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This implies that the operator B is an epimorphism. Then basing

ourselves on equations (5) and (3'), we infer that the system is controllable,
.e.d.

4 The problem of controllability of systems with equal numbers of

strings and knots in the cage where 1;; are not commensurable is still

open.

So far we have considered only systems in which two knots are
connected at most by one string. From the engineering point of view
cases where two knots are comnected by two or more parallel strings
are also important. Such systems are mot controllable as follows from

TaEoREM 3. If two parallel sirings are controlled by two common ends
{(see Fig. 4), then there is an initial state which cannot be quieted.

2) )
Fig. 4

Proof. Of course, if there is a control quieting the system, then it
satisfies equations (5) and (5') for two ordered pairs (1,2) and (2,1). The
rest of the proof is the same as the proof of Proposition 1.

The same results are obtained in another way by Butkowski [2].
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Decompositions of operator-valued representations
of function algebras

by

W. MLAK (Krakéw)

Suppose we are given the complex Hilbert space with the immer
product (f, g) (f,g<H) and the norm |f] = V(f, f). Let L(H) stand for
the algebra of all linear bounded operators in H. |V| is the norm and
V* is the adjoint of VeL(H). I denotes the identity operator in H.

Let X be a compact Hausdorff space. C(X) is the algebra of all
complex-valued continuous funetions on X, with the sup norm [luf
= sup |[u(z)|. In what follows 4 stands for a sub-algebra of C(X), which

x

is uniformly closed, separates the points of X and contains constants.
The homomorphic mapping T of 4 inte L(H) is called a representation
of A. We may assume without any loss of generality that

(%) T@1) =1I.

We shall consider merely norm continuous representations that is
such that T as a linear operator from the space 4 into L(H) is bounded, i.e.

(**)

for some finite M. The representation is called contractive if M = 1.

It f and g are in H, then » —> (T(«)f, g) is a linear functional on 4,
bounded by M [f| |g]. Using the Hahn-Banach theorem and the Riesz
representation theorem we infer that there is a regular Borel measure
»(f,¢) on X such that

IT(w) < Mluf, all wed,

(%) (Z(w)fs9) = [udp(f,g) for ued
and
(*+%*) o (fy ol < M |1 1gl.

An arbitrary (Borel, regular) measure p(f, g) which satisfies (x*#)
and (*+*) is called an elementary measure for f, ge H of the representation
T satistying (#x). In the case where dim H = 1, that is if H is simply the
complex plane, every homomorphic mapping of A is contractive. We
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show in the example below that if dimH > 2, then, for a suitable 4,
there are representations with the norm so great as we wish.

Example. Suppose that dimH > 2. Let 4 be the unit disc algebra
of functions analytic in the open unit dise and continuous in the closed
one. It is shown in [9], p. 48, Prop. 11.3, that for every o > 0 there is
a VeL(H) such that V<%, and |V| = o. Since V ¢%,, the generalized von
Neumann inequality (see [9], p. 49, 11.12)

[u (V)] < max [ou(z)+(1— ) u(0)]
121

holds true for every polynomial uwed. It follows that
(M < (e+ 11—l .

Now, if uwe4, then there is a sequence 1, such that «, — % uniformly
on the dise, which by the last inequality implies that the formula T'(u)
= limu, (V) determines a well defined representation of 4 with the norm
not greater than g+ |1— o|. Since for the function u(2) =z we have

T(u) =V and |V| = g, every M satisfying (#+) for our representation

is not less than g, as was to be ploved

1. The closed set ¢ = X is called a peak set of A, if there is a wed
such that u(z) = 1 on ¢ and |u(z)] < 1 for z¢X— 0. We say then that
peaks on o. Let P(A) be the totality of all peak sets of A. If oy, o,eP(4)
and u;eA peaks on o; (¢ =1,2), then u,u, peaks on o, N ¢,. On the
other hand, as simply proved by Bears (see [4], p. 435), the union ¢, U gy
of 0;eP(4) is again a peak set. It follows that P(4) is a set lattice with
intersections and forming unions (both in finite number) as the lattice
operations. In what follows P (4) stands always for this lattice.

The peak functions have been used in operator theory by C. I‘01a$
in 1959.

Let T be a representation of A and let wed peak on oeP(4). We
take an elementary measure p(f, g) and by (+*%) just get

(T(un)fi g) = j w"dp(f, g)
Bince  peaks on o, ™ — y, (the characteristic function of o) pointwise,
which implies that

im (T(u™)f, g) = [ z.dp(f, 9).

It is a simple matter to check that the limit on the left-hand side
depends only on f, ¢ and ¢, but not on the choice of % and the choice of
elementary measure p(f, ). It follows now that there is a unique P(c)
<L(H) determined by ¢ and such that Lim(T(u")f,g) = (P(0)f,g) for
arbitrary f, geH and any « peaking on ¢. Since for such » and arbitrary
veA we have

(T@)T ("], g) = [ vudp(f, g).
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and

Hm (T(w™) T (v)f, g) = (P(0)T f,y)

= hm( T(u")f, g) = Lm (T (w™)f, T(v)"g),

P(o) commutes with 7'(4) and

1) (P()T®)f, g) = [ x.2p(f, )

for all ved and arbitrary elementary measure p(f, ¢). If o,, 0.eP(4),
then P(¢,) commutes with 7'(v"), where » peaks on o¢,. It follows that
P(o,) and P{o,) commute. We will show that every P(s) is a projection,
that is P(¢)? = P(o). Indeed, if « peaks on o, then, for arbitrary %,

(P(0)f, g) = lm (T(u"*)f, g) = Hm (T («™) T (4)f, g)
= (P(o)T(u")f, g) = (TP (0)f, g)-
If we let k — oo, then we get (P(a)f, g) = (P(0)?f, g) for arbitrary

f,geH q.e.d. It follows now that the set P(A {P(o): oceP(4)} is

a commutative family of projections. Hence, P({A4) is a lattice if the lattice
operations are defined by

P(ay) v Plos) = P(01)P(0s),
P(oy) v P(oy) = P(o1)+P(as)—P(01)P(0s).

ProrostTioN 1.1 The mapping o — P(o) is a homomorphic mapping
of P(A) onto P(A).

Proof. Suppose o,, g,eP(4) and let ne A peak on o,. We have for
I geH

(Ploy o2y 9) = [ Xopren @0 (S5 9)-
On the other hand, by (1.1),
{(Plon)P(o2)f, g) = Lm (P (o) T(u™], g)

=Um [ 7, WP (f, §) = [ Xoyro, 4P (1 9)
We may conclude that P(s; N gy) = P(o,)P(0y).
using (1.1) we get that
(P(01)+P (02— P(01) P (a2, g)

= f (lal+zuz— Xalmag) dp (f7 g) = f xﬂluﬂzdp(f’ _f]) = (P
which completes the proof.

A few remarks are now in order. First, it is obvious that f’(A) is in
the weak operator closure of T'(8), where § is the unit sphere of 4.

Consequently,

(o, Y 0a) ], g)
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However, a little more is true, namely BP(4) belongs to the strong ope-
rator closure of 7'(S). Indeed. let u peak on ¢ and let f;, g;eH for
Then for

i=1,...,%. We write H= H@H@ .@H (k, times).
f=rr e fug)s G =ns ooy Qo) e H
kg
( n)f, ) 2( (0)fis gi);
which means that T (u®)f - P(o)f = (P(6)fry ..y P(0)f3) weakly in H.

By the classical theorem of S. Mazur, for smtable ng') 20(k=1,...,n)

5‘ M =1 we have
n

@,=§%Wﬂwﬁefwﬁ

~ N . n
strongly in H. But the é-th component of g, is T (3 A u")f; and the convex
i

combination of u, %, ..., u" is in § and peaks on ¢. This completes the
proof of our assertion. As a by-product we get therefore that for every
feH and every ceP(A) there is a sequence of functions u,<A4 peaking
on o such that 7'(u,)f — P(o)f strongly.

In general, since

WMLM<Um@mm<Mmm,

we always have [P(¢)] < M. If T is contractive, then |P(o)| < 1, which
together with the idempotence property of P(c) yields that P (o) is an
orthogonal projection.

In the next step we shall extend the homomorphism o — P(¢) onto
a wider class of subsets of X. We define R(4) as the class of all subsets
of X which are intersections of peak sets of A. If geR(A4),then ¢ = (M) o,
where o,eP(A) and we will assume that the product on the right-hand
side includes all peak sets including o.

LemmA 1.1 Suppose that c<R(A) and let p be a regular Borel measure
on X. Then there is a sequence o,eP(A) such that ¢ = o, and

I |p|(e, 0 o) = pl{o N o)

for every Borel set o,

Proof. We define ¢ = |p| and g = X—o. Since ¢ is regular, there
exists an increasing sequence of closed sets y, = f such that q(y,) - ¢(f)-
On the other hand, ¢ = (0 o,, Where o, ranges over the totality of all
peak sets including o. We will prove that there is a o, such that v, N o,
= O for a given y,. Indeed, if it were not true, then the family of closed
sets B, = y, N o, should have the finite intersection property (the finite
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intersections o, N oy, - .. are peak sets including o). The eompactness
of X yields then that ﬂ (Vn No,) =y, Na # © which is impossible because
¥n = X —o. It follows now that there exists a sequence g, <P (4), o < a,,
such that y, N ¢, = @. Now ¢(X—vy,) - g(c). Since ¢ <=0, c X—1y,,

we get that

g(o No') =g(ed Na, Na')< g(o, N7’

< g((X—ya) 0 0') > g(o 0 d)
as was to be proved.

We are now able to prove that the following (see [4]) property holds
true:
(1.2) If ceR(A) and p | A, then p, 1 A().

Proof. Since, for ved, [vu*dp = 0 for u peaking on o,, we have
J vdp = 0. Using Lemma 1.1, we get that

Gq

[vdp, = [vdp =1m [vdp =0
ﬁﬂ Gan

for a suitable sequence g, eP(A g.e.d.

As shown by thksberg in [4] (see also [3]) the sets in R(A) are
the only closed sets o such that p, | A for every p | A. It follows that
(see [3], [4]) 2 union of any two sets in R(A) belongs again to R(4).
Consequently, R(4) is & set lattice under forming intersections and unions
(in. finite number) of sets. In what follows RE(4) stands for this lattice.

We come back to representations. Let T: A — L(H) be a repre-
sentation and let {p(f, g9)} (f,g<H) be the system of its elementary
measures. We take p = p(f, ¢) in Lemma 1.1 and the sequence o, eP(4)
corresponding to ceR(A). Then

(P()f5 9) = [ 20,00 (f> 9) ~ [ 2.00(f, 9)

The limit im (P (q,)f, ¢) does not depend on the choice of the sequence
o, a8 well on the choice of elementary measures. Indeed, if p'(f, ¢) is some
other elementary measure for f and g and o, is the corresponding sequence
for o, then by (1.2), since p(f, 9)—p'(f,9) L4, we have necessarily
1,(f, 9)—p.(f,9) LA, which proves that

lim(P(Un)f’ g) = f Za(lP(fy g) = f chp’(f} g) = hl'ﬂ.(_P(
ag was to be proved. Write now

S(U: fyg) =fladp(f:g)

U;L)f? 9)

for ceR(4).

() p L4 means that the measure p is orthogornal to 4, that is fudp = 0
for uwed; the measure p, is defined by p,(y) = pls N ).
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E(o:f,g) is a well defined functional. Since clearly p(f-g,h)—
—p(f, )—p(g, k) L4, by (1.2) we get that p,(f+g,h)—p.(f, )~
—p,(gy k) | A which implies that .

Eo:f+g,h) = E(o: fL )+ E(o: g, b).

Using similar arguments one easily verifies that £(o: f, g) is a bilinear
form in f and ¢ for a fizxed . Since |£(o: f, 9)| << M |f] |g], there is a unique
R(o)eL(H) such that £(o:f, g) = (R(0)f, g) for all f, geH. It is clear
that (R(a)f, g) = f 2.4p (fg) for every elementary measure p(f,g¢).
It follows that R(o) = P (o) if ceP(A4).

Consider the finite sequences f;,g;eH (¢ =1,...,%). Applying
Lemma 1.1 to the measure p = X' [p(f;, ¢;)| one easily gets that the
following property holds true:

{1.3) For every ceR(4) there is a sequence o,eP(A4) such that

Lm(P(0,)f;, 9)) = (R(0)fiy ¢) for ¢ =1,..., %, ie. R(s) belongs
to the weak operator closure of P(4).

Since Is(A) is included in the commutant of T(4), (1.3) yields that
the same property shares the set R(4A) = {R(o): ceR(A)}. Moreover,

(T(M>R(U)f’ g) = fluudp (f,9)
for med and arbitrary elementary measure p(f, g). Indeed, by (1.2)

(14) (T R(0)f, ) = (B(o)T(w)f, g) = Lim(P(,) T(w)f, g)
= [ x,udp(f, g), where o,eP(4) is chosen in such way that
1p(f; 9)l(on—0) —0.

It follows from (1.4) that, for o, feR(4),
(T R(e 0B, 9) = [ urpcdp(f,9) = [uwdp(R(f O 0)f, g)
for wed. It results that
pﬂnﬂ(f? g)—P(R(J N Y, g) 14,

which by (1.2) implies that p,.,(f, g)——pa(R(a N B)f, g)J,'I. and, conse-
quently,

(Rlo nBf,9) = [ 2@ (£19) = [ 200 (B (o O B, g)
= (R(o)R(0.0 B)f, g).-

’

It follows now that

(1.5) R(¢.n ) = R(c)R(s N f).

Now,

(T R@RB), 9) = [ ur.dp(R(B)f, g) = [ uypdpl(f, B(0)*3),

icm
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which by (1.2) proves that p,(R(8)f, g)— Pons(f) B{0)*g) L1, ie.
(B(0)R(BS, 9) = (B(o ~ BIf, R(2)*g)-
Hence E(0)R(f) = R(o)R(c N p), which together with (1.5) proves

that

(1.6) R(e np) = R(O)R(B).

It follows now that operators in R(A) are pairwise commuting pro-

jections. We may conclude that IE(A) becomes a lattice under the ope-
rations v and A. By (1.6)

(Blo v B)f> 9) = [ 2ous@p (£, 9) = ((B(0)+R(8)—R(0)R(B)f, g)
for arbitrary f, geH. We deduce therefore that

a7’ R(o v ) = E(0)+ R(p)—E(0) E{(f).

Summing up we get the following theorem:

TaEOREM 1.1. There is a homomorphism of the lattice R(A) onto I?:(A)
such that R(o) = P(¢) for oceP(A). The projections R(c) commute with
T (A) and belong to the weak operator closure of T{8).

I T iz contractive, then obviously R(s) are orthogonal projections
and by (1.3) we may infer that R(s) = infP(o,), where ¢, ranges over
the totality of all peak sets including o.

2. It follows from Theorem 1.1 that every ceR(4) induces the
direet decomposition of H of the form H = H,+Hy ,, where H,
= R(0)H and Hy_, = (I—R(0))H. The restrictions T, and Tx_, of T
to H, and Hyx_, respectively are representations of 4 because R(c)

. commutes with T'(4). Moreover,

(T, gl =| [ wdp(F, 9)| < MIf] lg]

if feH,(y = ¢ or y = X—¢), which proves that both I'; and Tx_, have
the same bound equal to M. Now the following definition is in order:

The representation T is of type Z(B) (B is an arbitrary Borel subset
of X) if it has a system of elementary measures vanishing outside of g.

We conclude from (1.4) that if »(f, g) are elementary measures of T'
and ceR(4), then p,(f, g) are elementary measures for T,,f, g<H, and
T, is in class Z(o). We formulate the following summarizing theorem:

THEOREM 2.1. Suppose that T: A — L(H) is a representation with the
bound M. Let ceR(A). Then T is a direct sum T = T,+ Ty, of repre-
sentations with the bound M and such that T,eZ(c) and Tx_,eZ(X— o).

Studia Mathematica XXXVI.2 3
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8
Notice that if X = |J o;, where o;eR(4) are disjoint, then T is

i

a direct sum

@.1) T =T, 4T, +...+1,,

where T, Z (¢;) and simply T, = Tlggi. If for ingtance X = the maximal
ideals space of 4 and X = O o;, where ¢; are closed and open in X,
then by the theorem of Shil:)uv As;€A Deaks on ;. Consequently, g(ai)
=P(s;), 4+ =1,...,8 and (2.1) holds true in this case. If X = J oy,

0 (i3

where o;eR(A), then T = 5' T, in the weak operator topology.
[l
It is a simple matter to verify that if T<Z(f), then T reduces in

fact to the representation of A;; = {u,: wed} and |T'(u)| < M|ull,,
where |[uf; = sup |u.
]

If 7 is contractive, then H, = R(c)H reduces T and the decompo-
sition of Theorem 2.1 becomes an orthogonal one. To be more precise,
the following theorem holds true:

TEmoREM 2.2 Suppose that T: A — L(H) is a contractive represen-

tation of A. Let oeR(A). Then T is the unique orthogonal sum T = T,@Tx_,

of contractive representations such that T,eZ (o) amd Tx_,<Z (X — o).

It is obvious that only the uniqueness part of the assertion of
Theorem 2.2 requires the proof and this one is almost the same as given
in Theorem 2.3 helow.

8
Suppose now that X = (J o;, where s < +oo and o;eR(A) are
41
pairwise disjoint sets. Xf the representation T is contractive, then by
Theorem 1.1 the subspaces G, = R(0;)H are pairwise orthogonal. More-
. .
over, I = @.R(o;) in this case. To prove this suppose f_| B (o;) H for all 4.
i1
Then

D = [, =§fxgidp(f,f) - _12 (B(5)f, f) = 0,

g.e.d. To this end we get the following theorem:
THEOREM 2.3. Suppose that T: A - L(H) is a contractive represen~
8

tation. Assume that X = E) 6; (8 << +00), where g;eR(A) are pairwise
1

disjoint. Then T may be written uniquelly as the orthogonal sum of contractive

. s
representations T = @T; such that TieZ (o). In fact T, =T, .
i t
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Proof. Al we have to show is that the conditions determine the
decomposition in a unique way. Suppose just that T = ®T;, where
T;eZ(o;) with H; being the representation space of T;. Let f = X'f;,
9 =2 g fi, gueH;. Then |f? = X|fi]% 1g91* = Z g% Let p; be elemen-
tary measures for 7T; vanishing outside of o;, such that |jp;(f;, gl
< |fil lg:|. Then the measure p(f,g) = 3 9;(f;, 9) is a well defined ele-

mentary measure for 7,f and g. Indeed, [pq(f:, gl < 3(1F1"+1gal?)
which ensures the convergence of the series defining p(f, g) and yields,
on the other hand, that

Judp(f, 9) = Z(T;(w)fi, ¢) = (T(Wf, 9)

for all wed. It follows that (T5(u)fy, gs) = [ %1, @ (f, g) Which proves
that (fi, 9) = (fz, f) = (R(0p)f, g). Since g is arbitrary, we may conclude
that f, = R(oy)f. We have proved that H; < R(o,)H for every k. Since
H = @H,, we get H, — R(c,)H as was to be proved. .

Let us now consider a special case, namely assume that the single
point set'{w} (peX)is in R(4), that is » belongs to the Choquet boundary
of 4. We have for arbitrary geH

((T()—u(@)1)f, g) = (R} (T(w)—u(2) 1), g)
= [ (w—u(®@)) 2@ (f, 9) =0
if f = R({z})f. Hence T (u)f = u(z)f for such f. Conversely, if T'(u)f
= u(z)f for every ueA, then f = R({z})f. Indeed, for arbitrary geH
we then have for every u peaking on o which includes z, (T(u“)f , g)
= (f, g) which proves that P(o)f = f. Since R ({x}) is the weak operator

limit of such P (o), we necessarily have B({z})f = f, q.e.d. We have proved
that

(2.2) RU@)E = {f: T(w)f = u(a)f for all ucd}.

If T is contractive, then Hy, = R({z})H reduces I and the adjoint
of the part Ty, (u) equals to the part in Hy, of the a@_im; T (u)*. It follows
that Ty, (w)* is the operator of multiplication by »(x) which implies that

{f: T(w)f = w(@)f for wed} = {f: T(w)*f = u(x)f for wed}.

Summing up we get the following theorem:

THEOREM 2.4. Suppose zeX and {r}eR(A). Then (2.2) holds true.
If T is contractive, then it satisfies (2.3).

This theorem generalizes the results of Sz.-Nagy and Foiag [8] and
of Lebow [5], Th. 3, p. 74, which concerned representations associated
with von Neumann spectral sets of operators. In contrary to the results
of those authors, our theorem does not require that  js a peak point as

(2.3)
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well that the representation has an X-dilation(?) which is the case for
representations induced by suitable spectral sets. Extending the results
of [5] and of [8] we get for contractive T':

(a) If {x}eR(A), then, for every ueAd,w(x) is not in the residual
spectrum of T (u).

b) If {a}, {y}eR(4) and = #y, then R({ehH | E({y})H

3. This is the result of Bishop [1] completed by Glicksberg in [4]
that if A is the subalgebra of C(X), then
(3.0) X =U o,
where o, are pairwise disjoint closed sets such that the following pro-
perties hold true:

(3.1) Every o, is a maximal set of antisymmetry of 4.
(3.2) If weC(X) and w, 4, for every a, then wued.
(3.3) 4, is closed in C(s,) for every a.

"We shall call (3.0) the Bishop decomposition of X (relative to A).
Glicksberg proved in [4] that

(3.4) DEvery o, belongs to R(4).

Throughout the present section we assume that 7 is a contractive
representation of A. If (3.0) is the Bishop decomposition of X, then (3.4)
tiogether with our previous results implies that, for every o, H, = R(c ) H
reduces T, the part T, of T in H, belongs to Z(s,) and is in fact a repre-
sentation of the antisymmetric algebra 4, By Theorem 1.1, H, | H,
ifa # f because o, N oy = 0. Let us now deﬁne H' —=@H, H = H@H"
T" = the part of T in H', T" = the part of T in H''. To this end we have
the following theorem:

TaroREM 3.1. Let (3.0) be the Bishop decomposition of X relative to
A and' let T: A -~ L(H) be a contractive representation of A. Then T is
a unigue orthogonal sum

(8.5) T =Tl =T o(@T,),

where T, eZ (o,) are representations of A (in fact T, is isomorphie to a repre-
sentation of A,) and T' is a representation of A such that every its ele-
mentary measure vanishes on o, for each a.

Proof. The only thing we have to prove is the uniqueness of the
decomposition. Suppose just that

(3:6)° T = To@T,),

(%) See [2] and [6] for definition.
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where i’an(aa) and T has the property that its elementary measures
vanish on ¢, for every a. Tet H =H e(@}fa) be the decomposition
conespondmg to (3 6). T( a) is the part of 7 in bz (H ). Suppose now
that feHu. Since Tan(aa), (f,) = [ @p(f, 1), where p(f,f) is an ele-
mentary measure vanishing outside of o,, i.e. p(f, f) = 2. (f, ). It follows
that (f, ) = (R(0,)f,f) and, consequently, f = E(c,)f. We just proved
that H, < H Now, if feH, and f_]_Ha, then fe( @Hp )@ H. Tt follows

that f = 2 ., Where foeH and f,,eHﬁn for B, ;é a. We conclude that

=%(fmf~n ’

that is, by non-negativity of measures involved

1)
P £,9) =§;p(y= Furs)

for every Borel set y. If y = o,, then, since feH,, the left-hand side is
equal to (f,f) and the right-hand side vanishes because f’,,,,eZ (o4,) and
Opn N0, =@ and p(fy, f,) vanishes on o,. This proves that Iﬁ, =H,,
which completes the proof.

If decomposition (3.0) contains at most a countable number of o,
then by Theorem 2.3 the part 7' vanishes. Notice that it may happen
that the whole representation T reduces to T'. Indeed, let X be the unit
circle, A = ((X) and H = L*(m), where m is the Lebesgue measure
on X. Then every o, reduces to a single point set which implies that for
the representation defined by T(u)f = uf every T, is trivial. The example
below shows that the part T of (3.5) need not be in general an X-repre-
sentation.

Example. Let I" be the unit circle on the complex plane. We define
X =I'xI and A as the tensor product O(I")@ A(I"), where A(I') is the
algebra. of funections continuous on I' and having analytic extensions
to the open unit disc. A may be identified with the uniform closure in
C(I'xT) of functions of the form

8
(3.7) fly,2) = % GWh(a) (v, 2)eI'xT),
where ¢;eC(I) and h;e A(I'). It follows from the theorem of Mochizuki
[7] that the maximal sets of antisymmetry of 4 are of the form o, = {3 X
« I', where y, ranges over the totality of all points of I. We define H
as the L*(mxm) closure of functions of the form (3.7). Notice that the
funetion h(y,2) = Z is orthogonal to H that is

(3.8) i H.
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It follows from the definition of H that it is invariant under mul-
tiplication by functions of A. Hence, the formula T'(u)f = uf, ued and
feH, determines a well defined contractive representation of 4. It is
a simple matter to check that p(y: f,9) = f fgdmxm are elementary
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measures of this representations. They evidently vanish on. o, for every
o which proves that 7'-= 7". But T' is not an X-representation. This means
that T is not a restriction to 4 of a *-representation of 0(I'xI"). Indeed,
if it ‘were true, then every T(u) should be a normal operator. Since T'(u,)

is obviously an isometry for u, ==z, the normality would imply that

T(uy) is unitary. Consequently, w, = leT(u;)H, ie. 1 =2f for some
feH. It follows that 2 = feH which is impossible by (3.8), the desired
contradiction.

We say that a representation is irreducible if {0} and H are the only
subspaces reducing simultaneously all T(u). The representation is

reducible if it is not irreducible. It follows that every irreducible T must,
coincide with exactly one component of (3.5). The following theorem gives.

a sufficient condition for some representations to be of type Z(o,):

TEEOREM 3.2. Suppose that p is & non-negative regular Borel measure
on X. Leét H be the closed linear spam of A in I*(p) and lat T: A — L(H)
be the contractive representation defined by T(w)f = uf(ueA,feH). Then,
if T is irreducible, the closed cartier of p is a set of antisymmetry of A and,
consequently, T = T, for some a of decomposition (3.5).

Proof. Suppose that uge A is real on the closed carrier y of p. Since
(T(uo)f,f) = [ wolfl*dp for feH, it follows that T(u,) is a selfadjoint
operator commuting with 1I'(4). But T is irreducible. Counsequently,
T(uo)- = AL for some real constant 1. Hence, for f =1 we have

0= ](T(uo)-—ll)ﬂz =f [e— A]2dp,
which proves that u, =1 on y, q.e.d. :
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