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On subharmeonicity inequalities i.nvdlving solutions
‘of generalized Cauchy-Riemann equations
by

R. R. COIFMAN and GUIDO WEISS (8t. Louis, Mo.)

Suppose F = (#,, F,, ..., F}) is a system of C* real-valued functions
defined in a domain U < R"* (— n-dimensional Buclidean space) satisfying
the partial differential equations

o oF
Z;Af— =0,
= Om; ’

where 4; is a Ix% constant matrix and 0F/[dx; is the (column) vector
having eomponents OF;/0x;, ¢ =1,2,...,%k We say that the system
of partial differential equations (1.1) is a generalized Cauchy-Riemann
(GCR) system if each solution F = (¥, F,, ..., ;) has harmonic com-
ponents F;, ¢ =1,2,...,k. When k =1=mn =2, a linear change
of variables reduces such a system to the ordinary Cauchy-Riemann
equations.

Several systems of partial differential equations that generalize,
in one way or the other, the Cauchy-Riemann equations have been studied
by Stein and Weiss [4], [5] and Calderén and Zygmund [2] in connection
with various extensions of the theory of HP-spaces. Each of these systems
is & particular example of a GCR-system. The basic fact, common to all
solutions of these equations, enabling one to develop the theory of
HP-spaces is the existence of a positive p < 1 such that

(1.1)

PP = (3 e

is subharmonic (see [4]). A. P. Calderén observed that the existence of
such a p is the consequence of the ellipticity of system (1.1). More
precisely, system (1.1) is called elliptic provided

n
(12) DA =0
j=1
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for a k-dimensional (column) vector v and an n-tuple 1 = (1y, 4o, ..., 4,)
only if either v or A is zero. It was pointed out to us by B. M. Stein that
every GOR-system is necessarily elliptic. If this were not the case, the
existence of non-zero v and A satisfying (1.2) enables us to construct
the non-harmonic solution

F(o) = {exp(é{ Ay}

of (1.1). Tt is these facts that motivate the definition of the generalized
Cauchy-Riemann systems given above.

Let v = (01,02, .0y 0), uP = (uf), ufd, ..., ul),
note elements of R¥,

j=1,2,...,n, de

k k
ud-p = Yufe, and |off = .
=1 : 1=1
The subharmonicity result mentioned above is a consequence of the
basic inequality (due to A. P. Calderén)

n
(1.3) max 3 (uf-0)’ < a 2 [u?2,
lv]=1 =1
where
n
(1.4) Y AuD =0
i=1
and o is a number less than 1 depending only on the matrices 4,, ..., 4,,.

It is our purpose to show that, in addition, (1.3) implies other sub-
harmonicity inequalities. More precisely we shall prove:

THEOREM. Suppose F is a solution of the generalized Oauchy-Riemann
system (11) and F* = (Fy; Fy, ..., Fy_y, AF,); then the following fumctions
are subharmonic:

(a) |F|?, where p>2—1]a;

(b) AIF'P—|F|°, where L<p<2 and A= (p—1)""(1—a)™";
(0) A|F|FP=2— | BV, where 2 < p < 00, 4> p(p—1)/(1—a) and
< min{(l—a)/4(p—-2),1} ().

0 <2
’ The best possible o has been calculated for many of the systems
discussed in the above mentioned articles.

The subharmonicity of the functions in (b) and (e¢) was proved by
Kuran [3] for a special case (the solutions of the M. Riesz equations)
in order to obtain an extension to # dimensions of the proof by P. Stein
of the M. Riesz inequality for conjugate functions (see Chap. VII, p. 261

(*) This theorem can be stated more. generally by mtroducmg, instead of F4
the vector G* = F— (1—1)(F-v)v, where v = ¥y, -+., v) i8 2 unit vector.
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of [6]). This extension is a consequence of the mean value inequality
satisfied by the subharmonic functions oceurring in (b) and (e). (Once
this part of the theorem is established, the method of Kuran applies
without change.)(?)

We first establish (1.3). Clearly, we can assume that

Z Iu(7)|2 =1.

By the Cauchy-Schwarz inequality

n
2 (uDv) < Z’ WP 2 = 3D =1.
j=1 i=1
Thus, if there does not exist a << 1 for which (1.3) is valid, by com-
pactness there exist v and u®, ..., u™ satisfying (1.4), as well as
n n
]2 =1 = Yu®?, for which Y (u o) =1.
g=1 j=1
Hence, since (uf-0) < [u? P |vff, we must have (u®-v)* = U9 o
for j =1,2,...,n Thus, by the equality case of the Cauchy-Schwarz
inequality, there exists A = (4, ..., 4,) such that % = 4. This con-
tradicts the ellipticity condition (1.2) since we then must have
n n
0= >Au = ¥iAd;» with [A]]v] =1 #0.
=1 j=1
We recall that a continuous function s on a domain U < R" is
subharmonie if for each point ze U there exists r, > 0 such that

1
(1.5) s <——= [ sdy
R Op ¥ [Y—z|=2
for 0 <» < r,, where w,_, is the (surface) measure of the unit sphere

Z,, in R™ If s is of class O” it is well known that inequality (1.5) is

equivalent to

{1.6) © o (d8){@) =0

for all ¢ U, where
; 82

'@‘l‘-l-_"‘ amfl

is the Laplace differential operator.

4 =

(2) In an unpublished work E. Lester has obtained results stronger than those
in part (b) in the sense that, instead of F9, a vector in which more than one of the
components of F are removed can be used and the subharmonicity of the corresponding
function is still valid.
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If s = |F|?, then our function is of class C* in the subdomain

V = U~ &, where & = {#eU: F(x) = 0}. Thus, we have the mean-value
inequality (1.5) at each eV, provided we show As(w) >0 on V. Bubt
the fact that s > 0 clearly implies the validity of (1.5) for we & as well.
Tf we restrict s = |FI® on V, then a simple computation (making
use of the harmonicity of F) yields
]

: a F OF\* |oF

— DI FP-2 po e T | 2

(L.7) 4s = p|F| {2 [(p 2)([F| aa:,) +‘ 5
Applying (1.3) to v = FJ|F| and u) = 0F/dx;, we see that the ferm

J=1

in curly brackets is non-negative for p > 1—1/a. Thus, part (a) of the
theorem is proved.

Part (b) is somewhat more complicated for two reasons. First, with
s = A|F?—|PF|” we have a (*-function only if we restriet its domain
to W = U—¥9, where ¢ = {weU: F'(x) = 0} o & Second, we can no
longer assume that s is non-negative.

The fact that 4s>0 on W is also an easy consequence of (1.3).
In fact,

ds = A(A|F°P—|F)

(by (1.7) and omitting a negative term)

oF P & B 0F°\: e
|~ i) ) Y

n

>pA|FP { X

j=1

2

oF
o,

i

(using the Cauchy-Schwarz inequality)
ar

0,

3

>p40-1 P Y

j=1

n

IR Liad)

7=1

2

or
0w;

(since, for 1< p< 2, |FP2 < | PP

n

6F° 2 ki 6.F 2
> plEp {A (r—1) - }
g Oy & 0z,
(since 4> (1—a)  (p—1)Y)
n R0 1o n
> plFP-? {(1_ar12 LA N R 2}
P o =
LA &) 0F P
- pl—o rpa -3 |
, = oy f;: O
(by (1.3) with v = (0,0,..:,0, 1))

>0.
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Let us observe that when p = 2 the function occurring in part (b)
is of class (% on U, thus ‘we have the desired subharmonicity result.
‘Hence, the mean value inequality (1.5) is valid for this function at each
point weU. In particular,

[ 1
w1 e ger L 10
where ze % and {y: ly—o|<#}c U.
Suppose 1< p< 2 and 4 = (1—a)(p—1)"; then
1 < 1 . 1 < 1 1
l1—a 1—a p—1 1

(1.8)

— B @) <
()

F“(y)j‘— !F(y)lzl ay,

2/p
. < A_‘«’Ip.
—a p—1

Consequently,
1
(19) ([FP|— A|FPPP -+ o= | < (|FP— A4 [F'P)P+ (4127
< (|FP— A |FP+ A|FPY?P =|F.
Therefore, if £¢%— ¢ and r is small (sor that |F(y)] = A7 |E° (y)]
for |y—a| <) we have, using Holder’s inequality, (1.9) and (1.8):

1 1
P [ —swly = [ AP GP POy

T
Opr” ly—z|=r ly—z|=r .

1 - /2
<lom= [ -arort (E e
e S L i R

1 1 . . . /2
<o 4 [ramor o a)
< |F@)f = —s@).

That is, we have the mean value inequality for s(z) = AP (z)]P—
— |F(z)[? for ze¥—&.

We have shown, therefore, that s = A|F°P—|F” is subharmonic
on the open set V = U— &. The fact that s is subharmonic on U follows
from the following result:

LevMaA. Suppose F is a solution of the generalized Cauchy-Riemann
system (1.1); then the set & = {x<U: F(z) = 0} is o polar set(®).

In order to prove this lemma we use two facts concerning polar sets:
first, & countable union of polar sets is a polar seti; second, a surface of

(3) For the definition and basic properties of polar sets see [1]. The fact that
the closed set & is polar allows us to conclude that the continuous function s, being
gubharmonic on ¥, must be subharmonic on U. This result extends lemma 1 in [3]
which dealt with the special case when F is the gradient of a harmonic function.
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dimension not higher than n—2 is a polar set. Given these results, it
suffices to show that & is a countable union of surfaces of dimension
not higher than n—2. Let o = (ay, as,...,,) be an n-tuple of non-
negative integers and :

@y o tay, a4 et
@9, ..., 60 = z al i

= = ...
G ... duin  Oar... Owgr (&)
the corresponding partial derivative of F. Then G, must also be a solution
of (1.1). We claim, moreover, that the Jacobian matrix

(c)
061 (w)) 1<i<k,1

has rank at least 2 Whenever it is not zero. In fact, the vectors 06, /0x,, ...
., 0G,[dw, form a bagis for the range of D,@,. If this range were one-
dimensional there must exist 4, 1 <4< %, and - = (44, ..., 4,) such that
04, 04,
oz, 7 0w,
But G, being a solution of (1.1) this contradicts the ellipticity
condition (1.2). On. the other hand, since ¥ is real analytic & is contained
in the union, over all such n-tuples a, of the sets &, = {x<U: G, (z) =0
and D@, # 0}. Since the rank of DG, is at least two, the implicit function
theorem implies that for each point ze¢ &, we can find a neighborhood
N(2) of @ such that &, N N (x) is a surface of dimension not higher than
n—2.
We now turn to the proof of part (¢). In this case the function
L8 = A|FR|PP2— | PP iy of eclass O (in fact, it is real amalytic) on
V = U— & since the term | F°* ig real analytic on all of U. Thus it suffices
to show that (4s)(x) > 0 for z< V. We have, at each point of V,

B[P ds = |F**~2 A(A|F°P |F*P" — | FPP7)

= 2AZ o
j=1

» F)

DxGuz( <j<n,

for j=1,...,n

2
+A(p—2) B} PP x

7

111}. aF). 2 aﬁ]l ‘2
{p >,§(|w amf) amf]}
1A 0
+4Acp—2)w*r=j=21(%‘; F)( T F) e Ay

a .
T 444 (p—2) P

> 2AZ'
SHE A Sl

3
n
j=1 \'
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oF°

=24
zg{’j o,

— P2 4|
8F°

2 - n A
—4A(p—2) |78 Y B — oF, (W F) -
i=1

2

n

~—4A(p—-9)122 Zf

J=1 7

1+

2

>24 — PP AP

i=

A{‘"’
g

Foz

Ow;

oA

We showed while proving part (b) that the term within the first
bracket is non-negative provided 4 (p —2)A* < 1— a. The term in the second
bracket equals

2}

oF

—d(p— 2)122 o

j=1 j

— PP 4 |1W]P}.

oF*
Om;

OF°

AZ O,

2 n F}. BFJ.
. {]_;:p 2)(1Fﬂ 6m)+

Py

n

AZ —
j=1

which, again by the proof of part (b), is non-negative if 4 > p(1—a)™" x
X(p—1). .

2
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