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Some uncomplemented subspaces of C(X) of the type ((Y)
by

JOHN WARREN BAKER (Tallahassee, Florida)*

Introduction. Tn 1962, Amir [1] proved that C[0,1] contains an
uncomplemented subspace which is isometric to C[0,1]. In 1965, Arens
[4] constructed a countable, closed subset X of [0, 1] and a decomposition
of X such that the subspace of functions which are constant on each set:
of the decomposition is uncomplemented in C(X). The crucial step in
Arens’ construction depends upon the following theorem:

If XY is a compact set in a melric space X and if the boundary of ¥
contains n poinis, then each linear projection of O(X) onio the subspace
of functions constant on ¥ is of norm at least 3—2/n.

Theorem 1.3. substantially generalizes this result and replaces the
hypothesis of metrizability with normality and 7,;. In Corollary 1.4,
sufficient conditions on & decomposition D are given in order that ¢ (X /D)
will be uncomplemented in C(X).

In Chapter 2, the main result is Theorem 2.9 which states that if X
is a T,-space and if all successive derived sets X®, X® ... are non-
empty, then there is a decomposition. D such that (X /D) is uncomple-~
mented in (X). The following characterization is obtained if X is a compact
metric space: Some finite derived set of X is empty if and only if for each
Hausdorff decomposition D of X, ¢(X/D) is complemented in C(X).
This answers a question raised by A. Pelezyniski (cf. [17], p. 74).

The notation and terminology used herein follow Kelley’s General
Topology, except for the following: a decomposition D of a topological space
Xisa disjoint collection of elosed subsets of X such that X = [ J {4: 4 <D}.
The notation C(X) is used to denote the space of bounded continuous
scalar-valued functions in a topological space X with [|fl| = sup|f(z)].

zeX

A continuous function from a topological space X onto a topological

* This paper is a condensation of a doctoral dissertation written at the Uni-
versity of Texas under the direction of Professor E. W. Cheney. The author expresses
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space Y is called an epimorphism. Two Banach spaces X and ¥ are
isomorphic (isometric) if there exists a one-to-one linear epimorphism 7T
of X onto ¥ (with | Ta| = |laf). If 7' is also multiplicative, we say that X
and Y are algebraically isomorphic (algebraically isometric). A projection
is a continuous linear operator from a Banach space X into X which ig
idempotent. A subspace ¥ of X is complemented in X if there exists
a projection from X onfo Y.

icm

L. Lower bounds for morms of projections. The notation X/D *

denotes the decomposition D of a topological space X with the quotient
topology. I D and M are two decompositions of X, then M implies D
if and only if for each A in M there is a B in D such that A « B, If M
implies D and if we define 4(B) = {4« M: 4 = B} for each BeD, then
{h(B): BeD} is a decomposition of the quotient space X /M. This de-
composition is denoted by D/M and is called the guotient decomposition.

Suppose that ¢ is a family of disjoint subsets of a topological space X.

If Bc X, we say that B is saturated (with respect to @) if and only if .

for each A <G either A « B or A ~ B = @. A set A in G is called plural
if it contains at least two members. An element A of & is a limit set if
each neighborhood of A intersects a plural set in G ~ {4}. Observe that
a set in G need not be plural in order to be a limit set. The notation (J @
denotes {#: weA for some 4 in G}. The family GV. is the decomposition
of { @ consisting of the plural limit sets of G and remaining singleton
sets. For an ordinal number a > 1, the decomposition G of |_J @ is defined
induetively. If o = f+1;, then G® = (GMO; if 4 iy a limit ordinal,
then G is the decomposition of | @ consisting of the plural sets in
M G® and singleton sets. It is convenient to let G = G If @ is a de-
composition of X, G is called the o derived decomposition of X. These
concepts are consistent with those introduced by R. Arens in [4].

A major difficulty with upper semicontinuous decompositions is
that if a plural get is replaced by its singleton subsets, the resulting
decompositions need not be upper semicontinuous. For example, for each
tin {0,1,1/2,1/3,...} leb X, denote the vertical segment {(¢,¥): 0 <y
< 1} in the plane. Let X = {J X,. Let D be the decomposition of X whose
elements are the sets .X,. Then D is upper semicontinuous, but the :de-
composition obtained by replacing X, with its singleton subsets is not
upper semicontinvous. ‘

In order to avoid this difficulty, the notion of a contracting decom-
position is introduced. Suppose that X is a topological space, D is a de-
composition of X, and A «D. We say that D is contracting at A if and only
if the decomposition of X whose plural sets are the sets in D ~ {4} is
upper semicontinuous. Therefore, D is contracting at 4 if and only if
D is upper semicontinuous, and for each z in 4 and each neighborhood
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U of x there is a (D ~ {A})-saturated neighborhood V of x such that
V < U. It is easy to see that D is contracting at 4 if and only if D is
upper semicontinuous and if {4,}.., is a family of sets of D ~ {4} with
a, and b, in 4,, then either (i) neither of the nets {a,} and {5} converge
to a point of 4 or (ii) both converge to the same point. If D is contracting
at each of its sets, we say that D is contracting. Thus, D is contracting
if and only if for each family {4,},.r of D-sets with a, and b, in 4, and
4, # A, either neither of the nets {a,} and {b,} converge or both converge
to the same point. These definitions extend the definition of R. L. Moore
(cf. [15], p- 285).

A basic property of contracting decompositions is stated in the
following lemma: '

Levmwva 1.1. Let D be an upper semicontinuous decomposition of
a topological space X, let Dy= D, D, D, D, N Dy =@, and suppose
that D is contracting at each set in Dy U D,. Then the decomposition of X
whose plural sets are the plural in D ~ D, is upper semicontinuous and
contracting at each set in D,.

If ¢ is a continuous map from a topological space X into a topological
space Y, then the induced mapping ¢° defined by ¢°f = fo ¢ is a continuous,
multiplicative, linear operator from C(Y) into ¢(X) of norm one (ef. [11],.
Chap. 10, and [19], p. 331). In particular, if ¥ is the decomposition
space X /D and ¢ is the quotient map, then ¢° is an algebraic isometry of
0(X |D) onto the subspace of C(X) consisting of the functions which are
constant on each set in D. This faet is an easy consequence of Theorem 9
of [13], p. 95, and is part of the folklore of quotient spate theory. It is
generally convenient to identify the space C(X/D) with the subspace
of functions in ¢(X) which are constant on each set in D without specific
reference to the isomorphism g°.

Our next lemma removes the restriction in Theorem 3.1 of [4] that
the decomposition set must contain only one plural set and weakens the
restriction that the space must be metrizable. Another gemeralization
of this theorem is given in Theorem 1.3.

LEMMA 1.2. Let X be a T,-space and let D be an upper semicontinuous
decomposition of X. Suppose there emists a plural set ¥ in D such that D
is contracting at ¥ and the boundary 0¥ of ¥ contains at leasi n poinis.
If P is a projection of C(X) onto C(X[D), then ||P] = 3—2/n.

Moreover, if &> 0, if U is a neighborhood of ¥, and if Y1y Yay -+ Yn
are distinet points in Y, then there exists an i and o neighborkood V of y;
such that for each t in V ~ XY there ewists f in C(X) with f{(X—U) =0,
Ifl =@ =1, and Pf(t) > 3—2/n—e.

Proof. If »n = 0, then the conclusion is clearly true. Hence, we
assume % > 1. Let M De the decomposition of X consisting of the plural


GUEST


88 J. W. Baker

sets in D ~ {¥} and let p be the quotient map of X onto X /M. Then M
is upper semicontinuous (because D is contracting at ¥) and X /M is
a T,-space (see [14], p. 185, or [13], p. 134, Problem M).

Suppose B = {Yy, Ya, ..., Yy} is & get of n distinet points in 0¥ and U
is a neighborhood of Y. By possibly passing to a smaller neighborhood,
we may assunie that U is both open and D-saturated. Then p[B] consists
of n distinet points of p [ Y]. Note that p[Y] is the only plural set in the
decomposition D/M of X /M. Since O(X/D)< 0(X|M) < 0(X), the
regtriction P’ of P to O(X/M) is a projection of C(X /M) onto O(X/D).
But X/D is homeomorphic to (X/M)/(D|M) (cf. [5], p. 40, or [9], p. 72);
hence, it follows from our identifications that P’ = (p°)~' Pp° and that P’
is a projection of (X /M) onto the functions in C(X/M) which are
constant on p[Y].

Let R be the restriction operator of C(X/M) onto C(pB). Suppose
£> 0 and § = ¢/3. There exists g of norm 1 in ¢(X/M) and y in B such
that

I(P'g—g) (py)| > |B(P'—I)||— 9,

where I denotes the identity operator on (X/M). By the continuity of
¢, there ig an open neighborhood W of p(y) in X/ M such that |(P'g— g) (@),

> |(P'g—9¢)(py)|— & for each » in W. It we define V =p~'[W]n U| "

then ¥ is an open M-saturated X-neighborhood of y in X. Let ¢ be an
element of ¥ ~ Y. Then p(?) belongs to the open subset p[U] ~ p[Y]
of X|M. We may assume that (P’'g— g)(pt) = 0. By the Urysohn-Tietze
Extension Theorem, there exists f' in C(X /M) such that f* and g are equal

on p[X],f" vanishes off p[U], and |f'| =f(p?) = 1. Since f'—g is .

constant on p[¥], we have P'(f'—g) = f'—
Let f = pof’. Since p(f) belongs to W,

D= 2'f @) =F o)+ @P'f'—F) e}
=1+ @' 9—9) @) > 14+ 1(P' g—9) (0y)| — 6 > 1+ | B(P'—

g and (P'—I)f" = (P'—1I)g.

I)[—26.

Let @ be the functional on O(X /M) such that & (f) is the constant
value of P'f on p[Y]. Let {U,, U,, ..., U,} be a family of disjoint open
sets in X/M such that p(y;) belongs to U, for each i. There exigts ¢ in
0(X|M) such that |lgl =1 and &(g) > ||P||— 6. For each 4, there exists
by the Urysohn-Tietze Extension Theorem an f; in' ¢(X /M) such that
Ji = ¢ on the complement of Uy, ||f;| =1, and f;(py,) = —1. Suppose
that &(f,) < 2| (1—2/n)— & for each i. Put b= 3 (g—7f,). Since ¢—J,
= 0 on the complement of U, we have {[b] = max|g—f;| < 2. Then we
obtain the contradiction,

icm
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2|21 = &l 2]l =

=2 (g1 > 3 UOl—6— O +2/n|P]+ 6] =

D(f;) > |®](1—2/n)— 5. Then
(PFi—5)(0y;)

= O(f;)+1 > 1P| (1—2/n)—6.

1, we obtain that

D(h)
2(|PY.
Thus for some j,

IB(P'— D) = [B(P'— I)fjl| =

Sinee @] = |BP'] >

Pf(t) > 1+ B{P' —

As £> 0 is arbitrary, and ||f]] =1, it follows that ||P||>3—2/n.

The next theorem shows that the existence of repeated limits of
plural sets is fundamental in raising the norm of projections of C(X)
onto decomposition subspaces of CO(X). A convenient feature of
this theorem is that it can be applied to a decomposition
that has no zero derived decompositions. One natural choice for
the sets S8y, Sy, .-, 8, is to let § be a family of plural sets of the
decomposition such that 8®~ is non-zero and to let §; = 87 for each 4.
Another natural choice is to.let 8 be a family of plural sets such that
81 contains a plural non-limit set and to define §; to be the family
of non-limit sets in S¢~D for each 4. The decomposition is required to be
contracting at each set in each S; so that each meighborhood of each
Limit point of plural sets in these sets not only intersects a plural set but
also contains a plural seb. (If ¢ denotes the quotient map of the decompo-
sition, & point 4 in X is a limit point of plural sets if for each neighborhood
U of », U ~ ¢q(x) intersects a plural set.) An example is given following
the theorem to show that the contracting condition can not be dropped.
A more general theorem for the case in which X is compact has been
obtained independently by S. Ditor in his disserbation [7].

It is eonvenient to introduce the following definition prior to stating
the theorem:

Definition. Let my,m,,...,m, be positive integers. A decom-
position D of a topological space X has property Ln(my, Ma, ..., My)
if and only if there exists non-empty collections 8, S,, ..., 8, of plural
D-sets such that

I)[|—26 > 2+ P (1—2/n)—38 = 3—2/n— .

n
(a) D is contracting at each set in |J 8;

i=1
' (b) the boundary of each set in 8, contains at least m, points;
(¢) the boundary of each set A in 8,., contains at least oy, limit
points of the sets in §; ~ {4}.
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In particular, if D is a contracting decomposition such that D™
is non-zero and each plural set 4 in D® contains at least & limit points
of the pliural sets in DO ~ {4} for i< u, then D has property
L,(%,%, ..., k). If the boundary of each non-limit set in D contains at
least & points, then D also has property L, ,(k,%,..., k).

TuauorEM 1.3. If D is a decomposition of a T,-space X with property
L, (11, My, ..., my,) and P is a projection of C(X) onto O(X /D), then

Pl = 20 +1— Enl 2(m;.

Proof. For # = 1 this inequality is a consequence of Lemma 1.2.
Let P be a projection of C(X) onto € (X /D). We shall consider the following
property : '

(*) I 6 > 0, AeS,, and & is a neighborhood of A, there exists ¢ in
G ~ 4 and f in 0(X) such that [[f| = 1, f|X ~G& =0, and

Pit) > 2nt1—( 3 2jm)— 6.
=1

If n =1, (*) follows from Lemma 1.2.

‘Next{ we suppose that the theorem and property (*) hold for some
positive integer n. Let 8, 8y, ..., 8y, 8,1 be non-empty collections
of plural D-sets that satisfy (a), (b), and (¢). Let 6 > 0. Choose ¢ > 0
so.that ¢ < 26. Let Y be a plural set in §,,,, and let M be the decomposition
of X congisting of the plural sets in D ~ {¥}. Since D is contracting
at ¥, it follows that M is upper semicontinuous and X/M is a T,-space.
Let 91, Y3, ...y Ym,,, be distinet points in ¥ which are limit points of the
plural sets in 8, ~ {¥Y}. Let ¢ denote the quotient map of M. Then
q(yl), q(Ys)y -1 4(Ym,,,) arve distinet boundary points of ¢[¥] in X/M.
Since D/M has cnly the one plural set ¢[Y], it is contracting. ‘

Becanse P is a projection of € (X) onto € (X /D) and C(X /D) = C(X/|M)
« 0(X), the restriction P’ of P to O(X /M) is a projection of C(X/M)
onto O (X/D) (i.e., the functions in ¢ (X/M) which are constant on ¢q[¥7]).
‘Technically, P’ = (¢°)""Pg°. Let G be a D-saturated neighborhood of Y.
By Lemma 1.2 there exists an index ¢ and an open X/M-neighborhood
U of g(y;) such that for each & in U ~ ¢[ Y] there exists an f, in 0(X/M)
such that f, vanishes off of ¢[G], ||f.l = 1, and

P (@) > 3—2[m,,,—e.

We may assume that U < @. Since g(y,) is the limit of pointy in
q[Sn],_there is an A in 8, such that g[4] belongs to T. Since X/M is T,,
thfre is ‘a closed neighborhood V of ¢[4] contained in U ~ q[Y]. If
V* =) V, then V* is an X-neighborhood of 4. By property (*) thére

icm
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ijs @ point ¢t in V*~A and g in C(X) such that g|X ~7V* =0,
llgl =1 and

]

Pg(t) > 2n+-1— 3 2/my—e.

i=1

Let K = ((X/M) ~ U) v q(¥) and observe that & is a closed set
in X/M which does not intersect V. Since X | M is T,, there exists by the
Urysohn-Tietze Extension Theorem % in C(X JM) sueh that [pf =1,
h|K =fu4/ K and h|V =0. Therefore, A— f,, vanishes on g(¥) and

Ph(gt) = [P'fut-P (h—F) (@) = P (Fula))+ (h—Ta) (@)
> (3—2/my . — &) —fultl) = 2—2[my—e

gince h(gt) = 0. Observe that g°h belongs to 0(X) and |j¢°h)| = 1. In
fact, [lg°h+gll =1 since ¢"h(w) =h{qx) = 0 if = belongs to V* and
g{z) =0 if # does not belong to ¥*. Therefore,

P(g*h+9)(t) = Pgh(t)+Pg(t) = (¢") " Pg°h(gt) +Pg(t)

= P'h{gh)-+Pg(t) > @—2[my,—e)+(@n+1—e— _i' 2]m;)
i1
n+1
= 2(n+1)+1—( fj 2/m;)—2e.
i=1

Since & > 0 is arbitrary, we have that

n+1
1P > 2 (n+ 1) +1— X 2/me.

Tt is easy to see that for f = q"h+g, t and f satisfy (*) for n+1.
This completes the proof.

COROLLARY 1.4. If D is a decomposition of a T,-space X with property
L,2,2,...,2) for all n, then C(X|D) is mot complemented in C(X).

The following example is due to R. Arens (ef. [4], p. 475):

BxanmpLE 1.5. For each ¢ in [0, 1] let X, denote the vertical segment
{{t,y): 0 < y < 1} in the plane. Let X = « X;and D be the decomposition
of X whose elements are the sets X,. Then D is an upper semicontinuous
decomposition of X. It we choose the families Sy, Ss,--<, S, of plural
sets from D by letting §; = D for each i, then each hypothesis of Theorem
1.3 with the exception of the contracting condition holds. However,
X /D is homeomorphic to the unit interval and there is a projection P
of ¢(X) onto C(X/D) with [P} =1.
- Tet X and Y be Hausdorff spaces and ¢ be an epimorphism of X
onto Y. A continuous linear operator w from C(X) onto C(Y) is a linear
averaging operator for ¢ if and only if u@® is the identity on C(Y). There
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is a simple relationship between linear averaging operators and projections
(cf. [17], p. 16): ¢ has a linear averaging operator with norm < 1 if and
only if there is a projection with norm <1 of C(X) onto its subspace
¢°[0(X)]. We let D, denote the decomposition of X consisting of. the
sets p~(Y) for ye¥. If ¢ is closed or, equivalently, D, is tpper seri-
continuous, - then X/D, is algebraically isometric to O(¥). In [17],
Pelozyriski introduced the concept p(p) = inf{[|uf: % is a linear averaging
operator for @}. Therefore, p(¢) = 4-oo if and only if ¢ does not admit
a linear operator of averaging. By use of these notations, we can restate
the two preceding results in terms of properties of continuous functions.

COROLLARY 1.8. Let ¢ be am epimorphism of a T,-space X onto
o Housdorff space Y. If D, has property Ly (my, my, ..., m,), then

n
() = 2n41— iZ; 2/m;.
COROLLARY 1.7. Let @ be an epimorphism of a T,-space X onto o Haus-,
dorff space Y. If D, has property L,(2, 2, ..., 2) for all n, then p (@) = +oo.
Suppose X is a topological space and D is a decomposition of X.
We say that D is a metric decomposition of X if X /D is metrizable. Also,
D is lower semicontinuous if the quotient map is open (ef. [14], p. 185,
and [13], p. 97). In [4], R. Arvens established results similar to Lemma 1.8
and Theorem 1.9 under the additional hypotheses that the decomposition
Is lower semicontinnous (line 2.05) and metric. He has communicated
privately that upper semicontinuity should be included in the hypothesis
of both results. The proof given here is similar to that given by Arens.
LevMa 1.8. Let X be a metric space and let D be an upper semi-
continuous decomposition of X. If Py is a projection of 0(X) onto C(X DY),
then there ewists a projection. P of C(X) onto O(X /D) with 1P| < ||Poll+ 2.
The proof of this lemma iy the same as the proof of statement 2.53
of Lemma 2.5 in [4], except that the definition, of @ should be changed to

(Pof) (2 (8))
(Pof)(m)

The additional hypotheses of Lemma 2.5 are not needed.

.TE:EOREM 1.9. Let X be a metric space and let D be an upper semi-
continuous decomposition of X with D™ = 0. Then there exists projection
P of 0(X) onto O(X/D) with |P|| < 2n-+1. - ‘

o ]?122001 Since D is upper semicontinuous, the decompositions
D ,D'),...,_D(") are also upper semicontinuous. Also, D™)® = o;
hence, it follows from Theorem 2.2 of [4], p. 471, or Theorem 8 of [20],
P- 596, that there is a projection P, of ((X) onto O0(X DY) with [P

for ze(X, ~ X,),

(@)w) ~ for weX

icm°
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< 3. Let m be a positive integer less than » and P, be a projection of
C(X) onto C(X/D)*~™), with ||P,,|| < 2m-+1. Since (D—m~0)) — pla-m)
it follows from Lemma 1.8 that there exists a projection P,,., of €(X)
onto O(X/DP™Y)  with [Pl < |Pnll4+2. Therefore, ||P,, lt
< 2(m-+1)+1 and the theorem is established. .

COROLLARY 1.10. Let ¢ be a closed epimorphism of a metric space X
onto & Hausdorff space Y. If DI =0, then p(p) < 2n+1.

The following corollary is an immediate consequence of Corollaries 1.6
and 1.10:

CoroLLARY 1.11. Let ¢ be an epimorphism of a metric space X onto
a Hausdorff space X. If D, has property L, ,(k,k, ..., k) for each positive
integer k-and DI = 0, then p(p) is aftained and p(p) = 2n+-1.

In particular, it should be noted that a contracting decomposition
D, with D! = 0 has property L,_,(k, &, ..., k) for each positive integer

- k if the following is trme: DI +£ 0, the boundary of each plural set is

infinite, and each non-limit plural set in D contains infinitely many
limit points of the plural sets in DEY.

Ag pointed out by R. Arvens (cf. [4], p. 475) and as illustrated by
Example 1.5, the condition that D™ = 0 iz far from being necessary
for the existence of a projection of C(X) onto C(X/D). However, combining
the results of Corollary 1.4 and Theorem 1.9, we obtain for a certain type
of decomposition that the condition that D™ =0 is necessary and
sufficient for the existence of a projection. Example 1.5 also illustrates
that the comtracting hypothesis cannot be replaced with wupper semi-
continuous and lower semicontinuous (i.e. continuous).

COROLLARY 1.12. Let X be a meiric space. Suppose D is a contracting
decomposition of X such that each plural set A in D™ contains at least two
Uimit poinis of the plural sets in D™V ~ {A} for each positive integer k.
Then C(X|D) is complemented in C(X) if and only if there ewists a positive
integer n such that D™ = 0.

2. Some uncomplemented subspaces of C(X). In this.chapter we
use the preceding results to determine a sufficient topological condition
on X so that C(X) will have an uncomplemented subspace (Theorem 2.9).
This result establishes a close relationship between uncomplemented
subspaces of C(X) and the successive derived sets of X (cf. [14], p. 261,
or [20], p. 64). We first restrict our attention to the derived sets of the
subset §(X) consisting of the points of X which have a countable neigh-
borhood base. If A is an ordinal number, then [S(X)]? is denoted by
8*(X) and a point in §*(X) is called an S*-point.

The quotient space X /D inherits many of the properties of X. This
is especially the case if D is upper semicontinuous and each of its plural
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sets is compact (e.g., see related discussion and problems in [5], [6], [8],
[13], and [18]). In each result prior to Lemma 2.7, we also obtain
Card (X) = Card (¥/D) and for each ordinal number 1, X # 0 implies
(X/D) +# @ and S*(X) # @ implies S*(X/D) s @; moreover, if X
is a compact metric space, then ¢(X) and C(X/D) are isomorphic by
Corollary 8.7 of [17], p. 42. In. this chapter, the hypothesis of each theorem
and corollary is satistied by the resulting space X /D whenever it is satis-
fied by X (except it may not be possible to use the same ¢ for X /D in
Theorem -2.1 and Corollary 2.4).

Let D and M be decompositions of X. We say that M is a plural
refinement of D if each plural set in D belongs to M.

TrEOREM 2.1. Suppose that X is a T,-space, n 18 a positive integer,
and @ is an open set in X with 8™ (G) # @. For each positive integer k and
for each integer t with 1.<1t< Card 8™ (@), there exists a contracting decom-
position D of X with the following properties:

(1) Bach plural set is contained in G.

(2) Bach plural set consists of either t or k distinct points.

(8) If M is an upper semicontinuous plural refinement of D which
is contracting at each plural set of D and P is a projection of C(X) onto
C(X|M), then

1P| > 1+2n—39%‘31 ~§—.

Before proving this theorem, we state three lemmas. The purpose
of the first and second lemmas is to simplify the task of showing that
a decomposition is either contracting or upper semicontinuous. Most
of the proof of the theorem is contained in the proof of the third lemma.

Levwma 2.2. Eet X be a topological space and both D and M be decom-
positions of X such that

(1) M is contracting (upper SemicOMINUOUS).

(2) D implies M.

(3) For each A in M, the decomposition of X consisting of the plural
sets of {BeD: B < A} is contracting (upper semicontinuous).

(4) Each limit set of M belongs to D.

Then D is also contracting (respectively, upper Semicontinuous).

LemuA 2.3. Let X be o topological space, Dy emd D, decompositions
of X, and Dy a plural refinement of D,. If D, is contracling (upper semi-
continuous) and the decomposition of X consisting of the plural sets in
D, ~ D, is contracting (respectively, upper semicontinuous),  then D, ds
contracting (respectively, - upper semicontinuous).

icm

© Uncomplemented subspaces 95

LeMMA 2.4, Suppose X is a T,-space, n 18 a positive integer and G
is an open subset of X such that CardS™ (@) > 0. For each integer t with
1<t < CardS™(@) and for each positive integer k, there 8 a coniracting
decomposition D. of X such that

(1) D™ consists of singleton sets and a set F with t distinct points.

(2) Bach plural set in D ~ {F} consists of k points. )

(3) Bach point in each plural set in D is a limit point of the plural
sets in DD,

(4) Bach plural set in D is a subset of G.

Proof. We inductively select mon-empty families Cy, Csy ...y Cpysy
and Uy, Usy ..., Uy, OF subsets of @ such that if 1< m << nt1, then:

(a) Bach set in C,, consists of & points from §* " (@) if m > 1.

(b) Bach point of each set in Cy,_, is a limit of the sets in C,,.

(e) %, is a family of disjoint, closed subsets such that for each A4
in 0,,, there is a neighborhood U, of A in %, which does not contain
and other set in C,,.

(d) It Ue,,, then U does not intersect any set in C; for 1 <j < m.

(e) The decomposition D,, of X consisting of the plural sets in

m—1
(L{ G U,
i

We select ¢, and %, first. Let {z;}{_, be t distinet points of S™(G)
and define P = {a;}\_,. Let Oy = {F} and %, = {G}. It is easy to check
that conditions (a) through (e) are satisfied for m = 1.

Next, suppose Oy, Csy ..., Oy and %y, s, ..., %, have been selected
and m < n. Let A be a set in 0, . We may suppose thatA {0y Gy .20y G}y
where each a; belongs to §" ™ (@), z =tif m =1,and z =k if m > 1.
There exists a neighborhood U, of A in %, which does not intersect any
other set in C,,. We may select a family {U,}., of closed disjoint sets
such that for each 4, U, is a neighborhood of a; and is contained in U .
Let {VU =, be a closed neighborhood base for a; such that Vi< U for
each j. Let {ay}5>, be a seb of distinet 8" ™-points such that Gy 7 O
and ay is an element of the interior of ¥y for each 7 and each j. We may
select a family {W;}52, of disjoint elosed sets such that W is a neigh-
borhood of a; and V; ~ {a;} is a neighborhood of W;.

Next, We define

Ay = {Byjren 11 <7
k

Uy = U1 Wigren  for 1
I

O, ={4y]1<i<
Ay ={Uyll<i<2

is éontraeting and each set in %, is a non-limit set of D,,.

<k} forlgi<zoandj=0,1,2,...,

and j =0,1,2,...,

Li<e

zand j =0,1,2,...},
and j =0,1,2,...}.
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Observe that each set in (4 contains k points from §"~"™(@). Also,
since a;; converges to a; in 4, each point in 4 is a limit point of the sets
in ¢,. Therefore, if we define C,,; = U {C4: 4¢C,}, the hypotheses
() and (b) are satisfied for m--1. If we also define %, = U {%4: A <0,},
it also follows that (¢) and (d) are valid for m--1.

For each 4 in 0,,, we let D, be the decomposition of X whose plural
sets are the plural sets in #,. It follows that each set in %, is a non-
limit get in D, . However, if K e%,, ., then K%, for some A4 in C,, and U,
is a neighborhood of K. Since the only plural sets of D, that intersect
U, are the plural sets in D4, K is a non-limit set of D,,.,. Therefore,
each set in %,,.,, is a nonlimit set of D,, .

The only limit sets in D, are the singleton sets {a,} for a;eA. Using
this fact, it follows by a direct argument that D, is contracting. Let M,
denote the decomposition of X whose plural sets are the sets in %, U {4}.
Since the decomposition of X consisting of the one plural set A is contract-
ing, it follows from Lemma 2.3 that M, is contracting. Observe that M,
is precisely the decomposition of X whose plural sets are the plural sets
of D,,., which are contained in U, . Since (e) implies that each limit et
of D,, belongs to D,,.,, we have satisfied the hypothesis of Lemma 2.2
for M =D, and D = D,,,,. Thus D,,,, is contracting and (e) is esta-
blished for m--1. .

By induction, it follows that Oy, 0y, ..., Cppy and %y, Upy ..oy Upyy
can be selected subject to the conditions (a)-(e). Let D be the decomposition

n+l
of X consisting of the plural sets in |J C;. It follows from Lemma 2.2
j=1
that since D, ., is contracting, D is also contracting (i.e., let D, , = M
in this lemma).
By induction, we can show that for 0<m < mn, D™ satisfies the

following properties:
) —-m+1

(&) U 0; is the set of plural sets.
j=1

=

(b') Cp_pyqa is the set of non-limit plural sets.

From (a’) we obtain that the set of plural sets of D™ is 0,. However,
0, = {F} by our construction, and F consists of exactly ¢ points. This
completes the proof of the lemma.

Proof of Theorem 2.1. By Lemma 2.4, there is a contracting
decomposition B of X which satisties conditions (1) through (4) of this
lemma. Let D = E® and suppose M is an upper semicontinuous plural
refinement of D which is contracting at each set in D. Let §; be the family
of non-limit plural sets in DY ~ DO for 1< ign It follows by
Theorem 1.3 that if P is a projection of C(X) onto O(X /M), then.

1P| = 1+2n—2/t— E‘lz/k.
S i=1

icm®
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This completes the proof.

A special case of Theorem 2.1 is stated in the following corollary:

COROLLARY 2.5. Suppose X is a first-countable Ty-space with Card X™
= 1. For each £ > 0, there is a contracting decomposition D of X with each
plural set finite such that if P is a projection of C(X) onto C(X|D), then
1P| > 2n+1—2/t—e.

‘We shall see in Remark 2.10 that the requirement that S8“(X) be
non-empty in Theorem 2.6 can be replaced with the requirement that
X™ be non-empty for each positive integer » if X is first countable.
Since the decomposition D selected by this theorem is such that S°(X)
= @, it follows that if X is a T,-space with 8*(X) s @, then C(X) contains
infinitely many uncomplemented subspaces of the type C(Y).

THEOREM 2.6. Suppose X is a T,-space such that S*(X) = @. There
is a coniracting decomposition D such that C(X[D) is not complemented
in C(X). If & is an integer and k > 2, D can be selected so that each plural.
set of D contains exactly k elements.

Proof. Let # be an §8°-point of X and {U,}a., an open neighbor-
hood base for z. By induction, we may select a sequence {®,}a.., of distinet
points such that for each #, z, is an §*point, x, # 2, and U, is a neigh-
borhood of ,. Next, we inductively select subsets Vi, Vyy.coy Vyy oo
such that for each n i

(a) V, is a closed neighborhood of ,. .

(b) {V}r, is a family of disjoint closed sets.

(¢) V, = U, ~ {x}.

Let R be the,decomposition of X consisting of the plural sets {V,,}a2: -
This decomposition is contracting. Let & be an integer greater than 1.
By Theorem 2.1 there exists for each » a contracting decomposition 17,
of X with each plural set contained in ¥, such that if M is a contracting,
plural refinement of M, and P is a continuous linear projection. of ¢(X)
onto C(X|M), then ||P|| > n. In fact, M, can be selected so that each
plural set contains exactly % elements. Let D be the decomposition of X
consisting of the plural sets in M, for each n and singleton sets. It follows
by Lemma 2.2 that D is contracting.

Suppose P is a continuous linear projection of C(X) onto C(X/D).
Since D is a contracting plural refinement of M, for each =, |P]|> »
for each n. It follows from this contradiction that C(X/D) is not com-
plemented in C(X).

Many interesting spaces, such as SN and gN ~ N, do not have
non-trivial convergent sequences. It is known (ef. [22], p. 483)
that no extreme’y disconnected space contains a non-trivial convergent
sequence. (See [11] for additional information on SN, SN ~ XN, and
extremely disconnected spaces.) Therefore, it is desirable to remove
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the ‘dependence of the preceding theorems upon convergent sequences.
The following lemma is our first step in this direction.

LeMMA 2.7. Suppose X is a Ty-space, G is an open set in X, and n
is @ mon-negative integer. If @™, then there is an upper semicontinuous
decomposition D of X with each plural set of D contained in G such thot
if q is the quotient map, then g(x) is-an S™-point of q(G)

Proof. First, we establish the lemma for » = 0. We may select
open neighborhoods Uy, Uy, ..., Uy, ... of & such that C1(U,) = G and,
for each %, C1(U,,,) = C1(U,). Define

= () ClT,).
Fe=sl

Then K is a closed subset of G and {U,}3., is an open neighborhood
base for K. Let D be the decomposition of X with the one plural set K
and ¢ the induced quotient map. Then D is upper semicontinuous and
¢(z) has a countable base. Thiy establishes the lemma for n = 0.

Next, we suppose the lemma has been established for some m < n
and show that it is valid for m-+1. We inductively select @,, z,, ..., @, ...
from X and neighborhoods U,, U,, ..., U'k, ... of @ such that for each k,

(Zl: @, EG(m)

"(b) @,¢ U, and U, is an open subget of G.

(0) CU{T) & Upy ~ {@p_y} if k> 1.

Let V), = Uy ~ Cl(Uy,,). Then {V,}5l, is a family of disjoint open
sets such that wkeV,c Let W, be a closed neighborhood of 2, contained

in V. Define F = ﬂ Cl(U,) and let M be the decomposmmn of X

consisting of the plura,l sets {Witie, U {I.
continuous.

By inductive hypothesis, there is an upper semicontinuous decom-
position. Dy of X with each plural set of D), contained in W, such that
if ¢, is the induced quotient map, then g, (%) is an S™-point of X|Dy.
Let .D be the decomposition of X whose plural sets are the sets in {F} U
V(g
If ¢ is the induced quotient map, then g(w,) is an S™point for each %.
Bince ¢(F) has a countable base in X/D and is the limit of a sequence
of §™-points, it is an 8™ -point. This completes the proof.

The next theorem replaces the requirement that S§"(X) @ in
Theorem 2.1 with the requirement that X® s @. As a result, it is also
applicable to spaces in which sequences of distinet points do not converge.

) Alt]:ltough the decomposition D of X obtained from this theorem is upper
semicontinuous, the plural sets are not necessarily finite. However, if X

Then M is upper semi-

By Lemma 2.2, it follows that D is upper semicontinuous.

icm°
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is compact, the plural sets must be compact since they are closed. It is
an immediate consequence of the Stone-Oech compactification theory
that ¢(X) is isometric to ¢(fX); hence, we may require that X be compact
without loss of generality. The construction of D in this theorem ensures
that X/D has an S™-point.

THEOREM 2.8. Let X be a T,-space and n be a positive inleger such that
X = @, For each integer t with 1<t< CardX™ and for each &> 0
there is a decomposition D of X such that each projection of G(X) onto

C(X|D) has norm at least 2n+1—2[t—e.

Proof. Let @y, 45, ..., 2, be distinet points in X™. Let {U;}_, be
a family of disjoint open sets such that ;e U, for each i. By Lemma 2.7,
there exists an upper semicontinuous decomposition H; of X with each
plural set contained in U; such that if g¢; is the induced quotient map,
then ¢,(x;) is an S*-point of X/H;. Let H be the decomposition of X
consisting of the plural sets in each H;. Then H is upper semicontinuous.
If ¢ is the associated quotient map, then q(x;), q(2s); --., ¢(#,) are distinet
S™points of X/H.

Let % be a positive integer such that 2 (n—1)/k < =. By Theorem 2.1,
there is a contracting decomposition K of X /H such that if P is a pro-
jection of C(X/H) onto C((X/H)/K), then '

2(n—1) 2
PI> 1400 2002

Let D= {{J A: AcK}. Then K = D/H and by [5], p. 128, Problem 5,
D is upper semicontinuous. Suppose P is a continuous linear projection
of O(X) onto C(X/D). Since C((X/H)/(D/H)) = C(X[H)< C(X) and
(X/H)/(D/H) is homeomorphic to X/D according to [8], p. 72, or [5],
p. 40, the restriction P’ of P to C(X[H) is a projection of C(X/H) onto
O((X|H)/E). Therefore, |P'|>1-+2n—2[t—e And since |P|> Pl
the proof is complete.

The next theorem removes the dependence of Theorem 2.6 upon
convergent sequences. The decomposition D is selected so that 8" (X /D)
+ @ for each positive integer n. Therefore, it follows from this theorem
that if X is a T,-space and X™ £ @ for each positive integer n, then
there ave infinitely many uncomplemented subspaces of C(X) of the
type C(X).

THEOREM 2.9. Let X be a T,-space such that X™ == @ for all n. Then
there is an upper semicontinuous decomposition D of X such that C(X[D)
is mot complemented in C(X).

Proof. We inductively select points @y, To, .ovy By, -
subsets Vi, Vi .vvy Vyy ..o of X such that

.. from X and
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(a) @, belongs to X™;
(b) {V}i-, is a family of closed disjoint sets and V, is a neighbor-
hood of x,;

(e) it @, = (J V, contains an element of X®, then X ~ @, containg
=1

i
an element of X™,
The remainder of the proof consists of the consideration of two cases.
Case I. Suppose that § = {x,}32, is closed. Let

F=CQUTV)~Int(U V),
i=1 i=1
where Int denotes the interior operator. Then ¥ is a closed. set disjoint
from S. By normality, there exists a closed neighborhood ¥ of § which
does not. intersect 7. Let W, = ¥V, ~ V for each 4. Then |J W, is closed
! led

for each subset J of positive integers. If M denotes the decomposition
of X consisting of the plural sets in {W;}2,, then it follows from the
preceding remark that M is upper semicontinuous.

Since W, is a neighborhood of #; and #;X®, it follows by Lemma 2.7
that there is an upper semicontinuous decomposition K, of X such that
W, is a neighborhood of each plural set in K, and if %; is the induced
quotient map, then k,(x,) is an §™point of X/K,. Let K be the decom-
position of X consisting of each plural set in K; for each 4. As M is upper
semicontinuous and each K, is upper semicontinuous, it follows from
Lemma 2.2 that K is upper semicontinuous. Let % be the quotient map
of X onto K. Then k(z;) is an S%point of X /K. By Theorem 2.1, there
is a contracting decomposition H, of X/K with each plural set of H;
contained, in %(W,) such that if H is an upper semicontinmnous plural
refinement of H; which iy contracting at each set in H, and P is a con-
tinuous linear projection of O(X/K) onto CO((X/K)/H,), then |P|| > .

Let L be the decomposition of X /K whose plural sets arve the sebs
K(W,) for 4 = 1,2,... Since M does not have any singular or plural limit
sets, L does mnot either. Therefore, L is a contracting decommposition.
Let H be the decomposition of X /K consisting of each plural set in H;
for each ¢. Since L is contracting and H; is contracting for each 4, it follows
from Lemma 2.2 that H is also contracting.

Let D ={{J 4: A<H}. Then D i§ a decomposition. of X and
H = D|K. 8ince H and K are both upper semicontinuous, it follows that
D is upper semicontinuous ([57, p. 128, Problem 5). Suppose that P is
a projection of C(X) onto O(X/D). Since C(X)<= 0(X|K) =
O((X/K)/(D|K)) and (X/E)[(D|K) is homeomorphic to X/D by [5],
D. 40, or [9], p. 72, we have that the restriction P’ of P to C(X|K) is
a projection of ((X/K) onto C((X/K)/H). But H is a contracting plural
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refinement of each H;: hence ||P|| > 7 for each 7. This contradiction esta-
blishes that C(X/D) is not complemented in C(X).
Case II. Suppose that § = {x;};~, is not closed. Let # = CL(8) ~ &§.
By normality, there is a closed mneighborhood W, of z; contained in
Int(V;). Let
F; = Cl(( U W) U F)
=3

for each positive integer j. Then F; is & closed set contained in the closed
-1

set () (X ~Int(V,) and W, nF; = @ for ¢ < j.
t=1

Next, we inductively select Uy, U, ..., Uy, ... so that for each =,
(a) U, is an open neighborhood of F,,,,
(b) CL(T,) = Uy,

(e) CL(T,) and {_) W; are disjoint.
i=1

We define #* = () C1(U,) and observe that {U,)%, is a countable
=1

base for F*. If M denotes the decomposition of X consisting of the plural
sets in {F*} U {W?,, then M is upper semicontinuous.

As W, is a neighborhood of x, « X™, there is an upper semicontinuous
decomposition K, of X with each plural set contained in W, such that
if %, is the associated quotient map, then %,(z,) is an S™-point of X/K,,.
Let K denote the decomposition of X consisting of the plural sets in K,
for each » and the set F*. According to Lemma 2.2, K is upper semi-
continuous. Let % be the quotient map of X onte X /K. Then k(W,) is
a neighborhood of k(z,) and k(z,) is an S"-point of X/K. Also, k(F")
has a countable base and is the limif of the sequence {k(wx;)}iZ,. Thus,
¢(F*) is an S®-point of X /K.

By Theorem 2.6, there is an upper semicontinuous decomposition
H of X/K such that C((X/K)/H) is not complemented in C(X). Leb
D ={ A4: Ac<H}. Then H = D[/K and by [5], p. 128, Problem 5, D
is upper semicontinuous since both H and K are upper semicontinuous.
Also, (X/K)/(D/K) is homeomorphic to X/D; hence, C(X/D) is not
complemented in C(X). This ecompletes the proof.

Remark 2.10. If X is a 7T,-space with a closed sequence {@;}3;
of distinet points such that z,«8"(X) for each n, then in Case I of the
preceding argument the decompositions K; and K are unnecessary. In
this case, for each integer n > 2, D can be selected so that it is confracting
and each plural set consists of n points.

Amir [2], [3] and Petezynhski [17], p. 55, have established the equi-
valence of conditions (1) through (4) of Theorem 2.11. Recall that according
to Theorem 2.9, the condition that X™ = @ for all » is sufficient to ensure
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that a T,-space X has an upper semicontinnous decomposition D such that
C(X D) is uncomplemented in €¢(X). It follows from conditions (1) and (5)
of Theorem 2.11 that if X is a compact metric space, then this condition
is also necessary. Equivalence (10) gives an affirmative answer to question
30 (b) of Petezyriski in [17], p. 74. He communicated privately that the
statement of Problem 30 should be changed to read: “Are the conditions
(9.13.1)-(9.13.3) equivalent to the negation of the following conditions?”

For an ordinal number {, we let [{] denote the set {#: # is an ordinal
number and %< {} with the order topology. Let 4> 1. A separable
Banach space X is a B, space if for each separable Banach space ¥ and
for each linear isometry u: X — Y, there is a projection P of ¥ onto
w(X) with |P] < s.

THEOREM 2.11. Suppose X is an infinite compact metric space. Then
the following conditions are equivalent:

(1) Some derived set of X of finite order is emply;

(2) C(X) is isomorphic to the space c;

(8) X is homeomorphic to [{] for some ordinal { < w®;

(4) C(X) is a P, space for some s> 1;

B) for each wupper semicontinuous decomposition D of X, C(X|D)
is complemented in C(X);

" (6) for each Hausdorff space X and each epimorphism f of X onto ¥,
fIC(Y)] 4s complemented in C(X);

Ty for each compact metric space ¥ and each epimorphism f of X
onto Y, f* [C(Y)] is complemenied in O(X);

8) for each compact Hausdorff space Y and for each epimorphism
fof X onto ¥, there exists a Uinear averaging operator for f.

Proof. The equivalence of conditions (1) through (4) is established
by [2], [8], and [17]}, p. 5. We prove the following implications: (1) — ()
->(6) and (7) - (8) — (1). The implication (6) — (7) is trivial.

(1) — (5). Suppose that D is an upper semicontinuous decomposition
of X. Since X = @ for some positive integer n, we obtain that D™ = 0.
Therefore, by Theorem 1.9, ¢(X /D) is complemented in O(X).

(5) — (6). Suppose that f is an epimorphism of X onto -a Hausdorft
space Y. Since X is a compact, fis closed and ¥ has the quotient topology.
Therefore, if D = {f™"(y): y<¥}, then ¥ is homeomorphic to X|D.
Sinee f is cloged, D is upper semicontinuous; henece, by (5), fO[C(X)] is
complemented in C(X).

(7) - (8). Suppose that f is a continuous function from X onto
“@ compact Hausdorff space Y. Since X is a compact metric space and f
is a closed continuous map, it follows from Theorem 1 of [16] that ¥
is a metric space. Therefore, by (7) there is a projection of ¢(X) onto
F¥I0(T)]. Tt follows that S has a linear averaging operator.

,
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(8) = (1). Suppose that X™ == @ for each n. By Theorem 2.9, there
is an upper semicontinuous decomposition D of X such that G(X/D) is
not complemented in C(X). Let ¢ be the quotient map of X onfo X/D.
Then X/D is compact and T,; hence, by (8), ¢ has a linear averaging
operator. This implies there is a projection of C(X) onto ¢°[C(X/D)],
which is a contradiction. Therefore, X™ — @ for some positive integer n.
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