| = n^2$, then E is a set of analyticity. Then, by a combinatorial refinement we show that it is sufficient to have $|E \cap S_n| \ge n^{2-\epsilon_n}$, where $\epsilon_n \to 0$ as $n \to \infty$. For the remaining results we use the methods developed by Katznelson and Malliavin [5,6] to show that if $n|E \cap S_n|^{-1} \to 0$, then E is almost surely (with respect to a certain probability space) a set of analyticity. We also give similar results for a more specialised class of sets.

In conclusion, I would like to thank Dr. N. Th. Varopoulos for his extremely stimulating help and guidance. I want also to thank the S. R. C. and N. A. T. O. for their invaluable financial support.

2. LEMMA 2.1. Let X, Y be compact Hausdorff spaces and let E be a closed subset of $X \times Y$. Let E contain an n-square for every positive integer n.

Then E is a set of analyticity for the tensor algebra $V(X \times Y)$.

Proof. By T we shall denote the group of complex numbers with unit modulus, and by Z(n) the cyclic group of order n. We shall identify Z(n) with its embedding in T as the group of nth roots of unity.

It is known [2] that there exists a constant $\alpha > 0$ such that for any positive real number R > 0 there exists a real function $f \in A(T)$ with

$$||f||_{A(T)} < R$$
 and $||e^{if}||_{A(T)} > e^{aR}$.

Let $\varphi \in A^*(T)$ be such that $\|\varphi\|_{A^*} = 1$ and $|\langle e^{if}, \varphi \rangle| > e^{aR}$. By the method of Herz [7], there exists a sequence $(\varphi_n)_{n=1}^{\infty}$ of pseudomeasures $\varphi_n \in A^*(Z(n))$ such that $\|\varphi_n\| \le 1$ and $\varphi_n \to \varphi$ in the weak star topology. Hence there exists n_0 such that for all $n > n_0$, $|\langle e^{if}, \varphi_n \rangle| > e^{aR}$ and thus $\|e^{if}|_{Z(n)}\|_{\mathcal{A}(Z(n))} > e^{aR}$. So, fixing $n > n_0$, we have a real function $f_1 = f|_{Z(n)} \in \mathcal{A}(Z(n))$ such that

$$||f_1||_{\mathcal{A}} < R$$
 and $||e^{if_1}||_{\mathcal{A}} > e^{aR}$.

Now let $S_n = X_n \times Y_n$ be an n-square in E. To transfer f_1 from $A(\mathbf{Z}(n))$ to $V(S_n)$, we identify S_n with the set $\mathbf{Z}(n) \times \mathbf{Z}(n)$ and we consider the map $M: A(\mathbf{Z}(n)) \to V(S_n)$ defined by

$$Mh(x, y) = h(x+y)$$

for any $h \in A(\mathbf{Z}(n))$ and $x, y \in \mathbf{Z}(n)$. This map is an isometric isomorphism sidentifying $A(\mathbf{Z}(n))$ with a closed subalgebra of $V(S_n)$ ([11], 8.1), o we have a real function $g_1 \in V(S_n)$ satisfying

$$\|g_1\|_{\mathcal{V}(S_n)} < R \quad ext{ and } \quad \|e^{ig_1}\|_{\mathcal{V}(S_n)} > e^{\alpha R}.$$

$$||g||_{V(E)} < 2R$$
 and $||e^{ig}||_{V(E)} > e^{\alpha R}$

which is enough to show that E is a set of analyticity [3].

Comparing this result with theorem 1.1, it is natural to ask whether we can glean information from the type of intersection of a sequence of n-squares with a particular set.

We shall say that a sequence $\{S_n\}_{n=1}^{\infty}$ of n-squares has incidence d(n) in a subset E of $X \times Y$ if d(n) is a function on the positive integers such that

$$|(E \cap S_n)| \geqslant d(n)$$

for an infinity of values of n.

THEOREM 2.2. Let X, Y be compact Hausdorff spaces, let E be a closed subset of $X \times Y$ and let $\{S_n\}_{n=1}^{\infty}$ be a sequence of n-squares in $X \times Y$ having incidence $n^{2-\epsilon_n}$ in E, where $\epsilon_n \to 0$ as $n \to 0$.

Then E is a set of analyticity for the tensor algebra $V(X \times Y)$.

This theorem immediately follows from lemma 2.1 and the following proposition, due to Kővari, Sós and Turan [8]:

PROPOSITION 2.3. Let X, Y be arbitrary sets, let E be a subset of $X \times Y$ and let $\{S_n\}_{n=1}^{\infty}$ be a sequence of n-squares having incidence $n^{2-\epsilon_n}$ in E, where $\epsilon_n \to 0$ as $n \to \infty$.

Then we can find a sequence of n-squares $\{T_n\}_{n=1}^{\infty}$ such that $T_n \subset E$ for each n.

Proof. Without loss of generality we shall assume that n^{e_n} is an integer. To avoid unnecessary complication we shall suppose also that $|(S_n \cap E)| \geqslant n^{2-e_n}$ for every $n \geqslant 1$.

By rows (respectively columns) of S_n we shall understand sets of the form $x_0 \times Y_n$ (respectively $X_n \times y_0$), where $x_0 \in X_n$ ($y_0 \in Y_n$). Let r be a positive integer and suppose n_0 is such that $\varepsilon_n < 1/r$ for $n \ge n_0$. For some such n we select a subset $S'_n \subset S_n$ consisting of $t = rn^{\varepsilon_n}$ rows of S_n and containing at least rn points of E. Let s be the number of columns of S'_n containing at least r points of E. Then, calculating an upper bound for the number of points in S'_n , we obtain $st + (n-s)(r-1) \ge rn$ and hence $st \ge n$ for r > 1 (the case r = 1 is, of course, trivial). In any column of S'_n containing at least r points of E, r points of E can be arranged in $\binom{t}{r}$ ways, so if $s > r\binom{t}{r}$, we shall have obtained an r-square $T_r \subset E$. To do this we observe that

$$r {t \choose r} < t^r = r^r n^{re_n}$$
 and $s \geqslant (n^{1-e_n})/r$,

so if n is large enough, we obtain the desired result.

Tensor algebras

263

3. We follow Katznelson and Malliavin [5] in introducing the definitions below.

Let F be a finite-dimensional vector space over R and let $\| \cdot \|_1$, $\| \cdot \|_2$ be two norms on F such that $\| \cdot \|_2 \leq \| \cdot \|_1$. Let $\| \cdot \|_1^*$ be the dual norm on the dual F^* of $(F, \| \cdot \|_1)$. A set of majoration of $\| \cdot \|_1$ with respect to $\| \cdot \|_2$ is a subset S of the unit ball of $(F, \cdot \| \cdot \|_2)$ such that

$$\|\mu\|_1^* \leqslant 2 \sup_{S} |\langle \mu, f \rangle|$$

for all $\mu \in F^*$. The scale of $\| \|_1$ compared with $\| \|_2$ is the cardinal of a smallest possible set of majoration. If X, Y are two compact spaces and E is a finite subset of $X \times Y$, the arithmetic diameter d(E) of E is the scale of $\| \|_{V(E)}$ compared with $\| \|_{C(E)}$ (this latter definition being applicable also when considering V(E), C(E) as complex vector spaces).

LEMMA 3.1. Let X, Y be finite sets having |X| = |Y| = n, a positive integer. Then $d(E) \leq 2^{4n}$ for any subset E of $X \times Y$.

Proof. Let μ be a measure on E. Then

$$\|\mu\|_{A^*(E)} = \sup |\langle \mu, f \otimes g \rangle|,$$

where $f \in C(X)$, $g \in C(Y)$ and $||f||_{\infty} = ||g||_{\infty} = 1$.

Put

$$F = \{ f \in C(X) : f(x) = e^{2\pi i r/4}; r = 0, 1, 2, 3; x \in X \},$$

$$G = \{ g \in C(Y) : g(y) = e^{2\pi i r/4}; r = 0, 1, 2, 3; y \in Y \}.$$

Then $S = \{f \otimes g \colon f \in F, g \in G\}$ is a set of majoration. To show this, let $f' \in C(X), \ g' \in C(Y), \|f'\|_{\infty} = \|g'\|_{\infty} = 1$. Consider

$$\langle \mu, f' \otimes g' \rangle = \sum_{x,y} \mu(x,y) f'(x) g'(y) = \varrho e^{i\theta}, \quad \text{say.}$$

For each x, replace f'(x) by $f(x) = \exp(2\pi i r(x)/4)$, where $r(x) \in \{0, 1, 2, 3\}$ in such a way that

$$\left| \arg \left\{ f(x) \sum_{y} \mu(x,y) g'(y) \right\} - \theta \right| \leqslant \pi/4.$$

It is then clear that

$$|\langle \mu, f \otimes g' \rangle| \geqslant \frac{1}{\sqrt{2}} \varrho$$
.

Similarly, replacing g' by $g \in G$, we obtain

$$\|\mu\|_{A^{\bullet}(E)} = \sup |\langle \mu, f' \otimes g' \rangle| \leqslant 2 \sup_{S} |\langle \mu, f \otimes g \rangle|.$$

$$\xi_n = \frac{1}{p_n} \sum_{j=1}^{p_n} \theta_{nj},$$

where the θ_{nj} are p_n independent copies of θ_n . ξ_n and ξ_m are to be independent when $n \neq m$. Put $E_n = \text{supp } \xi_n$.

Then if $np_n^{-1} \to 0$ as $n \to \infty$, the set $H = \bigcup_{n=1}^{\infty} E_n$ is almost surely a set of analyticity.

We start by proving two lemmas.

LEMMA 3.3. Let m and t be relatively prime positive integers and put n=mt. Let μ and ν denote the Haar measures on $\mathbf{Z}(m)$, $\mathbf{Z}(n)$ respectively. Then to any real function $f \in A(\mathbf{Z}(m))$ there corresponds a real function, $g \in A(\mathbf{Z}(n))$ with

$$\|f\|_{\mathcal{A}} = \|g\|_{\mathcal{A}} \quad and \quad \|\mu e^{if}\|_{\mathcal{A}^*} = \|\nu e^{ig}\|_{\mathcal{A}^*}$$

Proof. Since (m, t) = 1, we can write $\mathbf{Z}(n) = \mathbf{Z}(m) \times \mathbf{Z}(t)$ and $\mathbf{Z}(n) = \mathbf{Z}(m) \times \mathbf{Z}(t)$. Let p be the corresponding quotient map $p : \mathbf{Z}(n) \to \mathbf{Z}(m)$. Given $f \in A(\mathbf{Z}(m))$, we define $g = \check{p}f \in A(\mathbf{Z}(n))$ by g(z) = f(pz) for each $z \in \mathbf{Z}(n)$. Clearly the map \check{p} is a monomorphism and if f is a real function so is g.

Any character $\chi \in \mathbf{Z}(n)$ can be written in the form $\chi = (\chi_m, \chi_t)$, where χ_m, χ_t are elements of $\mathbf{Z}(m)$, $\mathbf{Z}(t)$ respectively. Similarly, we write $z = (x, y) \in \mathbf{Z}(n)$, where $x \in \mathbf{Z}(m)$ and $y \in \mathbf{Z}(t)$. Then we have

$$\begin{split} \hat{g}\left(\chi\right) &= (1/n) \sum_{Z(n)} g(z) \overline{\chi}(z) \\ &= (1/t) \sum_{Z(t)} \left(1/m \sum_{Z(m)} f(x) \overline{\chi}_m(x) \right) \overline{\chi}_t(y) \\ &= \begin{cases} \hat{f}\left(\chi_m\right) & \text{if } \chi_t \equiv 1, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Hence $||f||_A = ||g||_A$ and similarly, $||\mu^{e^{ij}}||_{A^*} = ||\nu^{e^{ig}}||_{A^*}$. In the next lemma, C > 0 and $\alpha > 0$ are absolute constants, the values of which are irrelevant for our purposes.

Tensor algebras

LEMMA 3.4. Let t be a positive integer. We can find a positive integer n such that if R is any integer with $C < R \le t$, then there exists a real function $f \in A(\mathbf{Z}(n))$ satisfying

$$||f||_{\mathcal{A}} < R$$
 and $||ve^{if}||_{\mathcal{A}^*} < e^{-\alpha R}$,

where v is the Haar measure on $\mathbf{Z}(n)$.

Proof. By [5] there are positive real numbers k_1, k_2 such that if $m > k_1$ is a positive integer, there exists a real function $f \in A(\mathbf{Z}(m))$ with

$$||f||_A < k_2 \log m$$
 and $||\mu e^{if}||_{A^*} < m^{-1/4}$,

where μ is the Haar measure on $\mathbf{Z}(m)$. Writing $R = \lceil k_0 \log m \rceil + 1$, we obtain

(3.5)
$$||f||_A < R$$
 and $||\mu e^{if}||_{A^*} < e^{-\alpha R}$

for some a > 0. It follows that if R is a large enough positive integer. there is an integer m' such that for any integer m with $m' \leq m \leq 2m'$. we can find a real function $f \in A(\mathbf{Z}(m))$ satisfying (3.5). By Bertrand's postulate (see e.g. [1]), we can find a prime, m_R say, such that $m' \leq m_R$ $\leq 2m'$. If we put $n = \text{l.e.m } \{m_R\}_{C \leq R \leq t}$, it follows from lemma 3.3 that for any R with $C \leq R \leq t$, we can find $f \in A(\mathbf{Z}(n))$ satisfying the inequalities of lemma 3.4.

Proof of theorem 3.2. For any positive integer n we identify S_n once and for all with $Z(n) \times Z(n)$. The map $M: A(Z(n)) \to V(S_n)$ of lemma 2.1 identifies $A(\mathbf{Z}(n))$ isometrically with a closed subalgebra, $A'(S_n)$, of $V(S_n)$. $A'(S_n)$ consists of those functions g of $V(S_n)$ which satisfy g(x, y) = g(z, t) whenever x+y=z+t ([11], 8.1).

Let t be a positive integer. By lemma 3.4 and the remarks above, there is a positive integer $n = n_t$ such that for any integer R with $C < R \leqslant t$ there is a real function $f = f_{R,t} \epsilon A'(S_n)$ such that

$$||f||_{V(S_n)} < R$$
 and $||e^{if}v_n||_{A'(S_n)^*} < e^{-aR}$,

where v_n is the equidistributed positive measure of total mass 1 on S_n , and C and α are the constants of lemma 3.4.

Moreover,

$$||e^{if}\nu_n||_{\mathcal{V}^*(S_n)} < e^{-aR}$$

for if not, there exists $g \in V(S_n)$ with

$$||g||_V \leqslant 1$$
 and $|\langle g, e^{ij} v_n \rangle| \geqslant e^{-aR}$.

Consider

$$\tilde{g} = \frac{1}{n} \sum_{x \in \mathbf{Z}(n)} g_x,$$

where q_x is defined by

$$g_x(y,z) = g(y+x,z-x)$$

for all $y, z \in \mathbf{Z}(n)$. Clearly $\tilde{g} \in A'(S_n)$,

$$\|\tilde{g}\|_{V} \leqslant 1$$
 and $|\langle \tilde{g}, e^{ij} v_{n} \rangle| \geqslant e^{-aR}$,

which is a contradiction. So we have a real function $f \in V(S_n)$ with

$$||f||_V < R$$
 and $||e^{if}v_n||_{V^*} < e^{-aR}$.

Let ξ_n be the random measure of the statement of the theorem. Let $\{k_1, \ldots, k_s\}$ be a set of majoration of $\|\cdot\|_{V(S_m)}$ with respect to $\|\cdot\|_{\infty}$, where s is the arithmetic diameter of S_n . Then we have

Let Z^r be the random variable defined by

$$Z^{r}(x, y) = k_{r}(x, y) \exp (if(x, y))$$

as (x, y) is chosen at random in S_n . Then we have

$$\|\mathscr{E}(Z^r)\| \leqslant \|e^{if} v_n\|_{V^*} < e^{-\alpha R}$$

and

$$\langle k_r, e^{it} \xi_n
angle = rac{1}{p_n} \sum_{q=1}^{p_n} Z_q^r,$$

where Z_q^r is a copy of Z^r . We shall use the following lemma (for a proof see [9]):

LEMMA 3.7. Let Z be a complex-valued random variable with $|Z|\leqslant 1$ and $\mathscr{E}(Z) = a$. Let Z_1, \ldots, Z_p be p independent copies of Z and let

$$Z^* = p^{-1}(Z_1 + \ldots + Z_p).$$

Then, for any $\varepsilon > 0$,

$$P\{|Z^*-a|>\epsilon\}<4e^{-\beta p\epsilon^2}$$

for some $\beta > 0$.

From this, and the inequalities above, we obtain

$$\begin{split} P\left\{ \left| \langle k_r, e^{if} \, \xi_n \rangle - \, \mathscr{E}(Z^r) \right| > \varepsilon \text{ for some } r \, \epsilon [1, 2, \dots s] \right\} &< 4s e^{-\beta p_n \epsilon^2} \\ &\leq 4^{2n+1} e^{-\beta p_n \epsilon^2}. \end{split}$$

Hence

$$P\left\{\left\|e^{if}\,\xi_n\right\|_{V^*}>2e^{-aR}+2\varepsilon\right\}\leqslant \exp\left(k(2n+1)-\beta p_n\,\varepsilon^2\right).$$

Tensor algebras

Writing f_n for $f|_{E_n}$, we have

$$\langle e^{if}\xi_n, e^{-if_n}\rangle = 1$$

and, extending f_n to a real function $g \in V(H)$ such that $\|g\|_{V(H)} < 2R$, we get

$$P\{\|e^{ig}\|_{V(H)} < (2e^{-aR} + 2\varepsilon)^{-1}\} < \exp(k(2n+1) - \beta p_n \varepsilon^2).$$

We now choose positive numbers ε_n such that $\varepsilon_n \to 0$ and $n/p_n \, \varepsilon_n \to 0$ as $n \to \infty$ and we consider the functions $g_{R,t} \epsilon \, V(H)$ corresponding to $f_{R,t} \epsilon \, V(S_{nt})$. Since

$$P\{\|e^{ig_{R,t}}\|_{V}<(2e^{-aR}+2\varepsilon_{n_{t}})^{-1}\}<\exp(k(2n_{t}+1)-\beta p_{n_{t}}\varepsilon_{n_{t}}^{2}),$$

it is clear that, given $\delta>0,$ we can find, for each R>C, an integer t_R such that

$$P\{\|e^{ig_R}\|_{\mathcal{V}}\leqslant \frac{1}{3}e^{aR}\}<\delta/2^R$$

(where $g_R=g_{R,t_R}\epsilon\,V(H)$). But $\|g_R\|_V<2R$, so we can deduce (by the criterion of [3]) that

$$P\{H \text{ is not a set of analyticity}\} < \delta.$$

Hence H is almost surely a set of analyticity.

4. For some particular subsets of $X \times Y$ we can get direct transpositions of the results of Malliavin and Katznelson [5], [6].

Definition 4.1. Let X, Y be sets and let $S_n = X_n \times Y_n$ be an n-square in $X \times Y$. If G is an abelian group of order n and X_n , Y_n are identified with G, the G-fibres of S_n are the equivalence classes of points of S_n corresponding to the relation

$$(x, y) \sim (z, t) \Leftrightarrow x + y = z + t.$$

A subset E of S_n is called a G-diagonal subset if

$$(x, y) \in E \Leftrightarrow (z, t) \in E$$

for all $x, y, z, t \in G$ having x+y=z+t. (These definitions are, of course, dependent on the particular identifications of X_n, Y_n with G.)

THEOREM 4.2. Let X, Y be compact Hausdorff spaces and let H be a closed subset of $X \times Y$. Suppose H contains a set of the form $\bigcup_{n=1}^{\infty} E_n$, where each E_n is a Z(n)-diagonal subset of an n-square S_n .

$$\overline{\lim_{n o\infty}}|E_n|>n^{1+arepsilon}$$

for some $\varepsilon > 0$, H is a set of analyticity.

Then if

Proof. Let $F_n=\{z\,\epsilon Z(n):z=x+y\ \text{for some}\ (x,y)\,\epsilon E_n\}$. Clearly $|F_n|=|E_n|/n$ and thus

$$\overline{\lim_{n\to\infty}}|F_n|>n^{\epsilon}$$
.

It then follows from [5], that, given R>0, we can find a real function $f \in A(F_n)$ for some n, having

$$||f||_{A(F_n)} < R$$
 and $||e^{ij}||_{A(F_n)} > e^{aR}$

for some positive constant a. Applying the mapping $M: A(\mathbf{Z}(n)) \to V(S_n)$ we obtain the required result.

THEOREM 4.3. Let X, Y be compact Hausdorff spaces and let H be a closed subset of $X \times Y$. Let H contain a set of the form $\bigcup_{n=1}^{\infty} E_n$, where E_n is the union of $|E_n|/n$ $\mathbf{Z}(n)$ -fibres of S_n chosen at random.

$$(n\log n)|E_n|^{-1}\to 0$$

as $n \to \infty$, H is almost surely a set of analyticity.

Proof. As above, using [6], Theorem 1, in place of [5].

References

- [1] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, IV ed., p. 343.
- [2] H. Helson, J.-P. Kahane, Y. Katznelson and W. Rudin, The functions which operate on Fourier transforms, Acta Math. 102 (1959), p. 135-157.
- [3] J.-P. Kahane and Y. Katznelson, Contribution à deux problèmes concernant les fonctions de la classe A, Isr. J. Math. 1 (1963), p. 110-131.
- [4] Y. Katznelson, Calcul symbolique dans les algèbres homogènes, C. R. Acad. Sc. Paris 254 (1962), p. 2700-2702.
- [5] and P. Malliavin, Un critère d'analyticité pour les algèbres de restriction, ibidem 261 (1965), p. 4964-4967.
- [6] Vérification statistique de la conjecture de la dichotomie sur une classe d'algèbres de restriction, ibidem 262 (1966), p. 490-492.
- [7] W. Rudin, Fourier analysis on groups, Interscience, 1962, p. 166 et seq.
- [8] T. Kövari, V. T. Sós and P. Turàn, On a problem of K. Zarankiewicz, Coll. Math. 3 (1954,) p. 50-57.
- [9] T. V. Uspensky, Introduction to mathematical probability, 1937, p. 204-205.
- [10] N. Th. Varopoulos, Lecture notes at the Summer School on Topological Algebra
 Theory, Bruges, September 1966.
- [11] Tensor algebras and harmonic analysis, Acta Math. 119 (1967,) p. 51-112.

Reçu par la Rédaction le 27. 10. 1969