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On controllability of systems of strings
by
8. ROLEWICZ (Warszawa)

Let a system of strings with » knots p,, ..., p, be given (see Fig. 1).
By % we denote the set of non-ordered pairs (¢,j) such that there is
a string I; ; connecting the knots p; and p;. The length of L,; we denote
by 8;;, the tension by T;; and the linear density by g;;-
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Fig. 1

We consider perpendicular vibrations of the strings. By @%(z,1)
we denote the perpendicular deviation of the string I;; at the point »
at the moment ¢ Of course, Q% (x, t) satisfies the wave equation
az
ot

(1)

where

g ,
Qh? (w: t) = az,j 6_372 QM (;‘1}, t),

&
Gy =y — -
Qi,j

‘We assume that the system is controlled by perpendicular deviations
(us(t), ..., 4, (2)) at the lmots py, ..., Py, ie.
(@) HmQ™ (@, 1) = u;(2).

Z->D;
aeLi;
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The problem considered is the following. We have an initial state
at the moment ¢ = 0, ie.

(3) Qi’f (#,0) = Qg'j (w)) %Qi'f (2,9 lt=0 = '3’,7‘ (w)7

where Q%7 (z) and Q% (s) are given square integrable functions defined
on IL;;. We are looking for a time 7' and a square integrable control
w(f) = (wy(t), .., y, (1)) quieting the system at the moment 7, i.e. such
that for the functions Q% (x, 1) satisfying (1), (2), (3)(*) we have

: 0,7 9
& | @@, T) =0 = " 2, ) s

_ If for arbitrary square integrable functions g} () and Q3 (1) such

a time T’ and such & control % (t) exist, we say that the system is controllable.

A. G. Butkowsld in his book [1] have considered & system consisting

of one string. He proved that the system is controllable, even if we put

a control equal to 0 at one of the ends. (In fact he showed much more
since he gave an effective method of describing w(1)).

Pig. 2

E.‘rom Butkowski’s results it follows that if in the system the number
of strings is less than the number of knots, then the system iy controllable
In fa.(_st, in this case the system cannot contain a homeomorphic ima,g(;
of a circle (see Fig. 2). Then we can choose an arbitrary knot, for example
D1y and we put u,(f) = 0. Now we take a string L, 1 i);QI. By But-
k'OWSk:l’S theorem there is a control w,() quieting the st’ring L, ; at the
t1.m.e T;. Then we put u,(f) = 0 for ¢ > T;. Now we take a stlx'-;ng L;
(4,7) «U. Then there is & control u(t) quieting L;; at the moment i’j,
Continuing this ‘process we can quiet sequentialiy the whole systenylz

(1) By solutions of (1 s . R
of SD'bO}ev.y of (1), (2), (3) we understand generalized solutions in the sense
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The main result of this paper is a proof that if the number of a string
is greater than the number of knots, then the system is not controllable.
As follows from Butkowski’s considerations, the controls u;() which
quiet the system at the moment T ought to satisty the following equations:

T &
(5) | [ () cos e s it -y (2) (— 1) cos ey s ke ]dt = fzj ,
o . Py
T B
(5 | [ug () sinwedy s b+ us (1) (— 1) sinwed; st ] dt = 7—1
d 2014

(F=1,2,... (4, ) A),

where
a;
pR——
2,9 Si,;i E
g M ok
A, = — L7 () sin zdx
5 %J%(>8M
and

9 Sis oy . 7k
J e @sin =

1,7

xds.

Y3
B;; =

wka;
Let us consider the space I2,[0, T'] of #-dimensional square integrable

vector functions defined on the interval [0, T]. Let f¥; be the following
functionals defined on ILZ[0,T]:

Eiu) = fT [2;(t) cos A, ; ki u; () (—1)* cos ey ; Rt} dt
¢
(k=1,2,...,(i,§) <%).

Let us order the functionals f¥; in a sequence {F,},m =1,2,...,
and let A be an operator mapping IZ[0,T] into I* defined as follows:

Au) = {Fp(w)}
If the system is controllable, then equations (5) imply that the
operator A is an epimorphism. Bub )
PrOPOSITION 1. If the number of sirings is greater than the number of
knots, then the operator A cannot be an epimorphism.
Proof. By Kronecker’s theorem for any number 4> 0 there is
a real r and integers n7; such that :

[nf 2~ < 9 (i, ) eU.
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Sinee 2 has more than » elements, this implies that for any ¢ > 0

there is an index i(¢) and indices i,(s), ..., 4,(e), i(e) # i, (e), ..., 4,(s)
such that
(6) inf“Fi(e)“kZ aqu:k(s)” <g

=1

where aj, ..., a, are scalars.
Suppose that there is an element % eI2[0, 7] such that i () = a

and Fyy(u) =0(k=1,2,...,n). Then
n
(7 la] = |[Fyy(u)] = inf iFi(s)(“)“‘]Z;kFik(s)(u)l < eflull.
LTI fo=
Hence ‘
(8) ful > M.
&

Let us put ¢, = 1/2" Without loss of generality we can assame that
i(e,) #1i(ey) for n #n'. Let a = {a,}, where
1/n?

9 @, =
@ " 0 elsewhere,

for n =i(s,),

Of course ael? but, on the other hand, inequality (8) implies that
there exists no weI;[0,T] such that A(u) = a, because if such a u
existed, then |ul| > 2"/n* (n = 1,2,...). Therefore A i3 not an epi-
morphism, q.e.d.

As an obvious consequence we obtain

TEEOREM 1. If the number of strings is greater than the number of Imots,
then the system 4s not controllable.

Using the same technigue we can obtain even a stronger result.
Namely, we can consider the operator A also as a continuous operaitor
mapping the space of integrable vector functions L; [0, T] into the space ¢,
of all sequences tending to 0. Repeating the same congiderations, we are
able to prove that if acc, is given by formula (9), then there is no element
ueL,[0,T] satistying the equation A(u) = a.

Let us remark that the sequence a, is a sequence of coefficients of
continuous functions. Therefore the following theorem. holds:

THEOREM 1'. If the number of strings is greater than the number of
knots, then there is an initial state given by continuous Junctions Q%7 (x)
and QY () such that no integrable control can quist the system.

‘ ‘We have considered the problem of controllability for systems in
which*the number of strings is different from the number of knots. Now
we shall consider systems in which the number of knots is equal to the
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number of strings, i.e. systems which econtain one homeomorphic 1mage
of the circle (see Fig. 3). The main problem is the controllability of the
“circle”. In faet, if the “cirele” is controllable, then from similar considera-
tions as for systems containing more knots than strings we are able
to prove the controllability of the whole system.

TEEOREM 2. If the number of strings is equal to the number of knots
and all 2;; are commensurable, then the system is controllable.

Proof. Let us denote by g.{‘, functionals defined on IZ[0, T]

gii(uw) = fT [ (8) sinzd, K-+, (1) (— 1) sincd, ; kt] de.

Let us order all functionals f¥;, g%, into a sequence {@,} and let
us consider an operator B mapping.L2[0,T] into I* defined as follows:
B(w) = {Gn ()} o

‘We shall show that for certain T' the operator B is an epimorphism.

Fig. 3

Let » be a common divisor of all 4;, and let 7 = 2/r. Let X; be
a space spanned by elements ‘ :

(eoswlrt, 0,...,0), (0, cosxlrt, 0,...,0), (0,...,0,cosnlrt),

(sinzlrt, 0,...,0), (0,sinmlrt,0,...,0), (0,...,0, sinwlr)

and let P, be an orthogonal projection of the space ILL[0, 7] onto X;.
It is obvious that X; and X; are orthogonal if I #7, i.e, PP, =0
it 1T,

Let us fix 1 and let f, ..., f», 1, ---, g, e functionals f¥;, g¥, which
belongs to X; (of course p < ). By simple calculations we find that there
are positive constant ¢ and € independent of 1 such that

»
10) e SR << S @+
i=1 i=
for
»
u =t§ (a:fitP:9:) € xz-
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This implies that the operator B is an epimorphism. Then basing

ourselves on equations (5) and (3'), we infer that the system is controllable,
.e.d.

4 The problem of controllability of systems with equal numbers of

strings and knots in the cage where 1;; are not commensurable is still

open.

So far we have considered only systems in which two knots are
connected at most by one string. From the engineering point of view
cases where two knots are comnected by two or more parallel strings
are also important. Such systems are mot controllable as follows from

TaEoREM 3. If two parallel sirings are controlled by two common ends
{(see Fig. 4), then there is an initial state which cannot be quieted.

2) )
Fig. 4

Proof. Of course, if there is a control quieting the system, then it
satisfies equations (5) and (5') for two ordered pairs (1,2) and (2,1). The
rest of the proof is the same as the proof of Proposition 1.

The same results are obtained in another way by Butkowski [2].
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Decompositions of operator-valued representations
of function algebras

by

W. MLAK (Krakéw)

Suppose we are given the complex Hilbert space with the immer
product (f, g) (f,g<H) and the norm |f] = V(f, f). Let L(H) stand for
the algebra of all linear bounded operators in H. |V| is the norm and
V* is the adjoint of VeL(H). I denotes the identity operator in H.

Let X be a compact Hausdorff space. C(X) is the algebra of all
complex-valued continuous funetions on X, with the sup norm [luf
= sup |[u(z)|. In what follows 4 stands for a sub-algebra of C(X), which

x

is uniformly closed, separates the points of X and contains constants.
The homomorphic mapping T of 4 inte L(H) is called a representation
of A. We may assume without any loss of generality that

(%) T@1) =1I.

We shall consider merely norm continuous representations that is
such that T as a linear operator from the space 4 into L(H) is bounded, i.e.

(**)

for some finite M. The representation is called contractive if M = 1.

It f and g are in H, then » —> (T(«)f, g) is a linear functional on 4,
bounded by M [f| |g]. Using the Hahn-Banach theorem and the Riesz
representation theorem we infer that there is a regular Borel measure
»(f,¢) on X such that

IT(w) < Mluf, all wed,

(%) (Z(w)fs9) = [udp(f,g) for ued
and
(*+%*) o (fy ol < M |1 1gl.

An arbitrary (Borel, regular) measure p(f, g) which satisfies (x*#)
and (*+*) is called an elementary measure for f, ge H of the representation
T satistying (#x). In the case where dim H = 1, that is if H is simply the
complex plane, every homomorphic mapping of A is contractive. We
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