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INTRODUCTION

The general idea of finite-dimensional perturbations of spectral
problems was conceived in 1956. The first author gave an outline of this
theory in several lectures in the following years; he also mentioned this
idea and ifs applications in several papers [4], [5], [6]. The main appli-
cation of this notion was to gemeral spectral problems, which the first
author had started investigating some time hefore.

In particular this general notion of finite-dimensional perturbation
allows one to unify the theoretical background for almost all existing
variational approximation methods for eigenvalue problems(*). There
are many such methods; e.g., the Ritz method, the Weinstein method,
and methods based on the second monotony principle (see [3]). In all
these methods the connection between the eigenvalues of the auxiliary
problem and those of the intermediate problems was given by a deter-
minant — a meromorphic function of { — each of these determinants
being obtained by different constructions. (In the case of Weinstein’s
method this determinant is called Weinstein’s determinant.) One of the
main aims of the general notion of finite-dimensional perturbations was
to put each of these determinants corresponding to different methods
into a general framework as the determinant of the corresponding pertur-
bation. This aim is obtainable by considering only perturbations which
do not change the domain of the operators (since the approximation
methods can be so formulated that the operators which appear are all
bounded). On the other hand, for application to general spectral problems
the finite-dimensional perturbations have to admit a change of domain;
e.g. in ordinary differential problems when one changes the (not necessarily
self-adjoint) boundary conditions.

Since 1956 quite a number of papers have been published pertaining
to the theory of spectral problems on one hand and to the theory of
perturbations on the other. Many of our results were found independently
by sevéral other authors — soimetimes in weaker form, sometimes in
much stronger form — usually in quite different setting and with quite
different methods.

Already in 1957-58 two important papers by Gokhberg-Krein [14] and
by Kato [19] completely superceded the partial results of the first author
concerning quasi-resolvent sets, isolated eigenvalues and corresponcing

(1) This notion obviously can only be applied to those methods where the con-
secutive intermediate problems are obtained from an auxiliary problem by finite
dimensional perturbations. To our knowledge there exists only one variational
approximation method for eigenvalue problems where this condition does not hold.
It was proposed by N. Aronszajn in 1949 and developed in 1950 by A. K. Jennings
in his Master'’s thesis {17].
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elementary divisors for spectral systems. We take advantage of this fact
and simply review (in Section IT.3) the results of these papers needed here.

As concerns the theory of perturbations, most of the literature is
concerned with the classical “s-perturbations” or with more recently
developed infinite-dimensional perturbations of various special classes —
perturbations of trace class, compact perturbations, etc. In his recent
excellent book [20] T. Kato gives a quite complete exposition of these
kinds of perturbations, and we refer the reader to this book for the rele-
vant literature. Even though finite-dimensional perturbations have
also been treated in the framework of this general research, it seems that
in all the. available literature there is no treatment presented for the
general kind of finite-dimensional perturbation we are considering, the
main difference being that in the available literature all perturbations
preserve the domain of the operator, while we consider also those which
change the domain.

The notion of the matrix of a perturbation and its use for actual
computation of orders of elementary divisors (see Theorem II.6.1) does
not seem to have been noticed in the literature. However, the notion
of the determinant of a perturbation has been used in many special cases.
In his book, Kato introduces them in general (in a simplified setting,
without change of domain) under the name of W-A determinants of
first and second kind, and he proves (in this setting) our Theorem I1.6.2
under the name of W-A formula(2).

Our main theorem of Chapter IIT (Theorem III.1.3), which evaluates
the ehange of multiplicity of any measure when we change a self-adjoint
operator A into a self-adjoint operator B by a general finite-dimensional
perturbation, does not seem to have been noticed. However, its corollary
(II1.1.3"), that the absolutely continuous parts of 4 and B are unitarily
equivalent, was obtained by several authors — Kuroda [21], [22], Birman
[11], Kato [18] and others — by completely different methods, as a result
of investigation of the existence of the complete generalized wave operators
between 4 and B. Also, their result is much stronger than our corollary
since they admit perturbations of trace classes which are not finite-
dimensional (3). :

(*) It should be noted that what Kato calls “W-A determinants of second kind”
were introduced by Weinstein [24]in 1937 in special cases and investigated in general
by Aronszajn [2] in 1948, who called them “Weinstein's determinants”. Those of
“first kind” were introduced by Aronszajn in 1950 [8] in connection with variational
approximation methods baged on the second monotony principle. Also the “W-A
formula” was discovered by Aronszajn in 1943, published first — in cage of Weinstein's
determinant — in 1948 [2], and — for the other kind of determinant — in 1950 [3].

(%) These authors avoid dealing with perturbations changing the domain by

replacing the perturbation between 4 and B by the one betiween the bounded operators
(A—Ly)~1 and (B—¢{p)~! for a fixed non-real . .
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The present paper presents Part T of our research on finite-dimensional
perturbations of spectral problems and. variational approximation methods
for eigenvalue problems. This first part is concerned with the general theory
of finite-dimensional perturbations and its direct applications. In Part II
we will present different variational approximation methods for eigen-
value problems in a framework based on the concepts and results of this
firgt part. We will also investigate there the important question of con-
vergence for these approximation methods.

Tn Part IIT we will describe and investigate the different ways in
which these abstract approximation methods can be used in concrete
differential eigenvalue problems. We will show that for quite general
elliptic eigenvalue problems it is possible to apply one of these methods,
or some combination of these methods, to obtain as precise approxima-
tions as one wishes to the eigenvalues.

Summary of Part I, In Chapter I the concept of finite-dimensional
perturbation is introduced, as well as some associated concepts and
properties. A linear transformation B with domain D(B) from a lnear
space V into a linear space W is a finite-dimensional perturbation of the
linear transformation 4 with domain D(4) from V into W if and only

" if there exist decompositions(*).

(0.1) D(A) =Dh[a1, ..y @)y D(B) =D+[byy -5 0]
such that 4 = B on D. The decomposition (0.1) is called a representation
of the perturbatiomn. The smallest integer » for which such a decomposition
exists is called the dimension of the perturbation. It is shown in Seetion L.1
that the relation “A ~ B if and only if 4 iy a finite-dimensional per-
turbation of B” is an equivalence relation.

If o linear transformation 7' is a finite-dimensional perturbation of

" the identity on V, then, corresponding to each decomposition

{0.2) V =Di[ag, ..., a,]
such that T = I on D, there exists an nXn matrix M, called a matriz
representation of the perturbation 7 ~ I corresponding to the decom-
position (0.2). The determinant of M, called the determinant of the pertur-
bation, is independent of the decomposition.

More- generally, when (0.1) is a representation for a perturbation
A ~ B and when 47 exists — which means A~ is defined on all of
W — we use the canonical linear isomorphism Sp, which equals the

(%} [@y, ..., ap] denotes the subspace spanned by the linearly independent
veetors ap, ..., Gy
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identity on D and assigns b, to a@,. We then define the matrix and
determinant of the perturbation B ~ 4 by using the operator A'BSgp,
which transforms ©(4) into D(A) and is a perturbation of the identity.
This determinant is essentially independent of the choice of the repre-
sentation (0.1).

In section 1.2 it is shown that the index of an operator is invariant
under finite-dimensional perturbations while the nullity and deficiency
change by at most the dimension of the perturbation.

In most of the present paper we consider the situation where V is
a topological vector space and W is a Banach space, instead of dealing
with algebraic vector spaces. In Section 1.3 we consider finite-dimensional
perturbations in such cases. The domains D(4) of operators 4 are assumed
to be Banach subspaces of ¥V (i.e., the injection mapping D(4) -V~
is continuous) and the operators A are assumed to-be bounded mappings
of D(A) into W. In addition, in representations (0.1) of a perturbation,
D is always assumed to be closed in D(4) and D(B).

Chapter II is concerned with spectral problems for spectral systems.
Tn Section IL.1 the concept of a speciral system [V, W, 2] is introduced,
where V and W are complex vector spaces and & is a two-dimensional
pencil of linear transformations of ¥ into W. We may thus write the
system as a four-tuple [V, W, H, G], where ¢ and H generate #. The
general spectral problem for such systems is discussed. Such general
algebraic spectral problems were investigated by N. Aronszajn and
U. Fixman in [8].

The special case of spectral problems for finite spectral systems
(i.e., where dim ¥ and dim W are finite) is considered in Section IL.2,
and some results (see [8]) are summarized.

In Section IL3 the concept of the quasi-resolvent set # for a Banach
system [V, W, H,@] is introduced. (Here V, W are Banach spaces and
@, H are bounded.) This set consists of all those complex numbers 4 such
that the range of 4, = G— 2H is closed and either the nullity or deficiency
(or both) of A, is finite. Gokhberg and Krein and, independently, Kato
have shown that £ is the disjoint union of countably many open compo-
nents Z;, in each of which the index of 4, is constant and in each of
which the nullity and deficiency of 4, are constant except at countably
many isolated points, called the isolated eigenvalues of the system. To
each isolated eigenvalue A there are associated a generalized eigenspace
and finitely many elementary divisors, which give a corresponding spectral
decomposition of the system at A. '

In Section IL4 the concept of a finite-dimensional perturbation
of 2 Banach system [V, W, H, G] is introduced, and it is shown that %
remaing invariant under such perturbations, though the isolated eigen-
values may change.
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In Section I1.5 the Invariant Factor Theorem for matrices is applied
to matrices M (1) whose entries are analytic functions of 1. An example
of such matrices is given by any matrix M(A) corresponding to
A7*B,Spy ~ I, where A; =G—1H,B; =G,—1H;, the system (II):
[V, W, H,, @] is a finite-dimensional perturbation of (I): [V, W, H, &1,
Sz4 is the canonical isomorphism corresponding to a representation of the
perturbation, and 4 is in the resolvent set of (I). In Sections IL.6 and IL.7
it is shown how, knowing all necessary information about system (I),
M (2) and det M (4) can be used to obtain information (concerning, e.g.,
the isolated eigenvalues, generalized eigenspaces, and elementary divisors)
about system (II). Some simple examples are given at the end of
Section IL.7. More involved examples are given in an appendix at the end
of the paper.

In Chapter IIT we consider finite-dimensional perturbations between
two standard self-adjoint systems; i.e., between systems [D(4), o, I, 4],
where o is a Hilbert space, I is the identity operator, 4 is a self-adjoint
operator in 4, and D(4) is the domain of A (with its graph norm). In
Section III.1 we first prove (Theorem IIL.1.1) that, if two self-adjoint
operators 4, B in # are equal on a subspace D contained in D(4) N D(B),
and if © has finite codimension in ©(4), then D has finite-codimension
in D(B) and the two corresponding systems are in the same perturbation
clags. Next we prove (Theorem III.1.2) that, if the perturbation between
two standard self-adjoint systems is of dimension m, then one can he
obtained from the other by a succession of m perturbations of dimension
one. These perturbations are of two types — type one being a perturbation
which does not change the domain of the operator and type two being
a perturbation which does.™

‘We then state the main result of this chapter, Theorem III.1.3,
to0 be proved in Section IIL.6. In this theorem we give evaluations for the
change in multiplicities of measures relative to self-adjoint operators
A and B differing by a perturbation of dimension m, and obtain as an
eagy corollary (Corollary IIL.1.3’) that the absolutely continuous parts
of A and B are unitarily equivalent.

Since we deal here with possibly mon-separable Hilbert spaces, we
give, in Section III.2, a review of definitions and results concerning multi-
plicities of measures relative to self-adjoint operators, following (except
for a few changes) Halmos [15]. In Section IIT.3 we review the well known
results concerning multiplicity relative to operators with simple spectrum;
i.e., where the Hilbert space 4 is generated relative to the operator 4 by
a single vector. Also we give some results needed for functions in class P
(functions analytic in the wpper half plane with positive imaginary part).

In Sections I11.4 and IIL5 we apply the information given in the
preceding sections to determine the changes in multiplicities of measures
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induced by one-dimensional perturbations of types one and two respective-
ly. The proof of Theorem ITI.1.3 and its corollary, given in Section ITL.6,
follows immediately from these investigations. We also give in Section
II1.6 a useful result concerning eigenvalues of two self-adjoint systems
in the same perturbation class, the perturbation being of dimension m;
namely, in any interval # of the real axis which contains no points of the
essential spectrum, the pumber (counting multiplicities) of eigenvalues
of one system differs from the number of eigenvalues of the perturbed
system by at most m. -

In the Appendix we apply the theorems and techniques of Chapter II
to spectral problems arising from differential operators with boundary
conditions. We consider the perturbation between. two Hilbert systems (I):
[V, I*(—1,1), I, d*/dt*] and (I): [V, I*(—-1,1),1, d*|di*], where V
and ¥, are closed subspaces of the space of potentials of order four,
P*(—1,1) = I*{—1,1). V is characterized by the boundary conditions

#(—1) =2(l) =2"(—1) =2"(1) =0,
and thus (I) is a standard self-adjoint system, whereas ¥, is defined by
four arbitrary linearly independent homogeneous boundary conditions
(of orders < 3).

The matrix and determinant corresponding to such perturbations
is caleulated explicitly in terms of the boundary conditions of V. These
formulas, together with easily obtained information about the original
operator, are used to investigate the changes in the character of the
meromorphy domain, the isolated eigenvalues, and the elementary divisors
which are induced by the perturbation.

TUnder such a perturbation the original character (0, 0) of the mero-
morphy domain (the entire complex plane) changes to (n;n). We find that
always 0 < n <2 and derive specific relations which the boundary con-
ditions of V, must satisfy in order that m = 0,1, or 2. BExamples are
given for each case. Also, among others, an example is given where,
corresponding to the eigenvalue 4, = n*/16 of the perturbed system,
there are two elementary divisors — one of order one and one of order
three — while, corresponding to the eigenvalue 2, of the original system,
there is a single elementary divisor of order one.

I. FINITE-DIMENSIONAL PERTURBATIONS

1. Basic concepts. Let V, W be linear spaces over the complex
number field and A, B be linear transformations from V into W. 'l‘hep
A4 is said to be a finite-dimensional perturbation of B, written A ~B,it
there exists a direct decomposition of the domains of 4 and B of the form

(I11)  D(A) = D4[tay .0y @], D(B) =DH[byy s bl
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such that 4 = B on D..(4 means direct sum, and [dy, ..., #,] 18 1;'}1@' gub-
space generated by the linearly independent vectors a,, ..., a,; similaxrly

for [by,..:yb,].) Equation (L1.1) is called a decompositio?@ corresponding
to the perturbation A ~ B. The smallest integer n for which there exists
such a decomposition is called the dimension of the perturbation.
It is easy to form a decomposition corresponding to A ~ B realizing
" the dimension of the perturbation. To this effect put

D = [u: ueD(4) ND(B), Au = Bu].

Wehave D c D' <« D(4) .n D(B) and since D has the same co-dimen-
sion in D(4) and D(B) the same is true for D’ and hence we can find
decompositions

D(4) = D' 4lay, .. o byl

Here, obviously, the number #n’ = co-dim®’ is the smallest possible.

It is easy to see that the relation “~” is an equivalence relation.
The symmetry and reflexivity are obvious; transitivity follows from the
fact that the intersection of two spaces of finite co-dimension is again
of finite co-dimension. Equivalence classes corresponding to the relation
“~” are called perturbation classes. We denote by (4) the perturbation
clags consisting of all B such that B ~ A.

In the special case that the transformations in question are defined
on all of ¥V, A ~ B and ¢ ~ D imply that A4+ uC ~ AB+ uD for any
scalars A, u. If, in addition, V = W, then 4 ~ B and ¢ ~ D also imply
AC ~ BD.

If A ~ B, then to any decomposition of type (1.1.1) corresponds
a canonical lingar isomorphism Sz, of D(4) onto D(B), defined by
S8ps =1 on © and Spya; =b;,i =1,...,n On the other hand, let
A ~ B and let Sz, be any isomorphism of D(4) onto D(B) which equals
I on a subspace D' of D(4) of finite co-dimension. Then, if (1.1.1) is
a decomposition  corresponding to A ~B,D’ =D ND has finite
co-dimension in D(4) and Sz, = I on D”. Thus, there exist linearly
independent vectors c¢,,...,¢, such that

D) =D"+ [y .y 0]y DB) =D+ 85401y --.; Spatil

D(B) =D'41[by, ..

’
A a‘n’]7

is a decomposition corresponding to A ~ B, and Sy, is the canonical
isomorphism it determimes. ‘

Let ¢(A) be a perturbation class of transformations from V into W.
For any two transformations B, Ce{(4), choose a decomposition. corres-
ponding to B ~ C, and a corresponding isomorphism S;5. The set {Sgz:
B, 04>} is called coherent it for any B, 0, D in (4),

SCD SDB = SC'B W
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In particular, SzpSzy = Spy, hence Szp is the identity on B.

A coherent seb of isomorphisms for (4} can always be chosen. For
example, a decomposition corresponding to B ~ A and the associated
isomorphism 8z, can be chosen for each Be(A>. Then a coherent set
{Scp: B, O (4>} of isomorphisms is defined by Syz = Sy 85%. In what
follows, when dealing with a perturbation class, we shall always assume
2 coherent set of isomorphisms has been chosen.

Those transformations 7' of ¥V into itself such that T ~ I turn out
to be of special importance. If T' ~ I, then there is a decomposition

(T.1.2) V =D4[ay,..., a,]
such that T' = I on D. Let P be the corresponding projection. of V onto
[ay, ..., @,]. The subspace [a,, ..., a,] is an invariant subspace of Pr.

THEOREM I.1.1. Let (I.1.2) be a decomposition corresponding to T ~ I

and P be the corresponding projection of V onto [y, ..., a,]. Then
Su = u—Tu
defines an isomorphism between N[PT] N [ay,...,a,] and N[T1().

Proof. If uela,y, ..., a,] and PTu = 0, then Tue® and Su = u—

—TueN[T]. Let @ = I—P and veN[T]- Then

Ty = T(Pv+Qv) = TPv+-Qv = 0
so that TPy = —@u. Thus, if R is the restriction of P to N[T], then
E:N[T]—[ay,...,a,] and

PT(Rv) = PTPv = —PQov =0
for »e N[T]. Hence Rv is in the null space of P7. To complete the proof
we need only note that for veN[T],

SRy = Pv—TPv = Pv4+-Qv = v
so that § = R~

In Theorem I.1.1, let M be the matrix representation of the restriction
of PT to [ay, ..., @,] with respect to the basis a,, ..., a,. Then dim N [T]
is equal to the rank of M. M is called the mairiz representation of T with
respect to the decomposition (1.1.2). \

If a decomposition for T' ~ I different from (1.1.2) is used, a different
maitrix representation is obtained. If for instance a different basisb,, ..., b,
is chosen for [ay, ..., a,], then
(L.1.3) V =D4[byy ..., b,]
is also a decomposition for ' ~ I. For k =1, ..., n,

n
Tay = D)oyt dy,

i=1

n
Ty, = _Z;biﬁik’i“d;n
iz

() N[T] = {u: ueD(T) and Tw = 0}
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where d, dj¢®. The matrix representation of T' ~I with respect to
(L.1.2) is then M = (az), while the matrix with respect to (I.1.3) is
N = (B4). Since ay,...,a, and by, ..., b, are bases for the same finite
dimensional space, however,

n
by = X tyu, k=1,..,m,
im1 ‘

where the n X7 matrix 8§ = (yy) is non~silngula1;. Writi;lg G = (Gyy ey @),
b =(by,..., b,),d =(dy,...,d) and & = (d,...,d,), We have then
that b = af, so Co

T =T
But also,

(a8) = (Ta)8 = (aM+ )8 = aMS+ds.

Th =bN+d = aSN-+d'
30 d' = a8 and MS = SN. Thus ¥ is related to M by the formula
N =8"MS.

In particular, det N = det M.

Another way in which the decomposition (I.1.2) for T ~ I can be
changed is by choosing linearly independent elements dy,..., d, <D to
obtain a representation
(1.1.4) V =9 +[ay, ...

For k =1,...,n,

s Oy Gy ooy ], D =D,

m

. n
Ty, = %aiaik+ Zdi6i7c+ A
= k2

=1

while for £ =1,...,m, Td; = d,. Hence the matrix representation for
T with respect to (I1.4) is the (n-+m) X (n-+m) matrix
, Mo
=53

where M = (ay) is the n X7 matrix representation for 7 with respect
to (I.1.2), D is the mXn matrix (d;) and I is the m X m identity matrix.
Again det M’ = det M. '

Suppose next that M is the matrix representation for T ~ I with
respect to (1.1.2) and N is the matrix representation of T ~ I with respect
to the decomposition

(L.1.5) V =D 4y, ...
Put o = [ay,...,a,]and B = [by, ..

s bl
-5 by]. We choose decompositions

D=DnD4D, D '=DnDiD.
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Defining o' = 4D, ' = #+D;, we geb
V=90n®tsd =DNnD1%.
We decompose further
DAD =D tUL+F) D D]
We arrive thus at the decomposition
V =2" (S +%),
which leads to two decompoéitions for the perturbation T ~ I:
V=D"4{ay, ..., tp dyy ..., dg]
V =" 4[byy ey by gy -eny ]

In view of the preceeding considerations we obtain the following

with d;eD,4=1,2,..., ¢,
with d;e®’,4 =1,2,...,p.

- theorem:

TEEoREM I.1.2. If (11.2) and (L1.5) are two decompositions for the
perturbation T ~1 and M, N the corresponding matrices, then there exist
two integers p = 0,9> 0 with m+p =n+q and a (n+q)X(n+g) non-
singular matriz 8, p, ¢ and S depending only on the decompositions, so that

N 0 M 0
b )= o)
N I M I

Here the mairices M’ and N' are qxXn and pXm respectively; they
depend in general on the operaior T and not only on M, N and the decompo-
sitions.

As an immediate corollary we obfain

CorOLLARY 1.1.2'. det M = detN.

TaworEM 1.1.3. If Ty ~ I and T, ~ I, then there exists a decomposition
for T,y ~ I which is at the same time a decomposition for T, ~ I and
Ty ~ 1. Moreover, if My, My, M are the matrizc representations of Ty, Ty, -
and T, T, respectively with respect to any such common decomposition, then
M, = M1 M,

Proof. If V =D+[ay,...,0,1, V=D, +[by,...,b,] are decom-
positions for T, ~ I, T, ~ I respectively, then D" = D N D, is of finite
codimension and there exist elements ¢;, ..., ¢, in V such that

(1.1.6) V =2"4[e .05 6],

and T'T, =T, =T, =1 on D'. Hence (1.1.6) is the common decom-
position of the theorem. Pufting ¢ = (¢4, ..., ¢,), We have

Tio = oM, +d, The =cMy+d, T,Tye =cMstd”,
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where 4, &', and @' are p vectors with components in D’. But also
T,Ty¢ = Ti{cM,+d) = (Ty0) My+d' = o(M, M)+ (AM o+ &),

§0 &' =dM,+d and My = M, M,.

The determinant of T ~ I, written det7, is defined as det M, whiere
M is any matrix representation of I. From the above discussion it follows
that detT is independent of the particular representation of T ~ I uged
to define it. From theorem I.1.3 follows .

CoroLtARY 113 If T, ~I and Ty~1, then T.T;~1 and
det(T,T,) = (detT,)(detT,). ‘

Let (I.1.2) be any decomposition -corresponding to T ~ I, and P
be the projection of ¥ onto [ay, ..., &,] determined by (I.1.2). Then
Ta,— PTa;eD, ¢ =1,...,m, and if ¥ is the finite-dimensional space
spanned by @y, ..., a,, Ta,—PTay, ..., Ta,~PTa,, then V = D 1%,
where T =1 on ® <D, and ¢ is an invariant subspace of T. Clearly,
detT is the determinant of the restriction of T' to the finite-dimensional
space (. The following theorem is then obvious:

TamoreM I.1.4. Let T ~ 1. Then T has an inverse if and only if
detT 0, and detT™* = (detT)™.

Given a perturbation T ~I and a corresponding decomposition
(1.1.2), the corresponding matrix representation M can be obtained
using linear functionals defined on V. For if

ki3
Ta,k=2aiaik'—l—dk, E=1,..,mn,
=1 !

and if ¥y, ..., F, are linearly independent linear functionals on V which
vanish on ®, then for k,1 =1, ..., %,
(I.L7%) Fy(Tay) = § Fy(az) oy,

and the n xn matrix [Fy(a;)] is non-singular. Hence (1.1.7) can be solved
for ay to obtain

(1.1.8) M = {F(a)} " {F(Ta)},

det [F(Ta,)]

(L.1.9) det[Fy(a)]

detT = det M =

These formulas become. especially simple when the functionals T;
form a dual system (biorthogonal) to the basis {a}, i.e. when F;(a;) = 6; .
Then

M = {F(Ta)}, detT = det{F,(Ta,)}.

icm°®
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Let A be a linear transformation from V into W and (4> be its
perturbation class. For any B, Ce{(A)> such that B™' exists, we define
the transformation B\C:D(4) -D(4) by

(1.1.10) B\O = 8,5B 1084,

where {Spg: B, 0c{(4)} is a coherent set of isomorphisms for (A4).
Clearly B\( is a finite-dimensional perturbation of the identity on D (A4).
Obviously B\C depends on the fixed operator A in the perturbation
clags (4> = (B) = (0.

TEEoREM 1.1.5. Let A be a fived linear iransformation from V into
W and let B ~C ~D ~ A such that B~ and O~ ewist. Then

B\CO\D = B\D, detB\CdetO\D = detB\D.
Proof. B\CO\D = 8,5B7 108048400 " DSpy = 84zB*DSp,.-
The second equality in the theorem follows from Corollary 1.1.3'.

TimorEM 1.1.6. Let A ~ A’ ~ B ~C and let B™ evist. Denote by
{B\0)' the operator B\C with A replaced by A’. Then (B\C)' is isomorphic
10 B\C by the isomorphism 8. 4, %.e. (B\C) = 8,4 4B\C8 4. Moreover,
det B\C = det(B\0)".

Proof. By the coherence of the isomorphisins Sge we have
8.4B 7 080y = B4a845B7 0804 S

The isomorphism of the two operators implies the equality of their
determinants.

Consider now a common coherent decomposition for 4 ~ B ~0C
where B~ exists:

D) =Diay, ..., 0]
D(B) =D+[8pa01, - Spaty]
D(C) =D+[8psGys -y 80.40,]

Obviously D(4) = D+[64, --., 4,] is a decomposition corresponding
to B\C ~ I on D(A). Writing mat B\C for the corresponding matrix
Tepresentation of B\C and introducing n independent linear functionals
F, on D(A) which vanish on D we obtain from (I.1.8) and (I.1.9)

{L.1.11) mat(B\C) = {Fy(a;)} " {F1(8.45B ™" O8c.4@)},
det {Fy(84pB " C804 )}
det {F{a;)}
2. Nullity and deficiency. Let V, W be linear spaces and let A De

a linear transformation from V into W. The nullity a(4) is defined to
be the dimension of N[A], and the deficiency B(A) is the codimension

Au = Bu = Cu for ueD.

(1.1.12) det(B\C) =
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of the range R[A]in W. The index y(4) 1s the difference y(4) = f(4)—
— a(A), and is defined only when either a(4) or f( A) (or both) is finite.
Thus y(4) may be finite, +oo or —oo. )

TEmoREM 1.2.1. Let B ~ A, and n.be the dimension of the perturbation.
Then a(A) is finite if and only if a(B) if finite and B(4) is fimite if and
only if B(B) is fimite. If a(A) is finite, |a(4)—~a(B)|<n and if B(4) is
finite, |B{A)—B(B)| < n. Moreover, y(4) is defined if and only if y(B)
is defined, in which case y(4) = y(B).

Proof. Let D = {u: ueD(4) n D(B) and Au = Bu}. We may then
write N[A], N[B] as direct sums
N[A]=N4N,, N[B]=N1}Ng,

where N = N[A] n N[B] = D, and choose a decomposition corresponding
to A ~ B of the form

D(A) =DI+N+ My, =D{ Nzt Mp.
Since » is the dimension of the perturbation we have
(L.2.1) dim N, +dim M, ="dimNg+dimMy =n.

In particular, dimN, and dim¥y are finite. Thus since a«(A)
=dimN+dim N, and o(B) = dimN-+dimNg, «(B) is finite if and
only if a(4) is, in which case (I.2.1) shows that

le(4)~a(B)| = |dim N ~dimNg| <
On the other hand, A(M,) N A(D) = {0} and B(Mp) n B(D) = {0},

D(B)

80 .
W=A@®)+A(M )+ W,,
W = B(D)+B(Mz)+ Ws,

A), dim Wy = B(B). Note that A (D)

= dim M, < oo, and that dimB(Mp)

dim M4+ p(A) = dim Mp+8(B),
80 B(B) is finite if and only if (A) is finite, in which case (1.2.1) shows
[B(B)—B(4)| = |[dim Mp—dim M | < n

We next consider the quantities y(4) and y(B). Since a(4) is finite

. if and only if a(B) is finite, and similarly for p(4) and A(B), it is clear

that if y(4) is 4-co or —oco, then y(B) must also be +oco or —oo reypec-

tively. If y (A) is finite, on the other hand, then both a(4) and §(4) are
finite so that a(B), #(B) must also be finite. Hence, using (1.2.1),

a(4)—a(B) = dim¥ ,— dGim N, = dim Mp—dim M, = f(4)—B(B),
so that y(4) = 7(B).

‘where dim W, = §(
M(MA)

= B(D), that
= dim My < cc. Hence

icm°®

Finite-dimensional perturbation I 15

3. Continuous operators on Banach spaces. In most of our con-
siderations we shall deal with operators A having for.domain D(4)
a Banach subspace of a fixed Hausdorff topological vector space ¥ and
transforming ©(4) continuously (in its topology) into a fixed Banach
space W.

‘We remind the reader of a few elementary facts about Banach sub-
spaces. ‘

A Banach space D which is a subspace of a Hausdorff topological
vector space V is called a Banach subspace of V if the injection mapping
(identity mapping), ® — V, is continuous. If D and D, are Banach sub-
spaces, then D ND,; and D+D, are also Banach subspaces of V with
the following norms: ‘

{L3.1) fllonm, = max [[jully, luls,1s
(1.3.2) Illpss, = Wf [fols+ foills,]-
mm”iles‘:‘l

In case D and D, are Hilbert subspaces we can replace the above
norms by equivalent ones making the corresponding spaces into Hilbert
gpaces.. These norms are:

(1.3.1)
(1.3.2")

= [lulp+ lulls,
mf lllel+ ”"’1”91

‘Dﬁm ”1‘91 !

[ull5ns,

”‘"f”?i)+§>1

By using the closed graph theorem one immediately obtains the
following two propositions:

ProrosirioN 1.3.1. If D, c D and D and D, are Bamnach subspaces
of V, then D, is a Banach subspace of D.

PrROPOSITION 1.3.2. If D is a subspace of the Hausdorff topological
vector space V, then the;e exists at most one Bamach topology on D making
it into @ Banach subspace of V.

ProrostrioN 1.3.3. If A is a continuous mapping of the Banach space
D into the Banach space W, then the range, A(D), is a Banach subspace of W.

Proof. Consider the null-space N[A] which is a closed subspace
of ©. The mapping 4 induces an algebraic isomorphism of the quotient
space D/N[A4] onto A (D). Using this isomorphism, and transferring the
norm of D/N[A] to 4 (D) we obtain the required Banach topology.

ProrosITION L.3.4. If D, is a Banach subspace of D, and D, is of
findte codimension in D, then Dy is a closed subspace of D.

Proof. We have D = D;+8, where S is finite-dimensional. Any
norm chosen on § makes § into a Banach subspace of . The norm I.3.2
on D, 48 is here the direct sum norm in which D, is a closed subspace
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of . But this norm makes D a Banach subspace of D; hence by Propo-
sition 1.3.2 it is equivalent to the original norm of ©.

Proposition 1.3.4 together with 1.3.3 gives

PropOSTTION L3.5. If A is a continuous mapping of the Banach space
D indo the Banach space W and if the deficiency B(4) is finite, then A (D)
s a closed subspace of W.
. ‘When dealing with finite-dimensional perturbations of operators

transforming continuously their domains — Banach subspaces of V — into

the Banach space W we will agsume that in the corresponding decomposi-
tion (L.1.1)

(1.8.3) The subspace D is a closed subspace of D(4) and D(B).

This assumption is not an essential restriction since in the minimal
decomposition, D = [u: ueD(4) N D(B), du—Bu = 0] is a closed sub-
space of both D(4) and D(B). To see this we remark that with the norm
(1.3.1) on D(4) ND(B) this intersection -becomes a Banach subspace
of V which is transformed continuously into W by A and B. Hence D
is a cloged subspace of D(4) N D(B) and therefore a Banach subspace
of D(A) as well as D(B). Proposition 1.3.4 then gives our statement.

In consequence of the assumption (I.3.3) the linear functionals F,
used in Section 1 to establish the matrix representing the perturbation
T ~ I are necessarily continuous. Also the isomorphisms Spo between the
domains of transformations in the same perturbation clags are neces-
sarily topological.

M. SPECTRAL PROBLEMS AND THE QUASI-RESOLVENT SET

1. The spectral problem. We will call an algebraic spectral system or,
briefly, a system, a triple [V, W, #] composed of two vector spaces 14
and W and a 2-dimensional pencil £ of linear transformations of V into W.
Such a pencil is formed by a linear mapping % of the 2-dimensional
complex space C* into the space L(V, W) of all linear transformations
of V into W. However, the same pencil is obtained if we replace .Z by
28, where § is any linear automorphism of ¢* onto C*. It follows that
the pencil iy determined if we give the images H = % (w,) and G = &£ (w;)
of any basis a,, w, in (* without specification of the basis. H and ¢ will
be called generators of the pencil Z.

If a transformation Z is the image of an element in (* by a mapping
determining the pencil we will say, for brevity, that Z belongs to #, Z <Z.

I H,G@ are generators for &, the quadruple [V, W, H, G] will be
called a representation of the system; sometimes we will just speak about
the system [V, W, H,G]. ) :

° ©
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Let H, @ be fixed generators for £. Then
(IL1.1) Ze? <7 =G+ BH, (a,p)eC?.

Any other couple of generators H', & of & is given by a non-singular

complex matrix (’: 2),

(IL.1.2) G' = aG+bH, H =c@+dH.

Consider the linear mapping ¢* —~ & given by (IL1.1). We will not
be interested in the image of (0, 0) and in our investigations two trans-
formations Z, and Z, of & which differ only by a non-zero scalar multiple
will have the same properties and will be considered as equivalent.
Accordingly, we can consider 0°—(0,0) as divided into aquivalence
classes of vectors differing by a non-zero scalar multiple (they form the
1-dimensional complex projective space) and these equivalence classes
will be transformed (by (IL.1.1)) into equivalence classes in #. This seb
of equivalence classes of 2 will be denoted by 2 — the reduced pencil £.
The equivalence classes in (*— (0, 0) are in classical 1-1 correspondence
with the complex numbers on the Riemann sphere; namely, we put for
(a,f)eC*—(0,0), = —BJa if a #0 or { =oco for « =0. We thus
obtain a mapping of the Riemann sphere on the reduced pencil
L (@—CH) if ¢ % oo, 0o —1H (v # 0). In the equivalence class of &’
corresponding to £ we pick a representative transformation A, as follows:

(I1.1.3) A, =G—tH for { # oo, A, = H.

The mapping of the Riemann sphere into 2 and the transformations

" A, obviously depend on the choice of the generators H,G in 2. If we

choos'e other generators H',@ given by (I1.1.2) and denote the corres_
ponding transformation assigned to ¢ as A;, then we have the formulag

(IL1.4)  The equivalence class of A; is the same as the one of A,, where

_ b—d¢f or _al'+b

¢= a—of T er'+d

Remark II.1.1. There is an unavoidable lack of continuity in the
determination of 4, for ¢ — co. In most of our considerations we will
treat only the case { # co but the results will be valid also for { = oo,
due to the fact that we can choose the generators so that to a given equi-
valence clags in £ a finite value of £ is assigned. In the few cases where
a special couple of generators has to be used we will consider explicitly
the cage { = oco.

If [V, W, #] is an algebraic spectral system, V is called the domain
and W the range space of the sym. For any V, = V, let B[#, V4]

Studia Mathematica XXXVIL1 2
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be the subspace of W generated by all elements Zv with veV; and Z<2;
R[#, V] is the range of the system. The system is exact if R[#, V] = W;
it is proper if, for every pair G, H of generators of £, N[G] N N[H]
contains only the zero vector. The system is singular if no transformation
in & has an inverse defined on all of W; otherwise the system is non-
singular.

If V,, W, are subspaces of V, W respectively, and if R[#, V,] =« W,
then by restricting the transformations in & to V, we obtain a pencil,
again called #, of transformations of V, into W,. Then [V,, W, #] is

- also an algebraic spectral system, and is called an algebraic subsystem
of [V, W, #]. It is called an algebraic spectral subsystem if there exists
another subgsystem [V,, W,, ] such that V = V, LV, and W = W, 1+ W,.
The two subspaces then determine & spectral decomposition of [V, W, £,
written

v, W) 7] = [Vu Wl"@]'I'[VZ! -"727 Z].

The general spectral problem is the determination and investigation
of all spectral decompositions of a given spectral system. Two systems
[V, W,#] and [V,, W,, Z,] are isomorphic if there exist isomorphisms
8, T of V onto V, and W onto W, respectively such that £, = T#8,
Since isomorphic spectral systems have isomorphic subsystems, the
spectral problems for isomorphic systems are equivalent.

Remark IL.1.2. It might appear to the reader that our notion of
& 2-dimensional pencil is nothing more than a 2-dimensional subspace
of L(V, W). This would be so if we did not have the degenerate pencils
_with linearly dependent generators, in which case the transformations
of the pencil form a 1-dimensional, or even 0-dimensional subspace of
L(V, W). We cannot systematically avoid the consideration of degener-
ate pencils since even if the generators of a pencil are not linearly depend-
ent, they may very well become §0 in a subsystem. In a degenerate
pencil we can always choose a couple of generators with H = 0. In this
case 4, = @ for all finite ¢ and 4, = 0.

In case ¥V and W are locally convex linear topological spaces we shall
consider only fopological speciral systems; ie., those algebraic systems
[V,W,#] where & consists entirely of continuous transformations.
Accordingly, [V, W,,#] is a topological subsystem if, in addition to
being an algebraic subsystem, V, and W, are closed subspaces of V and W
xé?spectively. We shall then consider only topological spectral decomposi-

ong
v,w,7] = (Vi Wi, 2T+ Vs, W, 21;

namely, thosg Wl%ere. [V, Wy, 21,4 = 1,3, are topological subsystems
and where the projections of ¥ onto V, and W onto W, are all continuous.

° .
Im© Finite-dimensional perturbation I 19

Two topological spectral systems [V, W, #] and [V,, W,, #,] are iso-
morphic if in addition to being isomorphic as algebraic systems the iso-
morphisms S: V -V, and T: W — W, are topological isomorphisms.

Some. special topological systems are of importance. A topological
spectral system [V, W, ] is called a Hilbert system, Banach reflexive
system, Banach system, or normed system respectively if V amd W are
both Hilbert spaces, Banach reflexive spaces, Banach spaces, or normed
spaces respectively. It is called a weak topological system if both V and
W are’ weak topological spaces; i.e., if ¥V, W have the X-topology,
Y-topology respectively, where X, ¥ are some total subspaces of the
algebraic antiduals V', W' respectively of V, W.

Both algebraic systems and topological systems can always be made
into weak topological systems. To see how this change can be made in
the case of algebraic systems, let [V, W,#] be an algebraie spectral
system and X, ¥ be any total subspaces of V', W' respectively. If V, W
are provided with the X, Y topologies respectively, then [V, W,#]
becomes a weak topological system if and only if each transformation
Z e is continnous with respect to these topologies. But a transformation
Z of V into W is continuous with respect to the X, ¥ topologies on V, W
respectively if and only if Z*(Y) « X, where Z* is the algebraic adjoint
of Z. Thus [V, W, #] becomes a weak topological system if and only if
X, Y are 50 chosen that Z*(¥) c X for every Ze#. In the case of an
algebraic system [V, W, #], we shall always make it into a weak topological
system by choosing X = V', ¥ = W'.

In case [V, W, #] is a topological system, however, we shall assign
to V, W the V*, W* topologies respectively, where V*, W* are the anti-
conjugate spaces with respect to the original topologies (i.e., the spaces
of continuous anti-linear functionals). Since every linear mapping of V
into W which is continuous relative to the original topologies remains
continuous relative to the newly assigned weak topologies (see the pre-
ceding paragraph), the assignment of the weak topologies makes [V, W, #]
into a (weak) topological system.

Let

(11.1.5) [V, W,#] =V, Wi, Z1+[V,y W,, #]

be a spectral decomposition in the original topologies. Subspaces, being
conves, are closed in the original topologies if and only if they are closed
in the weak topologies, and projections of ¥V or W onto closed subspaces
which are continuous in the original topologies remain continuous in the
weak topologies. Hence (IL.1.5) remains a spectral decomposition for
the weak system. However, spectral decompositions for the weak system
are not in general also spectral decompositions for the original system,
since projections which are continuous in the weak topology need not
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be continuous in the original topology. If, however, the original system
is a Banach system, then its spectral decompositions and those of the
corresponding weak system are precisely the same. This conclusion follows
from the fact that a transformation of ome Banach space into another
is continuous if and only if it is continuous relative to the associated
weak topologies.

Another case in which it may be convenient to replace one spectral
system by another is in the case of incomplete normed systems. If
[V, W, #7] is a normed system and if f/', W are the completions of V, W
respectively, then every transformation in £ can be extended by continuity
toa jransformation of 7 into W. Thus we obtain a pencil of transformations
of V into W (again denoted by #), and a Banach system (v, w, 2,
the completion of [V, W, #]. Topological spectral decompositions

v, w,7] = Vi Wl,-@]-l-[Vg, Wy, 2]
determine corresponding spectral decompositions

[f7: Wy‘@] = [1}17 ﬁ;’ug]'i'[f}z: Wmﬂja

where V; is the closure of V,in V and V,, W,, W, are defined in a similar
way. All spectral decompositions of [V, ﬁ’, 2] are not necessarily ob-
tainable in this way, however. Thus, by completing the original normed
system the clags of spectral decompositions may be enriched.

Hence every system can be replaced by a weak topological system
and normed systems can be replaced by their completed systems, though
in each case the class of spectral decompositions may be enriched. Our
main interest will therefore be in weak topological systems and in Banach
systems. For a system [V, W, 2] of either of these types we can also
consider the associated dual system [W*, V*, #*], where V*, W* are the
anti-conjugate spaces to V¥, W respectively and

P = {Z*: LeP).

If EV, W, #] is a Banach system, V* and W* are given the canonical
topologies determined by the norms of V, W respectively. If it is a weak
topological system, V*, W* are provided with the ¥, W topologies re-
spectively. For weak topological systems we have the following (see Aron-
szajn [5]):

TuporEM (The duality theorem). Let [V, W, 2] be a weak topological
system and [W*, V*, #*] its dual system. Then

1° The dual of the system [W*, V*, #*] is the system [V, W, 2]

_L2° If [*Vl,_ Wi, #] is a topological subsystem of [V, W,#], then
[17["1 y Vi, @] is & topological subsystem of [W*, V*, #*] (Vi = {v*eV™:
v [V,] = 0} and similarly for Wi). s

* ©

3° Corresponding to each spectral decomposition
[Vy W7 ga] = [Vu Wu ga]'}"[vii Wzs 7]
there is a dual spectral decomposition
[W*, V*, #*] = [W&, Vi, P14 WL, Vi, 2'1.

Further, there is a canonical isomorphism of the spectral subsysiems
[Ws, Vi ga*], [wi, Vi, '] ondo [va Vf, ga*L [W:, V;y #*] respec- -
tively. ’ :

For a Banach system we have the full duality theorem only in case
the system is reflexive. For in this case the weak system corresponding

‘to [W*, V*, #] coincides with the dual of the weak system corresponding

to [V, W,#]. In the non-reflexive case, the” dual of the weak system
corresponding to [V, W, ] has coarser topologies than the weak system
corresponding to [W*, ¥*,#*]. Thus, when the dualiby theorem is
required we shall replace non-reflexive Banach systems by the corres-
ponding weak systems.

The close connection between spectral problems for spectral systems
and more classical spectral problems is illustrated by the erdinary spectral
systems. An ordinary speciral system is a Banach system of the form
[V, ¥V, 2] where & contains the identity I on V. For an ordinary system, if

v, v, Z] = [V1, Wo, P14V, W, 7],

then, for each Ze#, Z(V,) = Wy and Z(V;) = W,. Since I, therefore,
V,c Wy and Vo W,. But also V =V, 4V, = Wi+ Ws, s0 V, =W,

_and V, = W,. Thus the spectral problem for ordinary systems is the

determination of all decompositions of V into the direct sum of closed
subspaces invariant under each operator in #. If G2 is so chosen that
@, I generate &, then the system can be written [V, V, I,G], and the
representatives for the equivalence clagses in & are 4, = @G—Al. The
spectral problem for the system is then equivalent to the classical spectral
problem for G.

Every pon-singular Banach system [V, W, Z] is isomorphic to an
ordinary system, for at least one transformation Ze# has an inverse
(necessarily bounded, since V, W are Banach spaces). Thus Z is a topological
isomorphism of V onto W and [V, V,Z'#] is a Banach system iso-
morphic to [V, W, Z]. Since I G2, the system is ordinary. For singular
systems, however, such a simplification is not possible.

2. Finite spectral systems. [V, W,#] is a finite speciral system it
both V and W are finite-dimensional. In this section we shall give a sum-
mairy of the results of Aronszajn and Fixman [8] concerning finite systems.
In the case of finite systems, the distinctions between algebraic and
topological spectral systems disappear.
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[V, W, 2] is a minimal sysiem if it has no non-trivial spectral decom-
positions. BEvery minimal system [V, W, H, @] is of one of the following
types: ,
I": dimV =n, dim W =n—1 and dimN{4,] =1 for all 4

(including oo).
Imy: dimV =n, din W =n, and dimN[4,] =0 for 1 6,
and =1 for 4 = 0.
Ir:  dimV =n—1, dim W = n, and dimN[4,] = 0 for all 1.

The index 7 in all three types passes through all positive integers
n =1,2,3,... Moreover, a system of one of the above types is minimal.
The classification of a minimal spectral system [V, W, 2] is therefore
made with Tespect to a particular pair of generators @, H of #. However,
a minimal system of type I™ or III” with respect to one pair of generators
is of the same type with respect to any pair of generators, while a system
of type II} for one pair of generators is of type IX7, if the new generators
are given by (I1.1.2) and Z, {’ are related by (IL.1.4). Note also that sys-
tems of type I" or ITI" are singular while those of tiype IT" are non-gingular.

If @ H are linearly dependent; e.g., if oH = f@, (a, f) # (0, 0),
then a{ minimal system [V, W, H, @] must be of either type I',II},,
or ITT'.

Every finite system can be decomposed into a direct sum of minimal
systems

[Va Wa Hy G] = [Vn Wu Hy G]—-}—...—I—[V,., Wra H; G]-

'The decomposition is not unique but each such decomposition contains
not only the same number » of minimal subspaces but also the same
number of each type of minimal subspace.

A second way of classifying minimal systems is by means of chains.
A chain I' of length » with respect to the system [V, W, H, G] is a subset
{vy,...,v,} of V such that Guv, = Hvypqy ¢ =1,...,0—1 TIf we set

w; = Hoy, 4 =1,...,n, and w,,, =Gv,, then I' can be represented
schematically as follows:

2NN L BN

Wp1

The space spanned by v,,...,9, is called the domain DIy of T
1“.he space spanned by wy, ..., w,,, is the range R(I") of I'. A chain is propet
if the elements. w,,...,w,,, are linearly independent except that w,
O W,,; or both may be zero. It follows that the elements U1y .0y VU, ATO
also linearly independent. !
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T'is said to determine the system [V, W, H, @] if it is a chain relative
to [V, W,H,G] and if V = D(I), W = R(I'). Then a minimal system
[V, W,H,G] is of type

I*: if and only if there exists a proper chain I" of length n which
determines [V, W, H, @] such that w, = w,,, = 0.

II%: if and only if there exists a proper chain of length n which
determines [V, W, H, 4,], it 6 <00 (or [V, W,G,H], if 8 = o0),
such that w, % 0, w,,, = 0.

III™: if and only if there exists a proper chain I' of length » —1 which
determines [V, W, H, @] such that w, % 0,w, 5 0. (For type III' we
consider I" to have D([) = {0} and R(I') = [w,].)

The above statements are true whether or not G and H are linearly
independent. )

A third way of characterizing minimal systems is by means of
maitrices. (For a classical discussion see Turnbull and Aitken [23].) For
if [V,W,H,G] is a minimal system of type I", and I' = {D1y ey Vnt
is @ proper chain which determines it (with w, = w,,, = 0), then @ and
H can be represented as matrices with respect to the basis vy,..., s
for V and the basis ws, ..., w, for W. Then, for any 2, the (n—1)Xn
matrix representing A , with respect to this basis is

11— 0
0 1 —4

0

1—4 0

0 1 —1
I [V, W, H,G] is minimal of type II}, § 5% oo, and I' i a proper
chain of length » which determines [v,Ww,H, 4,] (with w, # 0,w,,
= 0), then, using v,, ..., ¥, 25 & basis for V and noting that Gv;, = i“fi-
+6w;,i=1,...,n, We see that 4, can be represented by the n X n matrix

0—A40

0

0
1 6—2
T6—10
0 1 0—24
If § = oo, 4, is represented by the nXn matrix
10 0
—A1

X o

—A1
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In similar fashion if [V, W, H, @] is minimal of type III* 4, can
be represented by the nx(n—1) matrix

-0,

1 -

. 1
0 1

Thus for each minimal system» [V, W,H,G], 4, =G—iH can
be represented, with respect to a proper choice of basis for V, by a matrix
of one and only one of the above canonical forms, thus exhibifing the
type of the system.

The close connection of the coneepts given here with those of clagsical
spectral theory is again illustrated by ordinary systems. If [V, V, I, @]
is a minimal system of type IIf, then there is a proper chain I" of length
n such that

w, = Iy, = (G—0D)v;_, = (G—0IV "o, 4§ =1,...,m,
and ,,, .= (G— 6I)"v; = 0. Thus
V=D = (1, (G— 0I) vy, ..oy G(— 01)7»—1”1],

where (G— 6I)"v; = 0. Moreover, the matrix representation for 4, = @
is simply the Jordan canonical matrix representation for G.

3. The quasi-resolvent set %. In this section we discuss the notions
of quasi-resolvent set and of isolated eigenvalues for a Banach system
[V, W, H,@)]. Most of the results stated are due to Gokhberg-Krein [14]
and to Kato [19].

Recall that the nullity a(4,) is defined to be the dimension of N [4,],
A; =G—AH, and the deficiency B(A;) is the codimension of the range
A4,(V) in W. When there is no danger of confusion we shall often write
a(4), (1) for a(4,), f(4,) respectively. The quasi-resolvent set & of the
Banach system [V, W, H, @] is defined to be the set of all 1 on the
Riemann sphere such that E[4,] is closed and either a(A) or (1) (or both)
is finite. The complement of % is called the essential spectrum of the systém.

Z has the following properties:

1° Z is the disjoint union of a countable number of open connected
components Z,.

2° In each component 2%, the index y(1) = (A )—a(A) is constant.

3° In each component £; both a(l) and B(%) are constant execept
at a countable number of isolated points A, called the isolated eigen-
values of the system.

icm°®
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4° About each isolated eigenvalue 1, there is a neighborhood N,

with the property that, for all 2 in N, 2 # 44,
a(lr) = ad)+rip,  BlAe) = B(A)+ 7,
where 7;; is an integer, 0 << 15 << oo,

The pair (a(4), B(4)) is called the character of the poini i. In each
component £, of 92 a,ll points except the isolated eigenvalues have the
same character; i.e., a{d) = @, f(1) = B; for all AleZ%; which are not
isolated eigenvalues. The pair (o;, ;) is called the character of the com-
ponent &;. &; is said to be of finite character if both «; and f; are finite;
if either o; or f§; is infinite, 2, is of infinile character. The union of all
components of % of finite character is the finite part #' of #, while the
union of those components of # of infinite character is the infinite part
* of . Qlearly, # = %' U 2.

The union of all components of # of character (0,0) is called the
meromorphy domain of the system, while the set of all 2 with character
(0, 0) is its resolvent sei. For an ordinary system [V, V, I, (] these defi-
nitions coincide with the classical definitions of meromorphy domain
and resolvent set for G. Note that the resolvent set of a Banach system
[V W, H, @] is non-empty if and only if the system is non-singular. For
2 non- smg"ular system the generators ¢ and H can always be chosen so
that H~* exists. Then, for A in the resolvent set %, of [V, W, -H, &],
A7' = (G—2AH)™' = (H'@— ) H™, and it follows from the classieal
theory that %, is open and A;' is analytic in 2 for le%,.

The following theorem is due to Gokhberg-Krein [14] and Kato [19]:

THEOREM G.-K.-K. Let A be a component of the quasi-resolvent sef
[V, W, H, @] with character (uy, Bo) and let 1 be an isolated eigenvalue in

. Then [V, W,H,G] adwits a (topological) spectral decomposition

[V W,H,G] =[Vy, Wo, H, G1+[Vs, Wy, H, 61+ .. +[VT,W“H 41,

where:

1° r is determined by the equations

a7 =a(2), Pfotr =p().

2° For each i =1,...,7,[Vy, Wy, H,G] is a finite spectral system
of type 113, where n; = dim V.

3° The systems [V,, Wo,H,G]1 and [V, W,H,G] have the same
quasi-resolvent set and its componenis have the same character with respect
to both systems. Moreover, both systems have the same isolated eigenvalues,
except that A is mot an isolated eigenvalue of [V, Wy, H, G].

The finite minimal systems [V, W,,H,&], ¢ =1,...,7, of type
TI% are called elementary divisors of [V, W, H,G] corresponding to A
The finite-dimensional space V' = V,+...+V, is called a generalized
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etgenspace for [V, W, H,G] corresponding to A. In case le¢ % is not an
isolated eigenvalue for the system we take V' = {0} to be the generalized
eigenspace corresponding to 1. Hence, for all' 1< Z, there exists a spectral
decomposition
[V, W, H,G =[V,, Wy, H,1+[V, W, H, @],

where V' is a generalized eigenspace corresponding to . Moreover, A
is not an isolated eigenvalue for the system [V,, W,, H, @], while the
system [V', W', H, @] has no isolated eigenvalue except, possibly, A
If 4 iy in the meromorphy domain of [V, W, H, @], both V' and W’
are uniquely determined. For arbitrary le %, dim V' and dim W' are
unique, though ¥’ and W' may not be.

4. Behavior of # wunder a finite-dimensional perturbation. TLet
(V,w,H,@ and [V, W,H,&] be Banach systems. Then
[V, W,H,,&] is said to be a finite dimensional perturbation of
{(V,W,H, @&, written [V,, W,H,,&¢]~[V,W,H,q], it ¥V and v,
are closed subspaces of a common Banach space and if G, ~ ¢ and H 1 ~H.
(The domain of & and H is V while that of @, and H, is V,.) In this case
B; ~ A,, where B, = G4,—H, and 4, = G—iH.

Our major interest in this section is an investigation of the behavior
of the quasi-resolvent set when a Banach system [V, W, H, @]is subjected
to a finite-dimensional perturbation.

TemorREM IT.4.1. Let [V,W,H,Ql, [V, W, H,,G] be Banach
systems with quasi-resolvent set R = R/ UR®, R, = R U RP. If
(V,W,H,@ ~[V,, W,H,,@], then R} = B’ and R® = R®.

The proof of Theorem II.4.1 immediately follows from Theorem
1.2.1, Proposition 1.3.4, and the assumption (I.3.3).

Even though the guasi-resolvent set R for a Banach system is pre-
served under finite-dimensional perturbations of the system, a component
which has character (ay, 8,) 2s a component of 2 for [V, W, H, ] will
not necessarily have character (a6, Bo) a8 & component of # for the per-
turbed system [V,, W, H,, G4]. In particular, the meromorphy domain
of [V, W, H, @] need not be the same as that of [V, W,H,G]. The
type of behavior which can occur is illustrated by the following example:

Let ¥ =TI?(0,2x) and consider the system [V,V,I,@G], where
G is defined by Gz(p) = ¢z(p) for zeV. We immediately see that
Gz = ||| for all eV, so that @ is a unitary operator in V. '

- For each complex 1,

4i2(p) = (G— )z (p) = (¢~ N)a(p),

and 4; has a bounded inverse if and only if [4] 52 1. The quasi-resolvent
set for [V, V,I,G] thus consists of two components: ‘

Oo={i: A|>1} and €, ={: 3] <1},
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and coincides with the meromorphy domain. The essential spectrum is the
unit circle {A: |A| = 1}; there are no isolated eigenvalues.

Let a, b, ¢ be any non-zero elements of ¥ and form the orthogonal
decomposition

V =D+ [a].

Define bounded operators I,, &, by I, =I,G =G on D and
I,a = b, G,a = c6®. The system [V, V, I,,&,] is a 1-dimensional pertur-
batiion of [V, V, I, G, and its quasi-resolvent set is therefore also Co L C;.
We shall see, however, that by proper choice of a, b, ¢ we can insure that
Gy, Gy, or 0y U0y is not in the meromorphy domain of the system

IV, V, I, G

If |4 # 1, then A;" exists and so B;* exists if and only if det(4;'B,)
# 0. From (1.1.9) we see easily (take F,(s) = (v, a)) that

v det(4;'B;) = (47" B4, a)/(a, a).

Straightforward computation then shows that

1 [T [elp)—b(p)Ialp) io [ boyats)

We make the following choices for @, b, and c:
1°X a =1,b =1+¢% and ¢ = ¢7, then

1 2w —1 i 2x i
det(47'B,) = 9—1 [ e+ [ (1+eW>d<p] =[
“* 1o 0

™

det(4;'B;) =

0 for <1,
1 for 4] >1.
Thus, in this case, C, is in the meromorphy domain of the perturbed
system, while ¢, is not.
2°If a =1,b = ¢, and ¢ = 1467, then
1 for A< 1,
0 for |A|>1,
50 that Cyis in the meromorphy domain for [V, V, I, G,] while (, is not.
3°If ¢ =1 and b = ¢ = ¢, then det(A;'B,) =0 for all 4] = 1,
50, in this case, the system [V, ¥V, I, @] has no meromorphy domain.
Thus, if a Banach system is subjected to even a 1-dimensional
pertuwrbation, the meromorphy domain may not only be changed but
may disappear altogether.

det(4;'B;) = [

5. Degrees and type of a matrix. In the next section certain facts
are needed concerning analytic m X m matrices M (1); i.e., matrices whose
components are analytic functions of 4 in a neighborhood of some point 1,
of the complex plane. These facts follow from known theorems concerning
matrices whose components are elements of an integral domain which
is at the same time a principal ideal domain.
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Let R be the ring of germs of functions analytic at 1, (i.e., the ring
of functions analytic at 4,, where two functions are identified whenever
they are equal on some neighborhood of ,). Then E is clearly a (commu-
tative) ring with identity, and the units of R are precisely those elements
fof R such that f(1,) = 0. Thus every element f in K can be written in
the form

f(e) = 2&"g(=),

where n 2> 0 is an integer and g is a unit. It easily follows that the product
fg of two elements in B is zero if and only if at least one of the factors
f, g is zero; thus R is an integral domain. It also follows that every ideal
in R is generafced by the element 2"¢R for some integer n =0, 1,
thus R is a principal ideal domain.

The following theorem [12] thus applies to B:

TEEOREM (Invariant Factor Theorem for Matrices). Let B be a ring
with identity which is ot the same time an integral domain and a principal
ideal domain, and R, be the ring of m Xm matrices with componenis in R.
If MeR,, then there exist mon-zero elements &y, ..., 8,eR, unique up to
unit factors, such that, for ¢ =1,...,r—1<m, §;|0,,,, and unimodular
matrices X, X,eR,, such that A = X, DX,, where DeR,, is the diagonal
matriz {8,y ..., 6,,0, ..., 0}

The elements 6, ..., §, in the above theorem are called the invariant
factors of the matrix M. The proof of the theorem shows they may be
obtained in either of two ways:

1. The elementary matrix operations of interchanging two rows

(or columns) of a matrix, of adding to a row (or column) another row -

(or column) multiplied by an element of R, and of multiplying or dividing
% oW (or column) by a unit can be effected by multiplication on the right
or left by unimodular matrices. By successive application of such ele-
mentary matrix operations, M can be transformed into the diagonal
matrix D; which gives 4y, ..., d, directly.

2. The i-th determinental divisor d;(M) of M, defined to be the greatest
common divisor of all the ¢ X4 minors of the matrix M, remains invariant
(up o unit factors) if M is multiplied on the right or left by a unimodular
matrix in R,, 4 =1,...,m. Thus the determinental divisors of M are
(up to unit factors) thel same as those of D. Since clearly

& =a(D), & =d&(D)d, (D)7,

the invariant factors can be computed directly from the determinental
divisors of M:

(IL5.1) 4, = &d

P =2,...,7,

((2), a; (M) sy (M)
¢, are units. Note also that di(M) =0fori =r-41,...,m

8 =¢ 1 =2,...,7,

where ¢, ...,

icm°®
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If B is the ring of germs of analytic functions at the point 4, in the
complex plane, then a matrix X R, is unimodular if and only if det X (4,)
# 0. Also, if M <R, and 6y, ..., §, are ity invariant factors, then for each
4+ =1,...,r there exists a unique non-negative integer », such that §,;(2)
= ¢ (A) A", where ¢; is & unit. Since &;[d;,, for i =2, ..., r, clearly

0y <...<,.

For i =r+1,...,m, let v, = oo, and let v,,, be the first element
of the sequence {»y, ..., ,,} which is > 0. Then the sequence {s4,1; ..., ¥}
will be called the type of the m X m matrix M (1) at 1,, and the numbers
Vs ooy ¥ Will be called the type exponents of M(A) at A,. There are
at most m type exponents in an m X m matrix. If y; = 0 forall? =1,..., m,
then M () is said to be without type exponents.

It follows from the Invariant Factor Theorem that the type of M (1)
at A, is not changed if M (2) is multiplied by a matrix X<R,, with
det X (4,) # 0, and that there exist X,, X,eR, with detX,(4) # 0,
det X,(4y) # O such that D = X; MX,, where D(2) is the diagonal matrix
{1, ..., #,0,...,0}. In fact M(4) can be transformed into D(4) by
successive applications of the elementary matrix transformations defined
above, thus giving the type directly.

Let d;(M), ¢ =1,...,m, be the determinental divisors of M. For
i=1,...7, (M) #0, s0 there exists a umque non-negative integer
() such that d,(M)(A) = (1) 2%, with & a unit. If d;(M)(2) =0
(a8 is the case for % =r+1,...,m), then by convention d;(4) = oo.
d;(%;) is called the i-th degree of the matriz M (A) at 1,. Clearly

0 d(A) < oo S dp(dy) S o0

The type exponents of M(A) can be computed directly using the
degrees, for by (IL5.1)

vo=dy k), %= &A)—dii(4), i=1,..,1,

while for ¢ =r41, ..., m, »; = d;(4) = oo. Conversely, the type expo-
nents v,1, ..., %y, completely determine the degrees d;(4,). For obviously
they completely determine all the numbers »; (the »; with the first k¥ indices
are all zero), and

v, fori<r
(I1.5.2) d; (%) = ,él ! !
oo for i >7r.

Note that M (4,) is invertible if and only if d;(4) = 0, ¢ = 1,...
i.e., if and only if M (1) is without type exponents at ;.

) M5
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ProrosrrioN IT.5.1. Let T(4) be an operator-valued analytic function
for 4 in a neighborhood of 2y, T() being bounded linear operators of V
into V. Suppose that T(1) ~I with a corresponding decomposition V

=Di[ay, ..., a,] independent of A, and with the m X m matriz representation.’

M(3). Let V =2 4[ay, ..., 6] be another decomposition for T(2) ~ I,
also independent of 2 and with o corresponding m' X m' matriz M'(3). Then
the types at A, of M (1) and M'(A) are the same.

Proof. Formula (1.1.8) assures us that M (1) and M’(2) are analytic
matrices (since the functionals F; can be taken independent of A). Theo-
rem L1.2 and the last stages of its proof show that we can construct
& decomposition V =D 40 for T(i) ~ I depending only on the two
given decompositions — hence independent of 1 — such that D" =« D N D’
and

0= [ay, ceey Oy dl) EAS dp] = [a';y seen 1,n'? di? reey d;']

with d;eD and d;eD’. The corresponding matrix M (1), formed for the
first basis of ¢ is then

moa _ (M@A 0 (M) 0
nw = (le I) = I(M;w I)S’

where the matrices M, (1) and M;(4) are pxm and P’ Xm’ respectively
and § is an invertible (m-+p) X (m+p) matrix with constant coefficients.
Since a matrix of the form (gfg) (1)‘) can obviously be transformed
\

into (g % (l)) by multiplication with analytic (m-p) X{m-+p) matrices
invertible at 4,, the type of such a matrix is the same as that of R(1).
Hence the types of the three matrices M"'(2), M (4) and M’ (4) are the
game.

Remark IL.5.1. The hypothesis in the preceeding proposition that
the decomposition corresponding to T(4) ~1I is independent of A will
be satisfied in all cases to which we apply this proposition in the next
section. However, this hypothesis. can be congiderably weakened. It is
enough to assume that the decomposition depends analytically on A
near A,: ie., that ¥ =D(4)+[a,(4), <oy @ (A)], where (1) are vector-
valued analytic functions and D(4) = {weV: Fy(u; ) =0,1 =1, ceey M},
. where ¥ are linearly independent hounded linear functionaly depending
analytically on A. The existence of such decompositions for T(A) ~ I
can be easily proved, and the proposition can be extended to prove thatb
for all such decompositions the corresponding matrices have the same type.

6. Determination of the isolated elementary divisors and of the
character of a perturbed system. Special cases. Let (I): [V, Ww,H,&]
and (II): [V, W, H,;, @] be Banach systems and suppose (I) ~ (II).

icm°®
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As usual, set 4, =G—1H,B, =G,—)\H,. The quasi-resolvent sets
for (I) and (IT) are the same, but in each component 4 of the quasi-resolvent

_set the characters of (I) and (II) may differ, and also the isolated eigen-

values and the corresponding elementary divisors might be completely
different. Our aim in this and the next sections will be to establish methods
for getting all desired information about {II) (such as the character in
a component A4, the isolated eigenvalues, the number and orders of the
corresponding elementary divisors) assuming that we know all that is
pneeded about system (I).

In this section we will give two theorems eoncerning special cases
and in the next will apply them for the consideration of the general case.

Note first that for such an investigation no generality is lost by
assuming V; = V. For in any case ¥, = SV, where § is a topological
isomorphism, so that the system [V, W, H,§, @S] is a Banach system
isomorphic to (II). We therefore assume from now until the end of the
next section that V, = V. '

Remark IL.6.1. It should be stressed, however, that for other in-
vestigations this kind of simplification may not be feasible, since it may
change the nature of the operators and many desirable features of the
original setting may be lost. See, for instance, the developments of
Chapter III.

The next proposition will lead to another simplifying assumption.

PrOPORITION I1.6.1. Suppose that the system [V, W, H,G] is such
that there is no essential specirum. Then either the character of the system on
the whole Riemann sphere is infinite or the system is finile dimensional.-

Proof, Suppose that the character of the system on the whole Riel
mann sphere is finite. In particular for 1 = oo, when 4; = H, we wil
have a(H) = p < oo and f(H) = ¢ < co. Consider the null space N of H
and the direct decomposition into closed subspaces V = V,+N, W
=H(V)+W,, dim¥ =p and dim W, = q. Further, let ¥V, and W, be
two spaces with dimV, = g and din}W2~ =P :

We define now a new system [V, W, H, ¢] as follows:

W= W W, = H(V)+ Wit Ws,

V= V*;-Vz = V1+N+V21

H on Vl,‘
B=!{8 on N,
T onV,,

where § and T are isomorphisms of ¥ and V, onto W, and W, respec-

tively; a -
onV,

0 on V,.

G =
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‘Tt is clear that the new system is obtained from the old by a finite-
dimensional extension. followed by a finite-dimensional perturbation.
Therefore the quasi-resolvent set of the new system is the same as of the
old; i.e., the whole R1emann sphere However, now a(H ) = f(H
Henee the system [V W H G] is isomorphic to the ordinary system
[V V I, a- ‘G] Since, by a classical theorem, an ordinary system in
an mﬁmte dimensional Banach space must have an essential spectrum,
it follows that V and W are finite-dimensional, henee also ¥ and W,
which proves our proposition.

Remark I1.6.2. It is quite clear that for a finite-dimensional system
the quasi-resolvent set is always the whole Riemann sphere. The quasi-
resolvent may actually be the whole Riemann sphere for an infinite-
dimensional system, but then the character must be infinite — either
(p, 00) or (oo, g). The first case can be illustrated by taking V and W
as sequential Hilbert spaces and putting H{&,} = {}, where ny,_, = &,
and 7y, = 0for k =1, 2,...;G{&} = {{x}, where (., = 0 and {y = &
for k =1,2,... Here the character is (0, oo). To illustrate the second
case take E {Ek} = {£y—,; and G{Ek} = {&,}. Here the character is

oo, 0

( Sche our main interest will be in the finite part of the quasi-resolvent
set for infinite-dimensional systems, we may assume, following Propo-
sition 11.6.1, that the essential spectrum is not empty. In consequence,
we can always choose a basis H, G for the pencil of our system so.that
A = oco be in the essential spectrum, i.e., 50 that oo does not belong to
the quasi-resolvent set.

From now on, until the last remark of this section, we will assume
that 4 = oo is not in the quasi-resolvent set of [V, W, H, ¢]. This assum-
ption is obviously preserved by finite-dimensional perturbations.

TesoreM I1.6.1. Let (X): [V, W, H, G] ~ (I1): [V, W, Hy, G4] and let

(I1.6.1) V'=Dilay, ..., a,]
be o decomposition (independent of 1) for A, ~ B;, where A; = G— AH and

B, =G — AH,. Let A be a component of the meromorphy domain for (I)
and Ly be an element of the resolent set for (I). Let, further,

(IL6.2) [V, W,H,, ] = [Vo, Wo, Hy, G414 2oV, We, By, 6]

be a spectral decomposition corresponding to 2,, emisting by Theorem
G.-K.-EK., § 3, where the elementary divisors [Vy, Wy, H;, G] are arranged
so that their orders my, form a non-decreasing sequence. Then 1° the character
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of A for system (II) is (no,no) for some ny>=0 satisfying the eondmm
o+7 < M. 2° The sequence

(I1.6.3) L. <N < 00 =00... = oo
ngtimes

gives the type of the matriz M (A) representing A7'B, ~ I with respect to
the decomposition (11.6.1).

Proof. Since 1, is an element of the resolvent set of (I), then for
A near A, A7'B,; is a well defined perturbation of the identity, and M (2)
ig an mXm matrix analytic in A. Thus its type is well defined. Also A
is a component of the meromorphy domain of (I), so by Theorem IT.4.1
it is a component of the finite part of the quasi-resolvent set of (IT), and
by Theorem I.2.1

a(B;)—pB(B;) =0 for ied.

Hence the character of 4 for system (IT) can be denoted by (n, 5 Tg),
ng = 0.

Sinee a(B; ) = ny+-r and a(d;) = 0 and the perturbation A, ~ B,
is, by (I1.6.1), at most of dimension m, we get by Theorem I2 1 tha,t
Ny+7 < Mm.

We may assume without loss of generality that A, = 0; hence
4;, =G and B, =6&,.

By Theorem G.-K.-K. the nullity and deficiency of B, for i =0
in the subsystem [V,, W, H;, &;] of the spectral decomposition (IL.6.2)
must be equal to n,. Therefore, denoting the null space of @, in V, by Ny,
We can find direct decompositions into closed subspaces Vo= V,+N,,

= Gy(V,)-+W,, where dim¥, = dim W, = n,. Hence there exists
a 1 1 linear mapping @&, of ¥, onto W, and we may define a new linear

transformation &; of ¥ into W by putting
G, on V,,

@& — G on XN,,

G—cH, onV = ZoVk,

where ¢ % 0. The system (II [v,w,H, Gl] is then a finite-dimensional
perturbation of system (II) and hence also of (I). Furthermore, it is clear
that 4 = 0 is in the resolvent set of (IT). Put B, = ¢, —1H,. It follows
that there is a common decomposition corresponding to the perturbations
(I) ~ (II) ~ (Ii) and hence a common decomposition for the perturbations,
A7'By ~ A7'B, ~B;'B, ~I. By denoting the corresponding matrix
representations M'(1), P'(1) and N'(A) we have M'(A) =P (A)N'(4).

Studia Mathematica XXXVI.1 3
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Since P'(4) is analytic and snvertible at 1 = 0, the type of M'(2) is the
same as the type of N'(4) (the Invariant Factor Theorem). By Propo-
sition IL.5.1 the type of N'(4) is the same as the type of M (A) at 4 = 0.
Tt remains thevefore to determine the type of N'(4) to prove our theorfem.
We do this by choosing & suitable decompositi9n for the perturbation,
(ﬂ) ~ (IT) — hence algo for the perturbation Bi'B,~I1 — s'uch that
the type of the corresponding matrix N () at A = 0 can be readily deter-
mined ; again the type of N (4) is the same as that of X' (4). .

Leb Do,y «--3Vo,m, P& B basis for N, and {v,z,i}ifl,‘m,,,,k be the chain
determinm;; Vi, Wy, H;, Gi] as an elementary divisor of type II™:.
Then

Vo= Vot 6,15 -+ s VomgPr,1s <ov9 Vimyy oo o9 Unxo ey V]

is the desired decomposition. ) ‘

Tt is immediately seen that the resulting matrix representation
N (1) for the perturbation E;IB,_ ~ I decomposes in the form

No(2)
y(2)

0

0
N() = ,

N

where N, (4) is an n, X, matrix representing the perturbation By'B, ~ I
on the subspaces 7y, Vy, ..., V, respectively. :

Fork >0, BB, on Vy is the product of two operators By: V=W,
and B;': Wy — Vy. By choosing on W, the basis wy = H,vy; we geb
the corresponding matrix Ny(4) = i),; 1(1) Ly (4), where Ly (2) is invertible
at 4 = 0. Hence the type of N, (4) at 0 iz the same as that of Ly (). But
L,(4) is clearly the matrix

-2 0

1 —2

o Z2 0
1 -2

For this matrix an elementary computation gives the type as com-
posed of a single type-exponent m;. For k=0, lzowever, the matrix
N,(A) is the matrix representation of the operator By'B; ~ I, restricted
to the subspace V,, for the decomposition V, = Vot [o,1 «+- Voymgl-
Since B, on V, has exactly an n,-dimensional null space for 1 near zero,
the same is true of the m,Xmn, matrix No(4) (see Theorem I.1.1). This
means that the type of the matrix N (4) is exactly the sequence 11.6.3,
which finishes the proof of the theorem.
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Before passing to the next theorem we will define the notion of index
for meromorphic functions. If f(4) is meromorphic in a neighborhood of
A, there exists a well-determined integer N so that f(A) = (A— 2,/ g(4),
where ¢(4) is regular and non-vanishing in a neighborhood of 1,. We call
N the index of fat 4. If f(2) is regular at 4y, then the index is non-nega-
tive. If 4, is & pole of f(4), then the index is negative, and its absolute
value is the order of the pole. Obviously, the index of a product of two
meromorphic functions is the sum of théir indices.

THEROREM I1.6.2. Assume all the hypotheses of Theorem I1.6.1 except
that 4 is now also supposed to be in the meromorphy domain of (IX), but i,
is now an arbitrary element of A. Consider the determinant of M (2), where
M (1) is the mairiw representation of A7 B, ~ I with respect to the decompo-
sition (11.6.1). Then det M (1) is a meromorphic function in A and

(I1.6.4) index of det M (A) at A, = difference of the dimensions of the
Ao-eigenspaces of (II) and of (I).

Proof. Since B, is an operator valued function holomorphic in 4
and A4;! is meromorphic in the same domain, their product 4;'B, is
a meromorphic, operator valued function; hence M (1) is a meromorphic,
matrix-valued function and det M (1) is & meromorphic function.

Now let

7
[V! W7 H! G] = [Vl’)l, thllr H, G]“}“EZ;[V;:” Wl’cly-H’ 1

be the spectral decomposition corresponding to the system (I) at 4,,

where [V, Wy, H,@] is an elementary divisor with eigenvalue 2, and

order 7y, & =1,...,7, and the system [V, W,, H, ¢] has no eigenvalue
i

at A,. The eigenspage of (I) at 1, is V"' = Y -V, and its dimension is
. k=1
dm V" = 3 .
k=1
* Similarly, following (II1.6.2), the eigenspace of system (II) at 4, is

V' = 3 -V, and its dimension is
= '

,
AV = 3 .
k=1
We now define the linear transformation & as follows:
& Gq on V;:,
G—eH onV’,

where = =% 0. It follows that the system (i): v,w,H, é] is a finite-
dimensional perturbation of (I) for which 4, is in the resolvent sef. ‘Put
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_/fl = é JH. We can choose a common decomposition for the perturba-
tion I) ~ (I} ~(IT) and in this common decomposition calculate the
matrix representafolons o (A), g (2) and P( ) corresponding to the pertur-
bations 4;' B, ~ 1, A7'4, ~T and Ar ’Bl ~ I respectively. The same
argument used for M (1) gives that I (4), Wy (1) and]?(l) areAmatmﬂz -valued
meromorphic functions in 4. Furthermore, since 47’4, = (A;‘AAA)“1
and A;'B, = (A;'4,)"*(47'B,), we have by Theorem 1.1.3 that N(4)~
is the matrix representation corresponding to A;,_l.fa.;_ ~ I and that

M) =N (3)P@A).

It follows that

index;, det 3 (1) = index, det (1)— index, det N (1).

Since P(4) and N (4) ave regular at i, and without infinite type-
exponents, formula (IL.5.2) gives immediately that their indices are the
sums of their type-exponents. By the preceding theorem, applied first
to the systems (i) and (II) and second to (i) and (I), we get
inde'xlodeti’(l) = LZ‘I ny = dim V", index;, detN Z ny, = dim V"',

Since, by Corollary I.1.2',
proved.

. Remark I1.6.3. The two preceding theorems allow us to determine
the isolated eigenvalues of system (II) in the following cases: 1° When 4
is a component of the meromorphy domain of (¥), Theorem IL.6.1 allows
us to determine all the isolated eigenvalues of (II) which are not also
eigenvalues of (I), and the number and orders of the corresponding ele-
mentary divisors for such eigenvalues; this is done by establishing the
type of the matrix M (1) for all such A’s.

2° If 4 is at the same time in the meromorphy domain of (II),
Theorem IL.6.2 allows us to determine all the isolated eigenvalues of (II)
in 4 (not excepting those which coincide with eigenvalues of (I)) and the
total dimension of the corresponding eigenspace of (II) by using the
index of detM (4). We should mention that in this last case the sole
consideration of det M (1) cannot provide any further information and
if we want to know in detail the number and the orders of elementary
divisors we have to revert to the consideration of the matrix I (). Only
when we are assured beforehand that all the elementary divisors are
simple (i.e. of order 1) will Theorem IL.6.2 give us completely the struc-
ture of the elementary divisors for a given eigenvalue (this is the case,
for instance, with self-adjoint systems).

det M (4) = det M (4), our theorem is
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In order to perform the required calculations explicitly in the above
mentioned cases, it is clear that we must be able to determine the matrix
M (%) explicitly, which in turn requires a knowledge of the elements
F(A7'B;a;,) of the matrix M (1) as functions of led.

Remark I1,6.4. The simplifying restriction introduced at the begin-
ning of this section, that oo is in the essential spectrum, can now be re-
moved. If 2 component 4 of the quasi-resolvent set contains oo, we change
the basis H, @ into H,, G, which transforms A into 4, by the correspond-
ing Moebius transformation, so that A, lies in the finite plane. Applying
our theorems to systems with the new basis and using the inverse Moebius
transformation, we get the theorems in the same form in the original
basis. Obviously we understand here in the usual sense the notion of
meromorphic function (or matrix-valued funetion) in a domain con-
taining oco.

7. Determination of the isolated elementary divisors and of the
character of a perturbed system. Gemeral case. We consider again two
systems (I): [V, W, H,G] and (IX): [V, W, H,, G,] such that (I) ~ (II).
Let

(IL.7.1) V =Di[ay ..., a,]

be a decomposition corresponding to the perturbation (I) ~ (II). We
consider a component 4 of the quasi-resolvent set and aim at obtaining
all the information about system (IT) in 4 concerning isolated eigenvalues
and elementary divisors.

The simplest case is the one treated in the preceding section by
Theorems II.6.1 and II.6.2; namely,

Case A. A is at the same time in the meromorphy domain for (I)
and (IT).

‘We compute the d_etermmamt det M (2), establish the sequence of its
zeros in A, adjoin to it the sequence of all eigenvalues of (I), and for the
so-established sequence {{;} = 4 we calculate the indices index;, det M (1).
The eigenvalues of (II) are among the elements of {{;}. To know which

-ones are actually eigenvalues for (II) we consider the eigenspaces V}k

of (I} at £, (when {;, is not an eigenvalue of (I) we have V';lc = (0)). Then by
(11.6.4) the dimension of the eigenspace at ¢;, for (IL) is index, det M (4)+
+dimV2k . This sum is always non-negative, and f; is an eigenvalue for
(II) if and only if the sum is positive.

This procedure, however, does not allow one to determine the number
and orders of the elementary divisors. For this purpose we have to use
Theorem IL.6.1. This theorem allows us to compute the numbers and
orders of elementary divisors for eigenvalues ¢, of (IT) which are not etgen-
values for (I). For such an eigenvalue the number of elementary divisors
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in the present case is exactly the dimension of the null-space of M ().
To calculate the orders of the elementary divisors one must calculate the
type-exponents of the matrix M (1) at {,. We have still to establish
a method for calculating the number and orders of elementary divisors
of (II) for an eigenvalue {; which is at the same time an eigenvalue of (I).
The procedure proposed here will work in the more general case when 4
is not in meromorphy domain of (II) and will be presented in the next
case,

Cage B. 4 isin
of (IT)).

Theorem IL.6.1 here allows us to find all the eigenvalues of (II) in 4
which are not eigenvalues of (I), as well as the number and the orders
of the corresponding elementary divisors and the type of (II) in 4.

Now let e 4 be an eigenvalue of (I). Consider the spectral decomposi-
tion of (I) corresponding to {:

the meromorphy domain of (I)

(I1.7.2) [Vr W7H, G] = [Vl;i W(;7 H, G]+ic21 '[V;n Wl/u H: G])

-V is the eigenspace of (I) at .

=1
We define a new gystem (i):

so that 7, =
[V, W, H,G] by putting

@ on V,
G—eH

G =
on V;, with some ¢ # 0.

%t is clear that if we can. determine A7 explicitly we can do the same
for A7 = (G— AH). Further, () is obtained from (I) by & finite-dimen-

sional perturbation. Hence (I) ~ (II). (I) has the same character and the
same spectral decompositions as (I) except that the eigenvalue ¢ of (I)

is now replaced by the eigenvalue {—¢ for (i). ‘We can therefore apply

Theorem IT,6.1 to (I} ~ (II). A decomposition 'for this perturbation. is
readily obtained in the form

(IL73) V =D4[Agyeury by Dy yeeny 1Oy, 1,

yaee
1,my ', nh,

o ]+ TV, and vy, . a8

k
the basis of the chain determ1mng the elementary divisor [Vy, Wy, H, G].
The type of the matrix I (%) corresponding to A,ﬁB,1 then gives, by
Theorem IT.6.1, the number # and the orders =, of the elementary divisors
of (IT) at  and also the character (n,, n,) of (II) in 4.

' Rema.rk. IL7.1. If we want to know only the type of (II) in 4 the
simplest way is to choose & £ e A which is not an eigenvalue of (I) and apply

where © < D, [B, .. 0, 1 =[a,..
’r

(but not necessarily
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Theorem IL.6.1 directly to (I) ~ (II), since the matrix M (1) which is
then considered is in general of much smaller order than M (A).

Case C. A has character (p, p), 0 < p << oo, for system (I).

In this case (I) is a finite-dimensional perturbation of a system (I)
for which 4 has the character (0, 0). Our method will consist of choosing
such a system (I) for which we will have all the needed information; i.e.,
its eigenvalues, elementary divisors, spectral decompositions in 4, and
for which we will be able to compute the inverse A7 ag a function of A.
We may say that in the present case the nceessary information about
(I) which we have to require includes the knowledge of such a system (1).
Once such 2 system is known, everything is reduced to the cases A and B.
In order to show how such a system can be effectively constructed we
choose a { e which is not an eigenvalue of (I). Then a(4;) = f(4;) = p.
‘We choose direct decompositions into closed subspaces, V = Vi N,
W = A,(V)+ W,, where N is the null-space of 4; and dim ¥ = dim W, = p.
We consider the system (i): [v,w,H, é], ‘where

on Vi,
on N,

. @
8+tH

and § is a linear isomorphism of ¥ onto W;.

It is clear that a(zf;) = ﬂ(ﬁf;) = 0 and therefore the character of (I) -
in 4 is (0,0).

The system (1) depends on the choice of decompositions of ¥ and W
and also on the choice of the transformation §. Therefore our assumption
is that the knowledge of (I) allows ms to find such a system (1) for which
all the information necessary for application of Theorem I1.6.1 is available.
Tt is to be noted that the passage from (I) to (I) will not only change
the character from (p, p) to (0, 0) but may also change considerably the
sequence of eigenvalues and the corresponding elementary divisors and
spectral decompositions. However, if A is an eigenvalue for (I) it will
remain one for (1), since |a(4;)— a( (AN < p, a(d,) > p implies a(4d,) > 0.

Oase D. A has the character (p, q),p # ¢, » and g finite.

In the present case we cannot obtain from (I), by finite dimensional
perturbation, a system with character (0,0) in 4 (since the index
p—gq = 0 would be maintained). However, by using a finite-dimensional
extension and finite-dimensional perturbation we can arrive at & system
(I) with character (0, 0) in 4 which will allow us o reduce our problem
to the case treated by Theorem IL.6.1. Again, the possibility of finding
such an adequate extension and perturbation of (I) will have to be
assumed as part of the required knowledge of (I). To describe how such
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an extension and perturbation of (I) can be achieved, consider again
any (¢4 which is not an eigenvalue of (I). We then write the decomposi-
tions V = V4N, W = 4,(V)+W,, where N is the null-space of 4.,
dimN = p, and dimW, = q. We then put

V=V, i N3V, = ViV,
W o= Ay (V)4 Wyt Wo = W,

with dimV, = g, dim W, = p. We form the system (f):

[V, W, H,&
with .

G on V,,
~ H onbV,
H = S--¢tH  on N,
0 on V,,
T on Vs,

where § and T are linear isomorphisms of N onto W, and V, onto W,
respectively. If, in the definition of é we took G =@ on N instead of
N S+ CH' the resultmg system would be a pure extension of (I) to the spaces
V W. As defined, (I) is a finite-dimensional extension followed by a finite-
dimensional perturbation of the original system (I).

_ One checks immediately that for the operator i, = G— CII we have
a(d;) =0 = f(4,). Clearly, since the gquasi-resolvent set is not changed
by finite dimensional extension, the quasi-resolvent of (I) is the same
as for (I), and (I ) has the character (0, 0) in 4.

We next extend (II) to a system (II) [V W El, GI] by putting

~ H, oV, ~ G, onbV,
1= : G1 =
0 on V,, 0 onV,.
Since we - have the spectral decomposition [ff , ﬁ’, ill, é‘l]

=[V, W, Hy, G4]+[V,, W,, H~1, él}, it is clear that all the eigenvalues,
as well as the numbers of corresponding elementary divisors and their
orders, are the same for (II) and (II) The essential difference between
(TI) and (II) i in their character in 4. If (p’, ¢') is the character of (II)
in 4 (p'—q =p-—q), then clearly the character of (IT) is (p "+, 4 "+ p).
It is also clear that (II is a finite- dlmensmna,l perturbation of (I ) with
a decomposition of the form ¥ = :D-(-[al, .y &,], where De Vin®
and [y, ..., @] > [ay, ..., ¢4y)+(N+V,). The systems (I) ~(II) are
now in case' B.

. Rerpark IT.7.2. In some cases (especially when dealing with ordinary
differential eigenvalue problems) one can compute directly the null-space
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N (B;) for each 1. This is of great help in the investigation of system (II),
since, in each component 4, dimN(B;) is constant except for positive
jumps at the eigenvalues of (IT). The constant is the nullity in the character
of 4, whereas the jumps give the number of elementary divisors for the
corresponding eigenvalues. This information shortens considerably our
procedures in many of the cases considered above. However, if there
are several -elementary divisors for a given eigenvalue, we will need
Theorem II.6.1 to determine their orders, since the knowledge of N {(B,)
does not allow us to deftermine either these orders or the total dimension
of the eigenspace.

Example. In the appendix we illustrate the cases A and B by rather
involved examples from the theory of boundary value problems for
ordinary differential equations of fourth order. Here we shall give a simple
example to illustrate the cases A and D.

Let # be the Hilbert space of all functions f(2) analytic and in I?

in |2] < 1. As norm and scalar product we take

;1f[12=~}; [ f@tady, (f,9) =~ [ fAg@sdy.

lel<1 T <1

Consider the ordinary system (I): [#,#, I, ], where Gf = 2f(2),
and the ordinary system (II): [o#, #, I, G,], where @, is obtained from
@ by a 1-dimensional perturbation corresponding to the decomposition

# =D+[1], = {f: f(0) =0},

with G,1 = h(z) for some h(2)e 5.

It is well known and easily verified that the quasi-resolvent set
for (I) decomposes into two components A;: A/ <1 and 4,: [4] > 1.
Since both systems are ordinary, oo is in the resolvent set for both, and
we can restrict ourselves to finite 4 and not bother to change the bases
of the systems so0 as to have co in the essential spectrum.

The character of (I) in 4, and 4, is (0,1) and (0, 0) respectively,
and (I) has no isolated eigenvalues.

The situation in the domain 4, pertains to case A. The matrix M (1)
is of order 1. We have here

Bl =h(z)—1, A7'f = f(z)z
Using the linear functional F,(f) = (f,1) =f(0), we get
h(z)—2 A—h(0
M(Z)-——( (;i)—), ,1)= }.()'
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Tt is now clear that the character of (II) in 4, is (0, 0). There is at
most one eigenvalue of (II) in 4,: this eigenvalue exists if and only if
|k(0)| > 1 and then it is 2(0). There is then only one elementary divisor
of order 1. , ‘

The situation in A, belongs to case D. We take { = 0. 4, has no
null-space and # = A, (#)+[1], where 4,(#) =D = {f: f(0} =0},
By the procedure of case D we take an abstract element e generating
a 1-dimensional space [e]. We make # = # +[e] into a Hilbert space
by putting ||f4 felf = |IfI*--|6]". We then extend the system (I) to (i):
[#,#,1,@G] by defining T = I on # and = 0 on [¢],@ = & on # and
@e =1. The gystem (i) has then the character (0,0) in A; and has no
eigenvalues in 4,. For Aled; and fes#” we have

~ 2)—f(A
g = TEZTE .
z2— A
We now extend the system (II) to (fI): [9?, #, i , é‘ﬂ by defining
I as before and setting @; =@, on &, =0 on [¢]. The decomposition
corresponding to (I) ~ (II) is

# =DL[L, e].

Using the scalar products in S with 1 and e respectively as linear'
functionals we obtain:
Byl = hiz)—24,
h(z)—h(A)
—
and the mafrix i (4) becomes

) h(l)—h(O)l o
M) =l A ]
MA)—A 0

An easy, elementary investigation gives the following results:

1° T}lere is a unique infinite type exponent for b3 (A) at each Aedy.
Hence (II) is of character (1,1) in 4,,.

2° There are no other type-exponents of u (A4) at dyedy except for
at most one A;. This exceptional 4, exists and is equal to »(0) if and only
if one of the following sets of conditions holds:

(a) B(0) = R(k(0)), where 0 < [h(0)| < 1;

(d) 2{0) = h'(0) =0,

1§,1e =0,

AP'B1 = +(n(—Ne, A7'Bie =0,
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When either of these conditions hold, the additional finite type-
e%ponent at A, = h(0) is 1. Hence if the above conditions do not hold,
(IT) has no eigenvalue in A,. If the conditions are satisfied, then (fI)
has one eigenvalue 1, = 7(0) in 4, with one elementary divisor of order 1.

In consequence, the same results hold for (IT) as concerns the eigen-
values and elementary divisors in A,. The character of (II) is obtained
from that of (II) by subtracting ¢ = 1 from the nullity and p = 0 from
the deficiency, Thus the character of (II) in 4, is (0, 1).

Tt should be mentioned that in this simple example most of the
results for system (II) could be obtained by a direct analysis without
much difficulty. However, checking that the elementary divisor is of
order 1 would require investigation of the null-space of BZ.

III. GENERAL SELF-ADJOINT SYSTEMS

1. General setting. The quadruple (I): [D(4), #,1, A] will be called
a standard self-adjoint system provided A is a self-adjoint linear operator
with (dense) domain D(4) in the Hilbert space . Such systems are
Hilbert systemns in the sense of section TL1 if D(4) is provided with
the graph norm of A4:

llulfy = [l + [l du)®  for weD(4).

Note, however, that standard self-adjoint systems are not necessarily
self dual in the sense of section IL.1. (A weak topological system or a Ba-
nach system [V, W, #] is self-dual if and only if [V, W,#] =W,
V*, #*]; i.e., if and only if W = V* and, for some pair of generators
@, Hot# G =6 and H = H". In the case of weak topological systems
W = V* is given the weak-* topology; in the case of Banach systems,
it i given the canonical norm topology induced by the norm of Vand V
is tequired to be reflexive.) We will not assume in this chapter that #
is separable unless otherwise stated.

The standard self-adjoint system (II): [D(B), #, I, B] is a finite-

- dimensional perturbation of (I), written (I) ~ (II), provided A ~B.

This definition agrees with that given in section IL.4, for, using the fact
that A, B are closed operators and that
D = {u: ueD(4) ND(B) and Au = Bu}

is a closed subspace of D(4) and D(B), we see easily that D(4), D(B),
with their respective graph norms, form a compatible couple; ie., the
identification map of D = D(4) onto D = D(B) is closed. Thus (see
Arongzajn and Gagliardo [9]) ©(4) and D(B) can be continuously em-
bedded in the Banach space

D(4)+D(B) =D(4)+D(B)/Z,


GUEST


44 N. Aronszajn and R. D. Brown

where Z = {(u, —u): weD}, with norm

[Ulpwysom = 0t (it lwls)-
U=D+UW

On D(4),D(B) the nom | lpwrom 5 equivalent to |||l [l s
respectively, and [D(4),#,I, A] ~[D(B), #,I,B] in the sense of
section IIL.4.

Thus the results of the preceding sections, in particular Theorems
I1.6.1 and I1.6.2, apply. Note also that, for a standard self-adjoint system,
every A with Tml # 0 is in the resolvent set. Thus the quasi-resolvent
sot coincides with thé meromorphy domain and the essential spectrum,
as well as every isolated eigenvalue, lies on the real axis.

TaEorREM IIL1.1. Let (I): [D(4), #,I,A], (II): [D(B),#,1, B]
be standard self-adjoint systems and D = {u: ueD(4) N D(B) and Au
= Bu}. If D has finite codimension in D(A) (or in D(B)), then (I) ~ (II).

Proof. Let V ="D. Since by hypothesis D" has finite codimension
in D(4), ¥ =D has finite codimension in D(4) = . Hence & = VL X,
where dimX =m < oco. Let D(A) =DA)NT,DB) =DB)NTV.
Then

D) =D(ANV4+Fy; D(B) =D(B)+ T,

where dim#,, dimFp are finite.

Let X = [@;,...,®,]- Then the linearly independent functionals
(@), ...y (u, x,,) are continuous. on # and, a fortiori, continuous on
D(4) in the graph norm of 4. Moreover,

DA = {u ueD(4) and (u,x;) =0,7 =1,...,m}.

Thus D(A’) has codimension m in D(4), so dimF, = m. Similarly,
dim Py = m.

Note that, since D is contained in D(4’) and D(B’), then D(A')

=D(B)="7. Thus H =V+F,=V+Fy It VnF, {0}, then V
would have codimension < m in 5%, and similaxly for ¥ N Fp. Thus

(IIL.1.1) H =VIF, = Vi ,
Let P be the projection of # onto ¥V and 4', B’ kbe the restrictions
of P4, P'B to D(4'), D(B’) respectively. Then, clearly, 4’ and B’ are
symmetric operators with dense domains in V. Suppose veV is such
’uhaltl éA’d, ) is continuous for deD(A’). If weD(4), then u =d+f
with de D(A4’) and f in the finite-dimensional space . Tn view of equation
(IT1.1.1) therefore * ¢

(Au,v) = (4’4, ’D)+(Af1 )
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is continuous in . Hence ve D(A) NV =D(4’) and A’ is self-adjoint.
Similarly, B’ is self-adjoint.

Let T be the restriction of A’ or B’ to D(T) = D. Then T is clearly
a closed symmetric operator, and 4’ and B’ are self-adjoint extensions
of T. Thus

D(A) =DiFy, DB)=D+F5

where dimF); = dimFy = m’ < oo, and

D) = DHF,+FL), D(B) = DHFptFp),

where dim (F)+F,) = dim(Fp+Fg) =m'+m. Since 4 =B on D, the
theorem is proved.

Definition IIT.1.1. Let (I): [D{4), ##; I, A], (I): [D(B), #, I, B]
be standard self-adjoint systems in the same perturbation class. Then
the perturbation (I) ~ (II) is: ’

1° a perturbation of type ome if and only it B is a 1-dimensional
perturbation of A with ©(4) = D(B), representable in the form

D(4) = D(B) =D+Ifl, Bf = Af+1Ff,

where P is the orthogonal projection of # onto a 1-dimensional subspace
[#], l#| =1,Pf =, P (D) =0 and 4 # 0 real;

20 o perturbation of type two if and only if A and B are self-adjoint
extensions of a closed symmetric operator with dense domain in #° and
deficiency indices (1, 1). :

The importance of the above special perturbations is demonstrated
by the following theorem:

TaporEM IIL.1.2. Let (I): [D(4), #, I, Al, (II): [D(B),#, I, B]
be standard self-adjoint systems and et (I) ~ (IX) be a perturbation of dimen-
sion m. Then there exist integers my, Mo, My~ My = M, such that the pertur-
bation (I) ~ (II) can be achieved by m, consecutive perturbations of type
two followed by my consecutive perturbations of type one.

Proof. By hypothesis

D(4) =D+Fy, D(B) =D+Fp,

where dimF, = dimPy = m and 4 =B on D. If D(4) # D(B), then
there exists an element b, e Fz such that b; ¢ D(4). We then define a new
linear operator A* with domain D(4*) =D(4)+[b,] by setting A* =4
on D(A) and A*b; = Bb,. Clearly, A* is a closed operator with dense
domain in #, and A is a restriction of A*. Thus A* has a well defined

adjoint A in s# and, since A is self-adjoint, A is a restriction of A. It


GUEST


46 N. Aronszajn and R. D. Brown

follows that A is closed and symmetrie, with dense domain D(4) = D(4)
in .

By definition of 4, veD(4) if and only if there exists a wes such
that (d*u, ) = (u, w) for every ueD(A)+[b;]. In particular, talking
ue D(A) we obtain (Au,v) = (u,w); hence veD(A) and w = Awv, facts
which we already know. Taking then % = &by, we geti (Bby, v) = (b1, Av).
Conversely, if veD(4) satisfies

(IIL.1.2) (Bby, v)— (b, Av) = 0,

then ve D(A). Thus
D(4)

The functional (Bb,,v)—(by, Av) is clearly continuous on D(4)
with respect to the graph norm | ||, of A. Moreover, it iy not identically
zero on D(4), else (Bby,v) = (b, Av) for every ve¢D(4), implying
bre D(A). Hence D(A) is a closed (with respect to || {4) subspace of D(4)
of codimension one:

= {(veD(4): v satisties (TIL.1.2)}.

(IT1.1.3) D(4) = D) +[f].

Clearly, ® = D(4), and since D has codimension m in D(4) we can

further decompose D(A) into D(A) = D+F,, where dimF = m—1.
Fquation (IIL.1.3) shows that the closed symmetric operator A has
deficiency indices (1, 1). Define a new operator .4, with domain

D(4,) =D(4)+[b,]
such that A, = 4 = A on D(A) and A,b, = Bb,. Then for u = v+
+ &b e D(4,4),
(Ayu, u) = (4 (v+ Eby), v+ b))

= (Av+EBby, v+ £by)

= (Av, o)+ |£|2(Bby, by) + & (Bby, v) -+ E(Av, by)

= (Av,v)+|£[*(Bby, by)+2 Re(£Bby, v)
is real (note (4w, b,) =£Bb1,v) since veD(A)). Hence A, is a proper
symmetric extension of A and is therefore self-adjoint.

Thus [D(4),5#,1,A] ~[D(4,),#,1,4,] is a perturbation of
type two. Moreover,
D(4) =D+[b,J+Fy, D(B) =D+[b]+F5,

where 4, =B on Df[b] and dimP’, = dimFy = m—1. Thus the
perturbation 4, ~ B is of dimension m—1.
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If D(4,) #D(B), then there exists an element bye Fp such that
by ¢ D(4,) and we can proceed, the same way as above, to find a pertur-
bation [D(4y), #,I, A} ~[D(4,),#,1,4,] of type two such that
A, ~ B is a perturbation of dimension m—2 with decomposition

D(4s) = D441+ F4,  D(B) =D+[b14+[bs1+ P,

where 4, = B on D 4[b,]4 [b,] and dim Fy = dim Fp = m—2. Continuing
in this way, we arrive after m, perturbations of type two, 0 < m; < m,
at a self-adjoint operator Am1 — A’ such that A" ~ B is a perturbation
of dimension m, = m—m; and D(A") = D(B).
Thus
D) =D(B) =D +F,
where D = {#eD(B): A'u = Bu} and dimF = m,.

Tt follows that the operator B—A', defined on D( B), has ® as its
nullspace, that its range (B—A")(D( B‘)) (PwA )F) is exactly mo-
dimensional, and that B—A'is 11 on F.

Since B—A' is obviously symmetric it is closable, and its closure
B_A has the same m,-dimensional range as B— A’. Tt follows that B4
is bounded, defined on the whole of # and self-adjoint.” But o = D(B)
=7 +F and B— A(CD) — 0. Hence ® iz the nullspace of B— A
X = #0D is the range of B—A4', and X bas an orthonormal basis
of m, eigenvectors &, s, - of. B—A with corresponding real non-
zero eigenvalues A, k = 1 ,ma

Let f,, be the unique element in F with B—A' f, = A%, and denote

by P; the orthogonal prO]Gcth]l of # onto [z;]. Then

= Z.Pk is the projection on X,
1
1 —_— 1 —F
(Fies 23 "'_‘"‘(fka B—-Aw) = T(B—Aflﬁ o) = O,

my
and B =A+ Y 1P, on D(B).
=1

B— 2 APy
We introduce now the operators Ay, k=0,...,my, defined on
D(B) by .
A=A, A=A+ P dor k=12, ..M,
i=1

A’m2 = B.
It 1% clear that these operators are self-adjoint and that Aj_, ~ A

for k =1,...,Ma-
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‘The perturbation is of dimension 1 and is represented by

®(A;c—l) = SD(A;c) = {:D,+[f1: "'7flc-—15fk+17 ---:fm2]}+[fk]7

where ALf, = Aj_fi+ 4Pefi. Thus the corresponding perturbation
is of type ome, and the theorem is proved.

Remark ITL1.1: It follows from Theorem IIL.1.2 and its proof
that every one-dimensional perturbation between standard self-adjoint
systems is either of type one or type two. .

We next state the main theorem of this chapter, which will be proved
in the following sections: .

TaeorEM II11.1.3. Consider two standard self-adjoint systems in the
same perturbation class — [D(A),#,1, 4] ~[D(B), #, I, B] — the
perturbation being of dimension m. Then there ewists a singular Borel
measure u, on B with the following properties:

1° Bvery measure u 7 0 orthogonal to u, is stationary vel. 4 if and
only if it is stationary rel. B, in which case the multiplicity of u rel. A equals
the multiplicity of u vel. B: mt® (u) = m™® (u).

2° For every measure u # 0 which is stationary rel. A and B and
which is absolutely continuous with respect to uy,

& () —m P ()] < m (°).

Theorem III.1.3. has the following corollary:

CoBOLLARY IIL1.3". If [D(B),#,I,B] ~[D(4),#,I,A], then
the absolutely continuous parts of the self-adjoint operators A, B are unitarily
equivalent. ‘

Remark ITL.1.2. It will also follow from the proof of Theorem IIL.1.3
that for two standard self-adjoint systems [D(4), #,I, Al ~ [D(B),
#,1, B] there exist subspaces 5, 5#, which reduce both 4 and B and

such that 4 =B on D(4) N #, = D(B) N #, and #; is separable.

In Sections ITL.2 and ITL3 are reviewed certain (essentially known)
facts about multiplicity of measures for a self-adjoint operator which are
needed for the proof of Theorem IIL.1.3. In view of Theorvem IIL.1.2
it will suffice to prove Theorem IIT.1.3 for perturbations of types one and

- two. These proofs are given in Sections IIL4, IIL.5 respectively. In
Section ITI.6 Theorem ITL.1.3 and Corollary IT1.1.3' are proved. In addition,
a theorem is proved which states that for self-adjoint operators 4 ~ B
and for any interval .# of R' in the meromorphy domain of 4 and B the
numbers of eigenvalues of A and B in # differ by at most the dimension
of the perturbation.

(5} Here, since m (), m(® (4) are cardinal numbers, the inequality is inter-
pr(j;)ed to mean that m{4) (u) is infinite if and only if m(B) (y) is infinite, in which case
m (u) = m(B) (u); otherwise they are both finite and |m4) (u)— mB) (u)| < m.
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2. Review of some notions about measure theory and the theory
of multiplicity. In this section we give statements without proofs. We
refer the reader to [16] for the proofs relevant to the first part of the
section and to [15] for those in the second part.

Let # be the class of all non-negative Borel measures on the real
line R. We will sometimes use the correspondence between such measures
u and the non-decreasing functions x(1) on the real line, normalized by:

p(0) =0, u(d) =3p@A—)+pl+)].
Tn connection with this representation we will sometimes denote
the measure u by the symbol du(4), a eonvention which will be especially
useful when we want to define a (not necessarily positive nor real) meastre

~ » by the formula

dv(2) = p(A)du(2),

“where (1) is locally integrable relative to u.

Tebesgue measure will be denoted by A and, by an understandable
deviation from the general rule, the corresponding function will be denoted
by 4, and instead of dA we will write di.

The class 4 is a boundedly complete lattice under the order relation
u < » and lattice operations sup (g, »), inf (4, »). A support 8 for a measure
u is any Borel set with #(R'—8) = 0. Two measures uy, ji; are orthogonal,
in symbols g, | us, if they possess respective supports S, 8, such that
8, NSy =0.

Any bounded family {g} of mutually orthogonal measures is at
most enumerable and, for such a family, sup {s} = Z* ;. (We will use

- the notation X‘p; to indicate that the terms in the sum are mutually

orthogonal measures(’).) If 4 = L, then for any support S of u we
can find supports S; for p; such that the 8;'s are mutually disjoint and
contained in §. Hach measure u; is then completely determined as the
part of the measure u in §;.

We introduce in .# the new partial order relation p < v, meaning
u is absolutely contintwous vel. v; i.e., every support of » is a support of .
It u <€A, we will say simply that p is absolutely continuous. I pu <Ly
and » < u, we write u ~v (in words, is equivalent to »), which means
that any support of one of the two measures is also a support of the other.
The set of all equivalence classes of measures in # is denoted by .#°.
The equivalence class of a measure pe A is denoted by u?, so that v ~
means the same thing as veu?. If x| v, then, for every u,eu’ and every
vy e’y g | vy, and we will therefore write u° | +°.

() If there is a finite number of p's, we may write
n
Stpg= mtusk.. ke
i=1 -

Studia Mathematica XXXVI.1
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For any two measures u,» there exist unique decompositions

(TIT.2.1) @ = po &k gy » = vockvy,  where uy ~woy py L v, and » | u.

If » =4, then, in the corresponding decomposition u = uo+pu
of u, u, is called the absolutely continwous part and u, the singular part of yl

The order relation u° < +° induced in #° by the order relation < ili
4 makes #° into a Boolean o-ring. The operations V -(union), A (inter-
section), and \ (relative complementation) are defined as follows: for two
meagures u, v we consider the decomposition (III.2.1). Then

BV = (ut )’ = (i t+9) = (p+9)° = (sup(u, )%,

,U«e /\ ‘Ve = /“g = Vg = (lnf(‘u’ 'y))g,
and

uNY® =

Gogsider a st?;ndard self-adjoint system [D(4), #,I, A] and the
resolutlonl of the identity {E(2)} corresponding to A. For each vector
ze# consider the measure u, defined by du,(2) = d|B(A) |2 If pest and
# X pizy then we shall say that @ majorates u. Two vectors 2, ¥ are called
.stwo%gly orthogonal (or, following Halmos, very orthogonal) if and only
1(1 (E) (l)ag,E(l)y) =0 for every AeRE', from which it follows that

1Y) =0.

Lemma IIL.2.1. Let 0 % ped. Then i il

ped. Then all mawimal families {w} of
mastuall, j i b
,,,,a,h‘?; ”ﬁjtstmngly orthogonal wectors x; magjorating pu have the same cardi-
Definition IIT.2.1 The cardinal number M
. 2.1 of Lemma IIL2.1
will be called the multiplicity of u (vel. 4) and denoted by m(u) = m“ (u).
Phdgh;zazc.hnal-va;usd function m (u) satisfies the axioms for a multi-
ction used by Halmos [15 8 i
Bor gt 0): [15] (except that we define m(u) only
1° I 0 # v < u, then m(») > m(u).

2° It u = Z iy Whel‘e all M8 are iffer ent flOIH zero, then. m 12
T 3 d
mm{ “’(nu@)} M , ( )

Sinee for all » ~p 5 0, m(v) = m(u), we can define m(u®) = m
i Clguslsaizh s:i]lf-a,djomt operator A determines a multiplicgﬁj;;z funct(iﬁzl
the‘ . wel .known |;15]‘ that two self-adjoint operators determine
sgm:n{ul"olph@{ty function if and only if they are unitarily equivalent.
el A‘; z(?;tig]ihlli.2-2.' A measure ped, u # 0, is called stationary
e & T, © terminology of Halmos, has uniform multiplicity) if
only if m(») = m(u) for every non-zero » < p.

icm°®
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TEEOREM I1I1.2.1. For every non-zero pe#, there exists a unique,
at most enumerable sequence {Wlioo.,.. of cordinals My <P < ... and
a unigque orthogonal decomposition

(IIL.2.2) u= 2% u
E>0

such that, for each k, p, is stationary and m (p,) = Wy,. (Note that Dy = m( u).)

This theorem shows that it is enough to know the multiplieity for
all stationary measures in order to know it for all measures.

Definition IIL.2.3. A class of stationary (rel. A) measures is sufficient
for A if and only if every non-zero measure ue.# can be written as p = Zt
with g’s in this class.

It is clear that the knowledge of the multiplicity for all measures
in a sufficient class of stationary measures determines the multiplicity
for all measures. The fact that makes this notion of “sufficiency ™ useful
ig the following: .

ProposirIoN II1.2.1. Let {[D(4y), #&, I, 4,1} be a finite se of
standard self-adjoint systems. Then the class of all measures fo 7 0 which
are stationary rel. every A, 18 a sufficient dlass for each Ay

The proof of Proposition ITL.2.1 is immediate.

Tet o# = A +H#,. Then #y, #, reduce A if and only if

D) =D(4) N #,+D(4) N #,

and A(D(A) N#y) e #y i =1,2; ot equivalently, if and only if,
for every AeR', H(A)P; =P,E(}), where P; is the orthogonal projection
of # onto #,, i =1, 2. The restriction 4, of A to D(4;,) =D(4) N #;
is called the part of A in #; and is a self-adjoint operator in o, i =1,2.
‘We have the following:

TeeorREM TI1.2.2. If #,, #y veduce the self-adjoint operator A in #,
and A, A, are the corresponding parts of A, then every measure p 7 0
which is stationary rel. A, and A, is stationary rel. A, and

m () = M0 () +m 42 (a).

The proof is easily obtained using the methods of [15] and Proposition
II1.2.1.

Let us return to a standard self-adjoint system [D(4), #,T1,A4]
and consider the class of all measures u # 0 with m(u) > 1. ItV {p°: m(u)
>1} = p& exists, then every measure in p% will be called a speciral
measure of A. The spectral measures u therefore have the property that
for every » | py m(y) = 0, while for every » < uy, m(») > 1. In separable
Hilbert spaces spectral measures always exist; they may or may not
exist in non-separable Hilbert spaces. When a spectral measure exists,
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then for a complete knowledge of the multiplicity function it is sufficient
to. know the multiplicity for all stationary measures » < u.

In analogy to the definition of u% We can define A% = V {u®: m(u)>1

and u <€ A}, which always exists. If a spectral measure exists, then ity
absolutely continuous part belongs to 4%. To give a significance to A%
in the general case we introduce the following general concepts:

For every measure u = 0 consider the decomposition of 5 into.

#H, = {west': g, Kp} and #,1 = {wei': p, | p}. Then s = o, Lo,
and #,, #,1 reduce A. The part A, of 4 in #, is called the part of A’
corresponding to u. In particular, we can consider u = 4. Then 4, is
called the absolutely continuous part of A. A, is a self-adjoint operator
in 5#,, and the elements of A% are spectral measures for A ,.

3. Standard self-adjoint systems generated by a single vector. Let
[D(4),,1,A] be a standard self-adjoint system; let {E(4)} be the
resolution of the identity for 4, and suppose that wes# is such that
is the closure of the space spanned by the set {E(4)»: ireal} or, equiva-
lently, by the set {4;'®: Im{ 5 0}, where 4, — A-—(I. Then # is
_separable, and the finite Borel measure u, defined by du,(3) = a|lE (1) |
is a.m.spectrail measure corresponding to 4. Moreover, it ig clear from
definition ITT.2.1 that for every wes#, m(u) is either zero or one. In fact
m(p) = 0 unless u <€ p,, in which case m(u) = 1. ,

Let 4 be any finite Borel measure and consider the Lebesgue-Jordan
decomposition )

(ITL.3.1) o= -l

where u® i§ the absolutely continuous part, and ! is the singular part
corresponding to u. A classical theorem of de la Vallée-Poussin assigns
supports to these measures as follows:

0 _Jg. du(&) N au(&
Pﬁ{é. a exists and 0 < /;;)<oo}’

dp(é
8 ={§: —’l;;—) exists and equals +00}-
In patticular, these supports ma;

alt Yy be used for the Liebesgue-Jordan
decompogition of the spectral meagure # corresponding to ft
; In 'Wha.t fl?]lOWS we shall also need a few facts concerning measures
4 associated with fgnotlon!s p(¢) of class P; ie., functions analytic in the
upper half-plane with positive imaginary part there (see Aronszajn and

E(r)g)ghue (61, [7] for detdils). Such functions are precisely those of the

I3, - i
W) o = atpt [ -] wo,

Finite-dimensional perturbation I 63

where a> 0, § is real, and

f°° pd) _

1422

—o0
For example, the function

21
p() = Ur'e, o) = [ s dm(h)

is in class P and (II1.3.2) holds with

' A
a=0 and B= f——~1+pdp,(z).

—00

Let the function ¢(7) in P be given by (II1.3.2). Then supports for the
meagures appearing in the decomposition (IIL.8.1) of x may be given

"in terms of the behavior of p(Z) near the real axis; they are called the

standard supports (see [4]) of x and are defined as follows (%):

8 = {£: limg(Z) exists, is finite, and has positive imaginary
(Y11.3.3) part when { — £ in any angle},
8 = {&: Imgp({) - oo when { — & in any angle}.

Remark. The supports 8° 8%, as well as Sp, 8¢, have the property
that they cannot be diminished by any seb of positive Lebesgue measure
without ceasing to be supports of the corresponding measures (in fact 8
and 8% are already of Lebesgue measure zero). More generally, for any
measures u, v, a support S of v is called minimal rel. u if and only if any
support S; = 8 of » differs from 8§ by a set of 4 measure zero. It is clear
that for any two measures y, 7, minimal supports of » rel. u always exist.

This notion is important for the following reason: if two measures
»,9 are absolutely continuous with respect to x and have a common
support minimal rel. u, then » and »" are equivalent.

Minimal supports rel. 4 are called simply minimal. With this termi-
nology, all of the above mentioned supports 8°, 8%, 8%, Sp are minimal.

4. Perturbations of type one. Consider two systems [D (4),#,I,A]
~ [®(B), #, I, B], the perturbation being of type one. By definition
II1.1.1° we have a decomposition D(4) =D(B) =D+(f] and an
orthogonal projection P of # onto 2 one-dimensional subspace [2],

o] = 1, such that P(D) = 0 and Pf = o. Denoting D by V, we see that

(8 “¢ — £ in any angle” means that for some &, 0 < &< w2, [ converges to &,
remaining inside the angle s<C Arg(f— g < m—e.


GUEST


54 N. Aronszajn and R. D. Brown

# =D(A) = V+I[fl, and P(V) =0. Hence # = V+[x]. Thus (see
definition I11.1.1.1°)

D(4) =D(B) =D+[f],
where )

1°# =VE[s], V =D,z =1, (f, %) =1;

2° A = B on D and Bf—Af = A2, with 1, real.

To calculate the determinant of the perturbation, we consider the
linear functional (u, ®) which is continuous in # and therefore, a fortiori,
continuous on D (4), D(B) with their respective graph norms. For 4 = f
we have (f, #) = 1. Hence (see equation (1.1.12))

94() = det(4,\B;) = (47" Bf, »)
= (A7 (Aef+4ow), @)
= (f+hdis, 2) = 1+ 4 (A7 s, o).
Similarly, we obtain
op(l) = det(B,\4;) =1—A(B;'z, z).

Using the measures dv, (1) = d]]EA(l)w“g, dvg (1) = d||Bg (1) |}, where
{B4(1)}, {Bp(4)} are the resolutions of the identity corresponding to
A, B respectively, we find

1 © 1
| ri® = h(+ [ ),
0o A—¢
(IIL.4.1)
) = —2 (‘1 + [ a0
PB 0 7 Ja=t s ( ))-

; Since, by Coroﬂgry L1.3', ¢4(0)pp(l) =1, we immediately see,
using the standard (minimal) supports (ITL.3.3), that in the decomposition

= 40 1 0
Yy =vytvy, 4] =’Vﬂﬂ:’ll}3,

the absolutely continuous parts »%,+% are equivalent while the singular
parts vy, v, are orthogonal.
) Consider now the closed subspace M. 4 generated by x relative 4;
1.e.i . the closure of the space spanned by {B4(M)w: A real} (or by
{Ar'@: Im¢ £ 0}). Then M,, ML reduce A. Similarly we introduce
the closed subspace My generated by = relative to B. We are going to
prov;‘ that M, = Mp, which means that M ,, MY reduces both 4 and B.
or this purpose mote that if w = Bls, then u = d where
deD, and hence P e '
@ = Biu = Bid-+aBf = dutalya,

so that w = (1—al)4;'we M,. Thus M, c My,

My M, and,

similarly,

icm

TFinite-dimensional perturbation I 55

It follows that o) = M, = My, #, = ML = M3 reduce both 4
and B, and, since s, = V, that 4 =B on D(4) ~n #, = D(B) ~ H#s-
Let A;, B; be the parts of 4, B respectively in +#;, i =1,2. Then
A, =B, and v,,vp are spectral measures corresponding to A4,, B,
respectively.

Let py = v 4-v5. I p = 0 is orthogonal to u,, then (see Section I11.3)
either m™“v(u) = 0 or u < v,, in which case (x being orthogonal to +4)
u €Y. But »Y ~o}; hence p vl <vp, and o

mA) () = mBD () =1.

The same argument holds if the roles of A, and B, are interchanged.
On the other hand, for any x # 0, m™“)(4) is either zero or one and
mP(u) is either zero or one. Hence |miV(u)—m ()] <1. In view
of Theorem IIL.2.2 we therefore have, with u, = v+ 7%,

LeMMA ITT.4.1. Theorem IIL1.3 holds for perturbations of type one.

5. Perturbations of type two. Let [D(4), #, I, A1~ [D(B), #, 1, B],
the perturbation being of type two. Then 4 and B are proper self-adjoint
extensions of a closed symmetric operator 7' with dense domain D(T)
in # and deficiency indices (1, 1).

Let T* be the adjoint of 7. Then (see [13])

TcA, BcT,

and the domain D(T*) of T*, provided with the graph norm fJuli = |jul*-+
+|IT*u|?, becomes a Hilbert space. D(4),D(B) are closed subspaces
of the Hilbert space D(T™).
Let D, =N [T*—iI], D_ =N [T*4-4iI1 be the deficiency spaces
for T. Then
D(I*) = D(T) D, +D_,

where the sum is orthogonal in the graph norm of D(T™). Since T has
deficiency indices (1,1), dim®D, = dim®D_ =1. Therefore A, B are
restrictions of T* to domains :

D) =D(D)£[f], DB) =D(D)=x[g]

respectively, where f = d, +848,,9 =d,.+85d,,0 #d, <D, and 84,
Sy are isometric isomorphisms of D, onto D_.

Let d_ = 8,d,. Then Spd, =id_, and d_[lx = . [}« = VAR o
implying 2 = ¢*is a complex number with modulus one. Thusf = d“ﬁ’;‘-—d_’
g=d +eé%d_, Af =T"f =1d,—id_, and By =T"g = idﬂ._—w‘?"d_.

Therefore the perturbation A ~ B is represented in the Hilbert
space D(T*) by

(TIL.3.1) D(4) =DM *[fl, DB) =D(D)+0gl,
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where:

1° f=d,+d_,g=d. -+,
and o real;

2° A =B on D, Af =id,—id_, and By =id,—if"d_.

Without loss of generality we may assume that [|f|l« = [lgll« = 1.
Using the canonical isomorphism Sp, determined by (IIL.5.1) we find
that

with 0 #d,eD,, 0 %d_eD_,

det(4,\B,) = (A7'B;Spaf, e = (47" Beg, s

= (47 By, )+ (447 B.g, Af).

Using the fact that 4 is self—adjbint and that 4 = 4,4 (I, we find
= (B9, 4N+ (B:g, /) +(1+ ) (47" B:g, f).

Next we express B;g in terms of f and A4.f:

det(4,\By)

Byg = $i(1+8) (L — &)+ (L +6) il (1— 61 A,f

and note that AP = [T*fIF = [Ifla— [IfI* = 1—|f|% It is then a matter
of direet computation to verify that

(ILL.5.2)

(II1.5.3)  det(4,\By)
= dsina{l+cotat £ (1+ AP+ Q4 ) (AS, )+ @+ A, D)
Let {H (2)} be the resolution of the identity corresponding to 4 and

@) = B, (DI, Then
L= = [ Q+Daa, I = [ dah),
(41, f) f hdvg®), ad (47, H = [ T ).

—0

Substituting into equation (IT1.5.3) and writing du,(2)
Xdy,4(1), we obtain, after some computation,

= (L+ A% x

(IIL.5.4) 9,(C) = det(4,\By) =e"“sina{eota-|- f(l_l_ 1j12)d,¢,1( )}

where

]

1
[ T iea® = Il =1.

—00
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Entirely analogous procedures, using the resolution of the identity
{Bg(l)} for B and dvz() = d||Ep(A)g]}, give

p5(L) = det(B,N4y) = (By' 4;8.459, 9)«
1

=_ ‘“‘sma{ cotia—+ f(l——f l-H'\)

i (7)}

where
o0

dpp(2) = 1+ XY dvp(2) and dup(2) = lgls = 1.

1
ey

As in Section III.4, tp 4 (D)eg(l) =1, and it follows that the absolutely
continuous parts pd 45 ,uB of u,,pup respectively are equivalent, while
the singular parts 4k, 4k are orthogonal. The same relations will hold
if we multiply all these measures by the f&ct01 (1—}—2 Y2, obtaining the
measures v, = ¥4 vY, vp =5k, where oY ~p and ¥l | vp.

Let M, My be the closures in 5# of the spaces spanned by {F,(1)f},
{(Bp(Dg} (or by {A7'f},{Bi'g}) respectively. Since ’

1 ] 1 .
dy =5 (A+0f =5 (B+i)g,

—2ia

€ .
- (B—i)g,

. —1 .
a_ = A—i)f = —

d, ,d_ belong to both M, and Mg. Thus f,ge M, ~ Mp.
Let u = B;'g. Then % = d+ g, where d<D(T), and, using (I1L.5.2),
we geb

g = Byu = B;d+pBg = Agd—]—gi(‘l—}— Bya—e)f+

+ e riza— e A,

Thus

1 = apg-Linr oo ap-Lrarenria—e
belongs to 1, and so therefore does u = d- fg. It follows that Mz = M,
and, similarly, M4 c Mp.

Thus #;, = M, = Mg, #, = #; reduce both 4 and B. Let A,,B
be the parts of 4, B respectively in 5, ¢=1,2 . Since D(4,) =D(4)
~ s is orthogonal to D(4,) = D(4) ~ 3, in the graph norm of 4,
D(4,)  D(T), and, similarly, D(B,) = D(T). Hence D(4,) =D(By)
c D(T) and 4, = B,. :
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We then find, exactly as in Section IIL4, with u = v~
Leyva ITL.5.1. Theorem TIL.1.3 holds for perturbations of type two.

6. Perturbations of standard self-adjoint systems. Using Theorem
III.1.2 and the results of the preceding sections we can now prove Theo-
vem IIL.1.3. For we can, by Theorem IIIL.1.2, achieve the given pertur-
bation (X): [D(A), #, I, A] ~ (I): [D(B), #, I,B] of dimension m
through precisely m one-dimensional perturbations

(@) = (Ip) ~ (L) ~ ... ~{T) = 1D,
each perturbation (I;_;) ~ (I;) being of type one or ftwo, j=1,...,m.
Tor each of these perturbations we have, by Lemmas III.4.1 and IIL.5.1,
a singular measure x{ which has the properties required by Theorem
TIT.1.3. For the perturbation (I) ~ (XI) we take wm, = u{’+...+ uf™ and
" Theorem III.1.3 follows.

The proof of Corollary III.1.3" is obtained as follows: Consider the
absolutely continuous part 4, of 4. For any u 7 0 the multiplicity
mt44) (u) is either mt4 (u) or zero, depending on whether or not u is abso-
lutely continuous. The same iy true for multiplicities rel. B, and B. By
Theorem ITI.1.3, therefore, m44) () = mP4) () for every u 70 and
so A, and B, are unitarily equivalent.

We next consider the isolated eigenvalues for standard self-adjoint
gystems. As already noted, for such systems the quasi-resolvent set coin-
cides with the meromorphy domain, and the essential spectrum and the
isolated eigenvalues all lie on the real axis. For any interval # of R
(open, closed, or open at either end) which lies entirely in the meromorphy
domain of the system [D(4), #, I, A] ,we denote by n,(#) the number
of isolated eigenvalues of the system (each counted as many times as
its multiplicity) lying in #. We then have: ‘

TaEoREM IIL.6.1. Let (I): [D(4),#,I,4], [D(B),#,I,B] be
standard self-adjoint systems and let (1) ~ (II) be a perturbation of dimension
m. Then for every interval F contained in the meromorphy domain of (I)
(and therefore of (IL))

(ITL6.1) [ F) =g < m

(where, as in Theorem IIL1.3, (IIL.6.1) is meant to wmply that n,(F) 8
infinite if and only if ng(F) s, in which case they are equal; otherwise
both are finite and satisfy inequality (IIL.6.1)).

_ Proof. We first note that it is sufficient to prove the theorem for
a closed interval # contfained in the meromorphy domain £, since any
interval contained in # can be written as the increasing limit of closed
intervalg contained in #. Next note that, since A and B are self-adjoint,
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the generalized eigenspace of (I), (IT) corresponding to a point ie Z is
simply N[A4,], N[B,] respectively, and the multiplicity of 1 as an eigen-
value of (I), (IT) is a(4,), a(B;) respectively.

By Theorem II1.6.2,

(111.6.2) a(B;)—a(4,;) =index of det(4,\B,) at { = 2.

For # a closed interval contained in %, let p(#) be the number of
poles and z(#) the number of zeros of det(4,\B;) lying in .# (each pole
and zero counted as many times as its order). Then from (ITL.6.2) it
follows that

(I11.6.3) ng(F)—ny(F) = 2(H)—p(F).

By Theorem IIT.1.2 it suffices to consider the case that the perturba-
tion (I) ~ (II) is of dimension one. In this case (see equations (ITL.4.1)
and (ITI.5.4)) det(4,\B,) is a non-zero multiple of a function in class P.
Thus, if # is a closed interval contained in #, then (see [6]) det(A4,\B;)
is analytic and non-zero in / except for finitely many simple poles and
zeros. Moreover, between any two consecutive zeros in # there is exactly
one pole, and between any two consecutive poles there is exactly one zero.
Thus, in view of (I11.6.3), [ng(£)—=n4(#)| < 1 and the theorem is proved.

Remark. In case A and B are bounded we can extend the results of
Theorem ITL.6.1 to include intervals # on the projective real line (including
co) which are outside the essential spectrum (*). The proof follows the same
lines as the proof of Theorem IIT.6.1, except when we consider the poles
and zeros in a one dimensional perturbation we use the fact that a funetion
in class P is transformed by the mapping

o= al+b
T ot+d

into a function in class P, and that, moreover, the mapping can be chosen
5o as to transform an interval on the projective line into a bounded

b
with a, b, ¢, d real a,nd{: di>0,

. intefval.

APPENDIX

The determination of the isolated clementary divisors and of the
character of a perturbed system. Examples arising from ordinary differ-
ential equations with boundary conditions. In this appendix examples
are given to show how the theorems and techniques of Sections 6 and 7
of Ohapter II can be applied to eigenvalue problems arising from differential

(%) Such intervals, besides the usual intervals, include those of the form
# = (b, o] U [— 0, a), where a < b.
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operaﬁors with not necessarily self-adjoint boundary conditions. For this
purpose we use the Hilbert space # =P*(—1,1); ie., the perfect
functional completion of ¢*([—1,1]) with respect to the norm

lzf = [

The elements of # are functions in 0°([—1,1]) and have absolutely
continuous third derivatives. (For these and other properties of -
see [1], [10]; the properties we shall use can eagily be proved directly
however.)

We consider the differential operator d@*/d¢* applied to functions
in a closed subspace V of # determined by four linearly independent
boundary conditions

&' w(t)
at*

i ) [a® (= 1)P + @ (1)1

k=0

(A1)

3
(A.2) kZ ]-_pjkw(k)(_l)'i"%km(k)(l)] =0, j=1,..,4,
=0
where the coefficients are constailt.
Write ## as an orthogonal direct sum:

o= DL, by ..., 1]

Then it is easily seen that D is the subspace of 5 composed of functions
#e # such that #¥(—1) = a®(1) =0,k =0, ..., 3. Thus D is a subspace
of the space V determined by the boundary conditions (A.2), and V is.
therefore the direct sum of ® with a subspace of [1,1,...,¢]. Infact,
the spaces V determined by boundary conditions of the form (A.2) are
precisely those subspaces of # of the form
(A.3) V =D4t[@, ... rq],

where @, ...,#, are linearly independent elements of [1, 1, i

To see that V can be characterized in this way mnote that there is

a 1-1 correspondence between [1,t,...,1"] and C® For if

7
@ = kz,;'rkt"e[l,':t, ey 17,

then # uniquely determines the vector

& = (#(—=1), ' (—1), s @(=1), 2(1), ey @' (1)) €CP
Conversely, @ is uniquely determined by & according to the formula

= (TgyTyy---

) 1) = Q7Y
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where @ is the non-singular 8 X8 maitrix

1 0 .0 0 10 0
-1 1 o o 11 0
1 —2 21 0 1221 0
-1 3 —32 3211 3 32 321
¢= 1 —4 43 —432 1 4 43 433
1 B —54 543 1 B 54 543
1 —6 65 —654 1 6 65 654
~1 7,—T6 T6B 17 76 765

Thus, if ¥ is the subspace determined by (A.2) then the 4 X8 matrix
P = (P, 9;) has rank four and its rows determine a four-dimensional
subspace of C®. Equation (A.2) determines the orthogonal complement
to this subspace; to this four-dimensional complementary subspace
corresponds a four-dimensional subspace [y, ...,%] of [1,8, ..., 81;
and V is given by (A.3). Conversely, if V is defined by equation (A.3),
then the reverse argument gives a mafrix P = (D, Gx) of rank four,
and the boundary conditions (A.2) corresponding to P determine V.

In particular, let V be determined by the self-adjoint boundary
conditions #(4-1) = &' (1) = 0. Then

(A4) V =DtW, .-y Yals

where
y.(t) = B— 6841, ya(t) = 14—158+1°,
¥, (t) = Tt—108° 438, g,(f) = 61— T8+
Let @ H: VW =I*}[—1,1]) be defined by
d*z
@

Then (I): [V, W, H,G] is a Hilbert system whose quasi-resolvent
set consists of one component — the entire complex plane — of character
{0, 0). The isolated eigenvalues of (I) are

Gz Hyp =z for zeD(@ =DH)=7V.

wtnt

Ay = 16 ’

n=1,2,...,

and the corresponding eigenvectors are
for n = 2m,
for' n=2m—1l,m= 1,2,...,

Ug (1) = sinmwi
uzm——l(t) = CO8 (’m"—%)“t
each having multiplicity one.
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Let ¥, be the closed subspace of # determined by linearly independent
boundary conditions (A.2), and define G, Hy: V,->W by

d4
G ‘"‘WT’ Ho=0 forzed(@)=D(H) =7V,
Then
(A.B) ’ V,=Dtl[2y,.. o 8l
where 2., ..., &, are linearly independent elements of [1, t, ..+, 1], Clearly,

(II): [Vy W H,,G.] is a Hilbert system and (I) ~ (II). Thus we may
apply the results of Sections IL.6 and IL7 and the knownv properties
of (I) to obtain information concerning (II).

Ag remarked in Section II1.7, one method for discovering information
about system (II) is to compute exphcn;ly the null gpace of B, = G4—AH,
for Ae C and therefore find directly the isolated eigenvalues and the
character of the quasi-resolvent set for (II). For this purpose it is useful
to note thabt if weN[B,], then d*u/dt* = Aues# is continuous. Thus
u is & classical solution of the differential equation d*u/dt* = Ju; i.e.,
for 4 #0,

S

— il

= 3",
i=o

where u = A%, and the 7;’s are so chosen that w satisfies (A.2).
Using the fact that

a® (t) =

3

> (¢ wtme™,

E=0,1,...,

we see that equation (A.2) implies that the vector

Mo
n=1:
Ns
must satisfy the equation C'(1)n = 0, where C(1) = {¢;(4)} and

B 3
ep(d) = 2 @’ [ije_il"‘i' e ¢,

The dimension » of N [B,] is equal to the munber of linearly inde-
pendent solutions of C'(1)y = 0; ie.

(A.6) n = 4—r(a),

where r(4) is the rank of C(4). Thus investigation of the rank of C(4)
for ie C will give directly the isolated eigenvalues and the character of
the quasi-resolvent set for (II).

In order to apply Theorem II.6.1, however, the type of a matrix
representation of the perturbation (I) ~ (II) must be used. Accordingly,
let A, = G—AH,B, = G;—AH,, and Sy, be the canonical isomorphism

j=1,...,4,1=0,...,3.
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of V onto V, determined by the decompositions (A.4) and (A.5). For

j::l,...,:‘:, let .
(A7) ¥; = 47" BySp.y; = A7 By,
Then

4
Y; = d]'"}"kgykskj:
where d;e¢D, and the matrix representation 8 = (s;;) of 4, ~B; is
given by
8 = {{t; 30} {Fr, 9)} -
Sinece det{(y, ¥;)} # 0, S has the same type at 1 as the matrix 15(1)
= {(@x, ¥,)}, and it is therefore sufficient to compute D(4).
From (A.7), 4,4; = Byw; for j =1,...,4. Hence ; =.x;+2;, where
#; satisfies the differential equation
d‘z;
=l
and the boundary conditions z (1) = —a; (1), (£1) = —a; (+1).
Thus #;, and therefore ;, can be found explicitly in terms of #; and its
derivatives. Using equation (A.1l) we find
(A.8) D(2) = {@, 9} = XM (A)+ YN,
where:
1. X, Y are the 4 x 4 matrices (a;;), (by) Tespectively with components
ay = g0 +a(~1), by =)+ (1),
4 =) ()43 (1), by = wg'-"(l)-l-m}"(—- )s
a3 = z;(1)—a;(—1), bys =a;;',-(1) #;(—1),
ayy = (1)—a; (—1),

by =5 (1)~ (—1).
2. N is the non-singular matrix

0 —8 0 5032
0 480 0 1008
N =
—8 0 696 0

48 0 480 0
3. M(X) is the 4 X4 matrix

A(p)+ AGip) 0 O(u)+C(ip) 0
3 LA )4 ] 0 21040} 0
0 B(u)+B(ip) 0 D(u)+D (i)
0 % [B(#)— B(iw)] 0 ;Ll—g [D()—D (in)]
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with p = A" and
A(g) = —4u(6pr—1) tanhy,  C() = —12p(2047+29) tanhp,
B(u) = —4u(60u?—1) cothp, D(u) = —4u(126 42+ 629) cothpu.

Note that system (II) is uniquely determined by the 4 X8 matrix
(X, Y) of rank four. For, as seen above, system (IT) is uniquely determined
by the 4 X8 matrix Z with linearly mdependent rows &y, ..., &, where

= (g (—1), ..oy a5 (1), (1), .. (1)), and (X, ¥) is the product
of Z with an 8 ><8 non-singular matnx whmh is independent of @, ..., ,.
In the examples that follow we shall determine system (II) en“her
by giving the boundary conditions (A.2) or the matrix (X, ¥) explicitly.

By Theorems I.2.1 and IL.4.1 the quasi-resolvent set of (I) always
consists of one component — the entire complex plane — of character
(n,n), where 0 < n< 4. We investigate various possibilities for .

Case A. From equation (A.6), » = 4 if and only if all components
of O(1) are identically zero. But each such component is a linear combina-
tion of linearly independent exponentials of the form el“*™* with poly-
nomial coefficients, hence vanishes identically if and only if all the poly-
- nomial coefficients are identically zero. Since this is the case if and only
if py =¢p=0 forj=1,...,4, k =0,...,3, the quasi-resolvent set of
(IT) cannot have character (4, 4) for any choice of 1inea1‘1y independent
boundary conditions (A.2).

Oase B. n = 3 if and only if all 2 X2 minors of C(A) are identically
zero. But as in case A, each such minor is a linear combination of linearly
independent exponentia,ls with polynomial coefficients. Expanding the
2 %2 minors of O(A) and setting the proper coefficients equal to zero,
we find, after simplification, that » = 3 if and only if all the 2 X2 minors
of P = (p;, 9;) are zero. Since then the boundary conditions (A.2) cannot
be linearly independent, (IT) can never have character (3, 3).

Oase 0. n = 2 if and only if all 3 3 minors of ¢(2) vanish identically.
As in the preceding cases we compute all 3 X3 minors of O(4) and set the
appropriate coefficients equal to zero to obtain necessary and sufficient
conditions on P that all 3 X3 minors vanish identically. If we -write

D (1 ryhs) = 0
as abbreviation for
Tiiy Trig Toig
Thiy Ty Tug) =0 for all §,k,0=1,...,4,
Ty Triy Tuy

then these necessary and sufficient conditions ave: '
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D(pop1g0) = 0,

D(poprts) =0,

D (poP18:) = D(poP:20)+D(P1D240),

D(pop2g0) = 0,

D (pep21) = D(PoP320)+D (p:19:40)
2D (pop29s) = D(Popsy)+D (912290 +D (D1 0:),
2D(poPsgs) = D(PePs8e) +D(p:10:20) —D (P2P540)5
2D (p1Pste) = D(poPsq1) +D (P12 01) —D (Do P18s),
2D (p10s3¢1) = D(PeD:0:) +D(9:920:) +D (p20:40),

D(p1Ps8:) = D(DoPss)+D(p:10:05),

D(p1psgs) =0,

D(psp3ts) = D(PoPss)+D(p19205),

D(pspsgs) =0,

D(pspsgs) =0,

D(q0q.p0) =0,

D(gq2p1) =0,

D(g6q:102) = D(g04:00) +D(9:4:D0)

D{(qogs10) =0,

D (¢0q271) = D(08:90) +D (1 4:20),

2D (409222} = D(909:P1) +D(q:19201) +D (2691 75),

2D(¢0q2Ps) = D(9025D2) +D(10202)—D (9:0574),

2D(g:9:00) = D(qeq:P1) +D(210:0:)—D (2001 s),

2D(q.4sP1) = D(go2s02)+D(g19:22) +D(4:93P0),
D(g14sD:) = D(qo9sPs) +D(q10205) s

D(q:4575) =0,
D(q29571) = D(209sPs) +D(q19:25),

D(g:95p0) = 0,

D(g29s5) = 0,
D(got14s) = —D(P10290)5
2D(¢0919s) = D (PoP:0:) —D (P10241) —D (PoP1s)
2D(g0920s) = D(DoP32) — D (P1P292) —D (P2P2l0);
D(q19:295) = —D(D1P205),

D(pyp1p2) = —D(14:20),
2D (pop10s) = D(09301) —D(¢14221) —D (41 Ps),
D (pop2ps) = D(qoqsP2)—D(418202) —D(424520),
D(p19:03) = —D(q14223)-

Studia Mathematica XXXVI1
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Thus » = 2 if and only if P is of rank four and its coefficients satisty
the above equations.
Example 1. Let (II) be defined by the boundary conditions

z(l)—a(—1) =0, #'(1)—a"(—1) =0,
' (1)+a (—1) =0, ")+ (—1) =0.
Then,
-1 0 0 01000
0 +1 0 00100
0 0 —1 00010

0 0 0410001

is of rank four and satisfies the above conditions; system (II) therefore
has a quasi-resolvent set of character (2,2). Solving the differential
equation d*z/di*— Az = 0 subject to the above boundary conditions,
we find that for 4 £ 0

N[B,] = [cosut, coshut], u =,
while, for 4 =0,
N[B;] = N[G4] = [1, #*].

Thus a(B;) =2 for all 1eC and (II) has mo isolated eigenvalues.
Oase D. m =1 if and only if detC(4) =0 but all 3 x3 minors of
C(4) do not vanmish identically. Proceeding as in the preceding cases, and

writing D(r, 7, 7;.7;,) = 0" as an abbreviation for

Tig +es T,
: =0,

Tai,
we find the following necessary and sufficient conditions that P must
satisfy in order that detC(1) = 0:

LT

D(popitets) = 0,
D(PoPsqas) = 0,
DD op1900:) =D (PoP2ge?s) = 0y
D{(p2054195) —D(p1Ps0:8s) = 0,

2D(9oP34043) —D (PePs081)— D (Po D140 s) —D (DoD1 81 4s) —
) —D(P1p20091) = 0,

2D (1’11’391!13)—1)(1’2.’!’3!1023)""D(pol”a%%)"D(P1Z’2Q2Qa)“
—D(p.0:0:42) = 0,

D(Po?sﬂoﬂ2)+p(poplq1%)+D(P1P2‘10!19)—D(Popz%!la)"

—D(91239001) —D (PeP20:02) = 0,
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D(p193909s) +D(P0P202 %) +D (P 1030:02) — D (Pe P31 4) —
—D(psPsqoqs) —D(0:0:4145) = 0,
2D (p1939092) + 2D (PoP24195) —D (Do P340 gs) — D (12281 82) —
“D(plpz.qo%)“D(.polhng:x)"-p (P2P39091) —D{(PoPs19)
D(Pep12:40) +D (PeGatas)
D(P1P2D595) +D (P2419:95)
D (PeP19390) +D (919091 92) — D (PoP1P241) — D (P 909145)
D (Pop2P3s)+D(024:9245) — D (D192 D20)— D (D290020s) =
D (poP2Psd0) T D(Po20q295) — D (DoD:P241)—D (91800185} +
+D(pyp1P:0:) T D (P2get14:) = 0,
D{(pep1P59s) +D(P20919s) — D (DepsP34:) — D (P20 4245)+
+D(p12:0:91) +D (P14:14205) = 0,
D (poP1P3%) —D(P2009192) —D(PoP1P285) +D (Pa o 12 42)—
—D(poP2P391) +D (D1469295) +D (2122 P:%) —D (#6091 9:45) = 0,
D(p1Pa092)+D(PoP29:105) —D(DoPadrgs) —D (P1P20:42)+
+2D(pop1P20s)+2D(4:9:19:95) = 0.
Thus # = 1 if and only if P is of rank four, satisfies all the above
equations, but does not satisfy all the equations of case C.
Example 2. Let

H

?

b

0
0
0,
0

f

?

0 0 10 29
0 0 00 776 1552
0 L 00 0 0 = 1
X = 696 , Y= 776 4656 |,
1 0 00 0 0 0 0
0 0 11 —11 103 o 0
50438 50488
Then it is easily seen that
-1 0 1 0 1 0 -1 0
0438
_ 50488 0 0 1 ] 0 0
11 11
= 488
P 1 0 _ 50488 1 0 0 — 09
106 105
29 29
P R TP R )
20 20 20 20
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has rank four and satisfies the equations of case D but not those of case 0,
Hence the corresponding system (IT) has character (1,1). In fact, direct
computation shows that, for 4 near 0 but # 0,

29 29 )
= [ |— 2 —— 2 i A
N[B;] = [(20 u2eosh (20 + u )psmh,u) COs it +
29 29
Zpreosu— [—— — u?) psi — gl/a
+(20M COS 14 (20 M)ﬂmlﬂ) cosh,ut], pmo= A,
Since for 1 = 0, however,
N[B;] = [1, ],

2 =0 is an isolated eigenvalue of (II).
We shall use Theorem I1.6.1 to investigate the isolated eigenvalue
A = 0. From equation (A.8)

din(d) 0 0
By [ 0 a0}
dsl (A) 0 das(l) 0
0 du(d) -0 dyu(d)
where
adn(d) = 1,

1
du() = W [4 () —A (iu) T,

1
day(2) = 5964t [O(w)—C (iu)]+1,

day(4) = A(u)}+A(in),
d5(2) = O(u)+C (in),

dg(2) = [B(w)+Bli)]+ —3— [B(w)—B(ix)]+1,

%W=WW+WM+%WW~MWHL

Since d,;(0) =1 50 and d,(0) = 9—$(1432) 0, D(2) can be
transformed, without changing its type at 4 = 0, into the maftrix

10 0 o0
01 0 o0
0.0 dy(d) O

0 0 dg(d) O

icm
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14
Since dx(l) = 0 A+...
immediately that D(A) has type (1, co) at 4 = 0, and thus, from Theo-
rem II.6.1, that 4 = 0 is an isolated eigenvalue of (IT) to which there
corresponds a single elementary divisor of order one.
Case E. n =0 if and only if det((4) does not vanish identically;
i.e., if and only if P is of rank four but does not satisfy the identities of

and dg(4) = —24844..., it follows

case D.
Example 3. Let X be the 4 x4 identity matrix and
1 0 63/16 0
—8 0 696 0
3175886 |
Y = 0o -7 BT N
1432 8056
3 R

Then, since det X = 0, the matrix (X, ¥) has rank four and uniquely
determines a system (II) ~ (I). We shall investigate the point 1 = 0
in the quasi-resolvent set of (II). )

Equation (A.8) gives

da®) 0 du® 0
) O dwl@) O
PO=1 0 aww o @mn]

0 du{d) 0 du(d)

where .
dy (1) = A(p)+4(p)+1,

dnu)=i%{Aun—Aum1—8,

ds(2) = O()+ O i) +63]16,
’%m=%ww~wm+mn
dea(2) = Bla)+ Blim)—T,

1 . 932
2a(2) =~ [B(s)—Blip)]+ 5
u

X 31758836
day(7) = D)+ D (i) + g

056

. 8
8uld) = ID () = D i)+ =5
i
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Since dy;(0) = d32(0) =1 = 0, D(4) can be transformed, without changing
its type for 1 near 0, into the matrix

10 O 0

01 0 0
00 4, o |’
00 0 Ay(4)
‘where
22330
4,(2) = du(z)dax(ﬂ)"‘dn(l)dls(ﬁ) = 27 Bt

Ay(2) = gy (2) By (A) — e (2) Gy (2)

_ 64-128-4730845509
- 3-631-11!

Thus D (4) has type (2,2) at A = 0 and is without type for all A near
but not equal to 0. By Theorem II.6.1, therefore, the quasi-resolvent
set of (ITI) has character (0,0), and 1 = 0 is an isolated eigenvalue to
which correspond two elementary divisors, each of order two.

Note that we could have proceeded here as in Example 2; i.e., we
could have used X, ¥ to find a matrix P giving boundary conditions
(A.2) for system (II). We could then have checked P againgt the equations
of case D to see that the quasi-resolvent set of (IT) has character (0, 0),
and computed N [B,] directly in order to see that a(B;) =2 at A =0.
Using Theorem I1.6.2 we could then have discovered, without wusing
Theorem II.6.1, that 2 = 0 is an isolated eigenvalue corresponding to
which there are two elementary divisors, whose orders sum to four. But
we could not have known without Theorem II.6.1 that both elementary
divisors are of order two; i.e., that there is not one elementary divisor
of order one, the other being of order three.

Example 4. Let X be the 4 X4 identity matrix and

0 0 By b
0 0 by b
Y= 93 Ugg ;
by b 0 0
by b 0 0
where
1 = n  k[3=® 9’
by =—+—t AR Puthi —_— 4_  ARm2
13 2-{—4 anl;z 4[ 3 (15 )tanh + +15 g 4.)7:],

icm

F.'m.'{ p-F 1pm1 ' I
3r? =
by = —T'*‘—"‘taﬂh +
kyn? 8 975
15— = Bpte 0T _
5 [2 (5 S)tamh s+1a1: 3 45#],
4 1 = T
byg = —d =1 = r_
28 ‘_2{ 5 -+ 1 ta‘]]]l2
k [ 37 =t = 3z® 15x* 3x°
NN Rl T - 45
4[2( s)ta‘nhz ot 4+45]}’
3x? P F
byy = —{— -+ ——tanh—
" 1:2{ 5 16 7 T
ko * 15x* 3x°
tanh —_— 451-:’}
16 [ (1 n + ]
by = — coth— -+ ———— k, AY
n 2 ' 4. 631
7':3 T
=T 40,
be = g OB 5+ e 6311 by 45
T b
= = ¢cothm 4 Jo, A
bo = cothg + iy e i)
T T
, = Zcoth T AQ
b = 00th5 + oo 6311k2 422
with
k ® 3z 157 45'52)"1
t\16* 16 4 9 ) ?
= — AP AQ— AP AL
T T AR AR Ay
and 7
8 1 T 1 T 1
o S il 5 1 ) esomt ™ — X
4% = 7:(45 ni)GOthz —]—4(10 ﬁz\’csch 2 4(15—]— 7:,z),
1 (96 1 . 1
@ _ LA PP
45 = 2{n ( ) oth +— (45+ )csch - (5 3

24

(15 — i) cseh2 — coth }

71

)_
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25 1 16 1 ., 16 1
Aglg)=—-—7§(15+n)c oth = +——(5—?)cs0115+;2— 15+ ),
159 1 n . 52 1 2 T
@ = il I — I _
5-2° 1 28 1 b1 ™
- (3-{— -‘T—CE) -?(l5——?)cschzgcoth5},
4 1258 n 1258 T
A = ~;(189—|— 3 )coth-?j —|—2(63+ 5 )csch 7
~2(63— 1258)’
™
' 8 1258
AW = __1_6(63— 1258) th-+ (60—{- )es ch®— +——-—(63— )
7\:3 \ 7-:2 TEZ

(Note that APAZ— A AL +# 0, so ks, is finite.)

Then (X, ¥) has rank four and X, Y therefore uniquely defines
a gystem (IX) ~ (I). We shall use Theorem II.6.1 to investigate the point
A, = n*/16 as an isolated eigenvalue of (II). Since A, = =*/16 is an isolated.
eigenvalue of (I), however, Theorem II.6.1 does not apply directly to the
perturbation (I) ~ (II) and we must use the procedure outlined in case B
of Section IL.7.

Corresponding to the isolated eigenvalue 4, = =*/16 of (I) is the simple
elementary divisor [y,], where y,(t) = cos =t/2. Let

b ol T 2
20 =55 (5= ) mtr—g 1 I3 w0,
#() = g5 () —p(2).

It is easily seen that x;¢D and thus, for j=1,..., 4, (v;,2)
= (@5, 4;) = 0, while

(@5 Ys) = (5, @) = TT;’ ““‘31166 +}%ﬂ —:4‘52712‘ = ‘7%
‘Write D as an orthogonal divect sum
D =Dk [x].
Then
(A.9) V=%, 41, Vi=Dx[m,...,5],
and we can define a new operator G VW by
&= @ Cooon D[y, e U,

“|@—¢eH on [vs1,

Finite-dimensional perturbation I 3

e # 0 being arbitrary but fixed. Then (I): [V, W, H, §] is a Banach
system, and it is clear from (A.9) that (I) ~ (II). However, 1, = =*/16
is not an isolated eigenvalue of {I) so we may use Theorem YI.6.1 and
a matrix representation of (I) ~ (II) to investigate i, = n*/16 as an
eigenvalue of (II). ’

Just as in the case of the perturbation (I) ~ (II) we see that it is
sufficient to examine the type at 1, — =*/16 of the 5 x5 matrix D(4)
= {(?7]’7 Yx)}, Wwhere ?}7‘ = A;IBA"”N j=1,...,5, and

-Abz —d—IH = 4, on ©'+[y,, AR
Aspe o [ys].
For yeV, we see that
(y, %)
y=-2" g ra
(55 @5) s !

Withde® £ [¥s, ..., ¥,]. Since A,z = A,y;— A,p = A,m,— ey;, therefore

(Y, @)
Ay = Ay—e—21"
W x?l (5, 5)
Hence for j =1,...,5,

(#;, #5)

Bx; = Aﬂ}, == Aﬂ}i—-s @5, 2)
3

Tt follows that §, = ;% , where %, satisfies the differential equation

méﬁ M —¢ (?7:4‘7 25) ,

it ! (5, @5) :
and the boundary conditions #(+1) = —a;(+1), 2; (41} = —a; (£1).
Thus
(A.10) by = w8

U 2) (5, 75)

where #z; satisfies the homogeneous differential equatmn d*z;fart— lz- =0
and the boundary conditions #(=1) = —a; (1), 4 (£1) = —a; (j:l)
In particular, z(f) = 0 and 2, ..., 2, are the same functions used earlier
to compute 13(1).

Since for j =1, ...,4, (%, #;) =0, and (y;, ;) = (¥, %;), equation
(A.10) gives

R & "
(Y55 m5) = (7, 05)+ ‘m (Y5 %5),
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or

N dy— 4 X
(yijs)=m(zhws)y J=1,..,4.
Similaxly, '
. M— A
(Y5, %) = m(ﬁ% ).
Thus
G & (%4, @5) -
YT RTGT eyt T ek
;=
&
25+ mym Jj =25,

and we may compute 15(}.) explicitly to obtain

() 0 Ay 0 a2
. (1) 0 () 0 Ay

D) = Y aaz(z) Y 334(/'1) 0

0 dy(d) 0 a1 o
B (D) 0 da(h) 0 ()
where, using the above formulas and the values for (¥, y,), 4, % =1, ..., 4,
computed earlier, we can obtain explicit expressions for the &,,,( )s a8

analytic functions of A. We are interested .in the behavior of D(}.) in
a neighborhood of A,.

We notice that by interchanging rows and columns we can transform
D(i.) into the form

H

@) &) 0 0 o
aﬂ(l) ‘244(1) 0 0 0

00 () du(d) dy(2)
0 0 *zx(]*) aza(}*) azs(l)
0 0 51 (4) &53 (A) dss(l)

~

It follows that to find the type of D(2) at A, it is ®
ufficient t £
the types of the two minors ) ' et o find

A0 — (a (A) d“w)
d(3) dyy (1))’
Ay (2) dug(A) dys(2)
A3(2) = | (A) dyy(2) dy(h)].
asi(z) C?ss(A) ass(z)"

Finite-dimensional perturbation I . 75

By developing the elements in power series about 1, and calculating
the determinants, we check that d,(4,) 0 and that debd,(1)
= ky(A—2,)*+..., k3 % 0. Thus the degrees of the matrix 4,(1) at i,
are 0 and 3, and 4,(1) has only one type exponent at 4,; namely, 3.

Next we find detd,(l) =k, (A—4,)+..., k, %0, from which it
follows that the degrees of A,(1) at i, are 0,0, and 1. Hence 4,(1) has
only one type exponent at i;; namely, 1

It is now easy to see that the type of ﬁ(l) at ; is (1, 3). Hence sys-
tem (II) has an isolated eigenvalue at i;, to whieh there correspond two
elementary divisors — one of order one, and one of order three.
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On subharmeonicity inequalities i.nvdlving solutions
‘of generalized Cauchy-Riemann equations
by

R. R. COIFMAN and GUIDO WEISS (8t. Louis, Mo.)

Suppose F = (#,, F,, ..., F}) is a system of C* real-valued functions
defined in a domain U < R"* (— n-dimensional Buclidean space) satisfying
the partial differential equations

o oF
Z;Af— =0,
= Om; ’

where 4; is a Ix% constant matrix and 0F/[dx; is the (column) vector
having eomponents OF;/0x;, ¢ =1,2,...,%k We say that the system
of partial differential equations (1.1) is a generalized Cauchy-Riemann
(GCR) system if each solution F = (¥, F,, ..., ;) has harmonic com-
ponents F;, ¢ =1,2,...,k. When k =1=mn =2, a linear change
of variables reduces such a system to the ordinary Cauchy-Riemann
equations.

Several systems of partial differential equations that generalize,
in one way or the other, the Cauchy-Riemann equations have been studied
by Stein and Weiss [4], [5] and Calderén and Zygmund [2] in connection
with various extensions of the theory of HP-spaces. Each of these systems
is & particular example of a GCR-system. The basic fact, common to all
solutions of these equations, enabling one to develop the theory of
HP-spaces is the existence of a positive p < 1 such that

(1.1)

PP = (3 e

is subharmonic (see [4]). A. P. Calderén observed that the existence of
such a p is the consequence of the ellipticity of system (1.1). More
precisely, system (1.1) is called elliptic provided

n
(12) DA =0
j=1
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