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Large squares and sets of analyticity in tensor algebras
by

. D. L. SALINGER (Orsay)

1. Introduction. If X and Y are compact Hausdorff spaces, V(XX Y)
= C(X)&C(Y) will denote the projective tensor product of the Banach
algebras C(X) and C(Y). V(XIx¥Y)isa regular symmetric Banach algebra

. under the projective norm: for a detailed discussion of its definitions and

elementary properties see [11]; a summary of them is to be found in [10].
It B is a closed subset of X x Y, we define the closed ideal I(E) by

I(B) = {feV(XxY): f(z) =0 when z<E}.

) V(B) = V(X x Y)/I(B) is the algebra of restrictions to E of functions
of T(XxY) I V(B) = C(E), we call E a V-Helson set.

Let ¢ be a continnous complex-valued function defined on the interval
[—1, 1] of the real line. ¢ is said to operate on the algebra V(B) if pofeV (H)
whenever feV(B) has range in [—1,1]. E is called a set of analyticity
(for the algebra V(X xY)) if any function operating on V(B) can be
extended to an analybic function in a neighbourhood of [—1, 1], ie.
B is a seb of analyticity if “only the analytie functions” operate on V (E).

For a compact abelian group &, we define A(@) to be, as usual, the
algebra, of Gelfand (Fourier) transforms of I (G‘), where @ is the dual
group of G. If B is a compact subset of G, I(B) and A(E) are defined
similarly to the respective cases above. If A(E) =~ C(B), F is called
a Helson set. B is a set of analyticity. (for the algebra A(G)) if only the
analytic functions operate on A(E).

The dichotomy conjecture (cf. [4], [6]) is that every compact subset
of a compact abelian group which is not a Helson set should be a seb of
analyticity. We can pose the same question in the context of the tensor
algebra V(X x ¥) and there too the answer is not known, however the

“following combinatorial characterization of countable V-Helson sets

suggests combinatorial sufficient conditions for sets to be sets of analyticity.

Tf T and ¥ are compact Hausdorff spaces and n is a positive integer,
we call n-squares those subsets of X X ¥ of the form 8, = X,, X ¥,, where
X,cX,¥Y,c ¥ and | X =X, =mn
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TegoreEM 1.1 (Varopoulos [11], 6.4]). A countable closed subset
Ec XxY is a V-Helson set if and only if there exisis a posi’tz"ue integer
2 such that |E N 8,| < An for all n-squares 8, and for all positive inlegers n.

In this paper, we consider the case of the intersection of a sequenee
of n-squares {S,)_, with ¥ = X x ¥, showing first that if |E N §,| = »,
then ¥ is a set of analyticity. Then, by a combinatorial refinement we
show that it is sufficient to have |E N 8,] = n*~*, where ¢, — 0 a8 % — oo,
For the remaining results we use the methods developed by Katznelson
and Malliavin [5, 61 to show that if #|E n 8,|™" — 0, then F is almost
surely (with respect to a certain probability space) a set of analyticity.
We also give similar results for a more specialised class of sebs.

In conclusion, I would like to thank Dr. N. Th. Varopoulos for his
extremely stimulating help and guidance. I want also to thank the S. R. C.
and N. A. T. O. for their invaluable financial support.

2, Levma 2.1. Let X, ¥ be compact Hausdorff spaces and let B be
a closed subset of XX Y. Let E contain an n-squarve for every positive
integer n.

Then E is a set of analyticity for the tensor algebra V(X X Y).

Proof. By T we shall denote the group of complex numbers with
unit modulus, and by Z(n) the cyclic group of order n. We shall identify
Z (n) with its embedding in T as the group of 2™ roots of unity.

It is known [2] that there exists a constant « > 0 such that for any
positive real number R > 0 there exists a veal function feA(T) with

iflsm< B and “eif”A(T)> e®

Let ged™(T) be such that fpi+ =1 and [<e, )| > ¢“F. By the
method of Herz [7], there exists a sequence (@,)n.; of pseudomeasures
, PncA®(Z(n)} such that fig,| <1 and g, —¢ in the weak star topology.
Hence there exists n, such that for all » > n,, [<67, ¢,>| > ¢*® and thus
le” g sz > €°F. So, fixing = >m,, we have a real funetion
f1 =FlzmeA(Z(n)) such that

Ififla<® and

Now let 8, = X, xY, be an n-square in H. To fransfer f, ﬁ‘om‘
A(Z(n)) to V(8,), we identify S, with the set Z(n) X Z (%) and we consider.
the map M: A(Z(n)) - V(S,) defined by

Mz, y) = ha+y)

lle™lq > &7,

for any heA(Z (n)) and «, y eZ(n). This map is an isometriec isomorphism
sidentifying A (Z(n)) with a closed subalgebra of V(S ([11], 8.1),
o we have a real function g, ¢ V(S,) satisfying

lgdllysy < B and llei”‘[IV(gn) > ¢'F
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Hence there is a function ge V(F) taking only real values and having

lgllp < 2B  and ¢ ””V(E) > ¢'F

which is enough to show that E is a set of analyticity [3].:

Comparing this result with theorem 1.1, it is natural to ask whether
we can glean information from the type of intersection of a sequence
of n-squares with a particular set.

‘We shall say that a sequence {S,}5_, of n-squares has incidence d(n)
in a subset E of X x Y if d(n) is a function on the positive integers such that

(B 08 = dn)

for an infinity of values of =.

THEOREM 2.2. Let X, ¥ be compact Hausdorff spaces, let B be a closed
subset of X X Y and let {S,}, be a sequence of n-squares in X X ¥ having
incidence n*~*n in B, where &, ~0 as n - 0.

Then B s a set of analyticity for the tensor algebra V(X X X).

This theorem immediately follows from lemma 2.1 and the following
proposition, due to Kdvari, S6s and Turin [8]:

PROPOSITION 2.3. Let X, Y be arbilrary sets, let E be a subset of XX Y
and Tet {8,)_, be a sequence of n-squares having incidence n*~"» in B, where

, —~> 0 as n — oo,

Then we can find a sequence of n-squares {T,}u_, such that T, < B
for each n.

Proof. Without loss of generality we shall assume that »'» is an
integer. To avoid unnecessary complication we shall suppose also that
(8, N E)| = »n*"* for every n>1.

By rows (respectively columns) of S, we shall understand sets of the
form #,x Y, (respectively X,Xy,), where z,eX, (y,eY,). Let = be
a positive integer and suppose #, is such that e, <1 [r for n > n,. For
some such n we select a subset S, = §, consisting of ¢ = ru'n Tows of S,
and containing at least rn points of B. Let s be the number of columns
of S, containing at least 7 points of E. Then, calculating an upper bound
for the number of points in S;,, we obtain st+ (n—s)(r—1) > rn and hence
st>n for » > 1 (the case r = 1 is, of course, trivial). In any column of S,

containing at least 7 points of B, points of F can be arranged in C)
ways, 8o if s> y(i), we shall have obtained an r-square T, = E. To do
this we observe that

r(:) < ¥ =7 and n'") fr,

so if » is large enough, we obtain the desired result.
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3. We follow Katznelson and Malliavin [5] in introducing the defini-
tions below.

Let F be a finite-dimensional vector space over B and let |||, |||l
be two norms on F such that |||, < || [l;. Let || |} be the dual norm on
the dual F* of (F, ]| [l,). A set of majoration of || ||, with respect to || [,
is @ subset § of the unit ball of (F, | ||,) such that

ullf < 2 sup [<u, I

for all ue F¥. The scale of || ||, compared with || ||, is the cardinal of a smallest
possible set of majoration. If X, Y are two compact spaces and F is
a finite subset of X X ¥, the arithmetic diameter d(H) of F is the scale
of || |lpm compared with || lo (this latter definition being applicable
also when considering V(E), C(E) as complex vector spaces).

Lewwa 3.1. Let X, Y be finite sets having |X| = |¥| = n, a positive
integer. Then d(E) <2 for any subset B of Xx Y.
Proof. Let x4 be a measure on E. Then
el = supl<u, fR9,

where feC(X), geC(¥) and ||l = llglloo = 1.
Put

F ={feC(X): f(z) =&, p = 0,1,2,3;zeX},
G ={geC(Y): g(y) =™ 57 =0,1,2,3;ycT}.

Then 8§ = {f@g: feF, ge@} is a set of majoration. To show this,
let f¢C(X), ¢'€C(X), [fllo = llg'le = 1. Consider ‘

G f'®ry = D p@,yf @9 () = 0, say.

For each =, replace f'(») by f(z) = exp(2rir(z) /4), where r(s)
«{0,1,2, 3} in such a way that

bre{f(@) 3w, 9)g @))— o < njs.
Y
It is then clear that
1
Ve &
Similarly, replacing ¢’ by ge@, we obtain

Ku, f@g> >

lellara = sup <, F® /0] < 25up [<u, fR ).
5
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THEOREM 3.2. Let X, Y be compact Hausdorff spaces and let {S,}n.
be a collection of n-squares of X X X. Let 8, be the Dirac measure of a point
xel,, and let 4, = {O}ns, - Let also 6, be a random measure equidistributed
in 4, ond put

where the B,; are p,, independent copies of 6,. &, and &, areto be independent
when 1 == m. Put B, = suppé,.

Then if np,* -0 as n —> oo, the set H = G B, is almost surely a set
of amalyticity. - )

‘We start by proving two lemmas.

Levna 3.3. Let m and t be relatively prime positive infegers and put
n = mt. Let u and v denote the Haar measures on Z{(m), Z(n) respectively.
Then to any real function feA(Z(m)) there corresponds a real funciion,
g <A (Z(n)) with ‘

Ifle =llgls and  fue”lle = [e”lLe.

Proof. Sinee (m,f) =1, we can write Z(n) = Z(m)xZ(t) and
Z(n)" =Z(m) xZ(#) . Let p be the corresponding quotient map
p:Z(n) - Z(m). Given feA(Z(m)), we define g = pfed (Z(n)) by g(2)
= f(pz) for each zeZ(n). Clearly the map P is a monomorphism and if
f is a real function so is g.

Any character yeZ(n)  can be written in the form y = (tm,Zs)s
where ¥,y are elements of Z(m)",Z (t)” respectively. Similarly, we
write z = (%, y) eZ(n), where z<Z(m) and y<Z(t). Then we have

§) =@m Y 9@z

Z(n)

=@ Y (1m Y f(@im(®) % @)

Z() Z(m)
_ .f (Zm) if 1t = 17
o 0 otherwise.

Hence [|flly = llglx and similarly, [uelle = [ve”lLes-
Tn the next lemma, ¢ > 0 and a > 0 are absolute constants, the values

of which are irrelevant for our purposes.
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LeMMA 3.4. Let t be a positive integer. We can find a positive integer
n such that if R is any integer with C << R <1, then there ewists a real function
fed(Z(n)) satisfying

le<B  and

where v is the Haar measure on Z(n).
Proof. By [5] there are positive real numbers %, k, such that if

el s < 6™°F,

m > k, is & positive integer, there exists a real function fed(Z (m)) with -

—1/4
)

Ifle < Fslogm  and  [lue?i < m

where u is the Haar measure on Z(m). Writing B = [k,logm]-+1, we
obtain

(3.5) Ifla<R and

for some « > 0. It follows that if R is a large enough positive integer,
there is an integer m' such that for any integer m with m' < m < 2m/,
we can find a real function fed(Z(m)) satisfying (3.5). By Bertrand’s
postulate (see e.g. [1]), we can find a prime, my say, such that m’ < mp
<2m'. If we put n =Llem {mp}ocpney, it follows from lemma 3.3 that
for any B with 0 < E< ¢, we can find feA(Z (n)) satistying the inequalities
of lemma 3.4.

Proof of theorem 3.2. For any positive integer n we identity
8, once and for all with Z(n)xZ(n). The map M: A(Z(n) -V (8,)
of lemma 2.1 identifies A (Z(n)) isometrically with a closed subalgebra,
A'(8,), of V(8,). A'(8,) consists of those functions g of V(8,) which
satisfy g(z,y) = g(e,1) whenever a4ty =2+t (f11], 8.1).

Let ¢ be a positive integer. By lemma 3.4 and the remarks above,
there is a positive integer #n = n, such that for any integer R with
C < R <t there is a real function f = fricA'(8,) such that

Iflrsy <E  and

llee”|Lgx < €7°F

||‘9if"’n”4'(sn)- < ek,

where », is the equidistributed positive measure of total mass 1 on S,,

and O and « are the constants of lemma 3.4.
Moreover,

Heﬁl’n”w(sn) < eF
for if not, there exists geV (8,) with

loly <1 and = Ky, 675, > e2.

Consider
” 1
g =— Gz

zeZ(n)
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where g, is defined by
9:0,2) = g(y+w,2—2)
for all y,zeZ(n). Clearly geA’(8,),
Gy <1 and |G, €7 = eF,
which is a contradiction. So we have a real funetion fe¥V(S,) with
Ifly <R and [e7nlp <"

Let &, be the random measure of the statement of the theorem.
Let {ky, ..., k} be a set of majoration of || iy, with respect to I lloos
where s is the arithmetic diameter of S,,. Then we have

(3.6) 67 &llpe <2 sup |<Ky, €7 £
7r=1,...,8

Let Z° be the random variable defined by
Z" (@, y) =k, (2, y)exp (if (=, )
as (z,y) is chosen at random in S,. Then we have

j
| 6(Z)] < Il < &=F |

and

n

P,

) 1 .

(s 18, = ”—qu:
Pn o=

where Z7, is a copy of Z". We shall use the following lemma (for a proof

see [9]): -
Timaa 3.7. Let Z be a complex-valued random variable with 1Z| <1
and 8(Z) = a. Let Zyy...; Zy be p independent copies of Z and let

Z* =p Y Zyt .. 2y
Then, for any &> 0,
P{Z* — o] > &} < 467
for some g > 0. .
From this, and the inequalities above, we obtain
P{[k,, ¢ £,>— &(Z)| > ¢ for some re[l,2, ... s]} < dse™ PP

< grntigPmnd

Hence
P{l6" & e > 267 F+ 26} < exp (k(2n+ 1)—BPae?)-
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Writing f, for f Iz, We have
<eif5n, eﬁifﬂ'> =1
and, extending f, to a real function geV(H) such that |gllp@m < 2R,
we get .
Py < (2674 26)71} < exp(k(2n+1)— Bp, &)

‘We now choose positive numbers ¢, such that ¢, — 0 and n/p, e, 0
as # —oco and we consider the functions gp,eV (H) corresponding to
TrteV(8,,). Since

P{le"B Ay < (267°F+26,)7"} < exp(k(2n,+1)—Bpn,4),

it is clear that, given 6 > 0, we can find, for each R > O, an integer ¢,
such that ’

P{lo"R]; < 36} < 62"

(wihere 9r = grizc V(H)). Bub |iggly < 2R, so we can deduce (by the
criterion of [3]) that

P{H is not a set of analyticity} < 4.
Hence H is almost surely a set of analyticity.

- 4. For some particular subsets of X X ¥ we can get direct tramspo-
sitions of the results of Malliavin and Katznelson [5], [6].

) Definition 4.1. Let X, Y be sets and let S, = X, X ¥, be an n-square
in Xx Y. If G is an abelian group of order » and X,,, ¥, are identified
with @, the G-fibres of 8, are the equivalence classes of points of S,
corresponding to the relation : "

(#,y) ~ (2, 1) < o+y = 2+t
A subset F of 8, is called a G-diagonal subset if
@, ) eB < (2,t)e B

for all z,y, 2, te@ havil}g %+y = 2+1%. (These definitions are, of course,
dependent on the particular identifictions of X,,, Y, with G&.) '

TEEOREM 4.2. Let X, ¥ be compact Hausdorff spaces and let H be
a closed subset of X X Y. Suppose H contains a set of the form G B,, where
n=1

each B, is o Z (n)-diagonal subset of an n-square S, .
Then if

lim lEﬂ| > nl-}—e
n—ca

Jor some e >0, H is a set of analyticity.
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Proof. Let F, = {geZ(n) : 2 = 2ty for some (v,y)eE,}. Clearly
|7, = |B,|[n and thus

lim |7, > .
n—+o0

It then follows from [5], that, given R > 0, we can find a real function
feA(F,) for some n, having

gy <B  and [y, > €&

for some positive constant a. Applying the mapping M: A(Z(n)) — V(8,)
we obtain the required result.
TEEOREM 4.3. Let X, Y be compact Hausdorff spaces and let H be

a closed subset of X X Y. Let H contain a set of the form \J E,, where B,
n=1

is the union of |B,|/n Z(n)-fibres of 8, chosen at random.
Then if

(nlogn)|B,|™ =0

as n — oo, H is almost surely a set of analyticity.
Proof. As above, using [6], Theorem 1, in place of [5].
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