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A general separation theorem for mappings,
saddle-points, duality and conjugate functions
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M. ALTMAN (Warszawa)

This paper concerns the following groups of problems:

(a) Separation of non-linear functions and general theory of ine-
qualities.

(b) Existence of Lagrangian saddle-points in the theory of convex
programming in linear spaces.

(c) Duality for mathematical programming in linear and linear
topological spaces.

(d) The theory of conjugate functions in linear and linear topological
spaces.

Ad (2). In 1952 Mazur and Orlicz ([8], p. 147) proved a very important
and general theorem on inequalities. Several important applications to
various problems are also given there (e.g. extensions of linear functionals,
separation of convex sets, scalar inequalities). In 1962 Mil'man [9] proved
a very interesting and essential generalization of the Mazur-Orlicz theorem.
It covers also the monotone extension theorem ([2], p. 20) and applies
also to infinite systems of scalar inequalities in linear spaces. In 1968 [1],
Appendix, we presented another generalization of the Mazur-Orlicz
theorem on inequalities. However, our generalization is not contained
in the Mil’man theorem. The reason for is that the Mazur-Orlicz argument
as well asg that of Mil’man involves necessity for a sublinear functional
to be separated, whereas in our argument this sublinear functional can
be replaced by a convex one.

Ad (b). Hurwicz ([5], p. 91) and Hurwicz-Uzawa [6] have proved
a general theorem on the existence of Lagrangian saddle-points for
general concave programming in linear topological spaces. The case
considered there is very general, so that the objective function is a concave
mapping into a linear topological space with an ordering relation defined
by a convex cone. Thus, the case of an objective functional is obviously
covered.
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Ad (c). A short time ago Gol'Stein ([4], p. 16) proved the most
general duality theorem for convex programming. Later on Joffe and
Tihomirov ([7], 77) proved a generalization of Gol’tein’s theorem
(without the convexity assumption) by using the Fenchel-Moreau theory
of conjugate functions for a pair of dual spaces. However, in both cases
the objective function is a functional. Thus, the programming problem

“considered in this duality theorem has not; yet achieved its full generality
as in the Lagrangian saddle-point theorem [6], where the objective function
is of a more general character than a functional.

Ad (d). The theory of conjugate functions has been developed by
Fenchel in the finite-dimensional spaces and by Moreau in the case of
a pair of dual spaces. References are in the paper of Jotfe-Tihomirov [7].
This paper contains an interesting approach to various extremal problems
which is based on the theory of conjugate functions mentioned above.

At firgt sight it is not obvious that there is a possibility of finding
a uniform technique designed to handle all these groups of problems
from a common point of view. Nevertheless, it is the purpose of this paper
to present an umified approach to all the above-mentioned questions.
Mdreover, we shall show that using this technique one can obtain even
significantly more general results concerning the problems in (a), (e)
and (d). Now, let us give a brief outline of the results contained in this
paper.

In section 3 a general separation theorem for mappings is proved.
As a special case of this theorem we obtain Mil'man’s [9] theorem on
the separation of non-linear functionals as well as our generalization [1]
of the Mazur-Orlicz [8] theorem on inequalities.

Section 4 contains a separation theorem for convex mappings which
is actually & particular case of the general separation theorem in section 3,

As a special case of the separation theorem for convex mappings
we obtain in section 5 the Hurewicz-Uszawa [6] result concerning the
existence of Lagrangian saddle-points for the general concave programming
problem in linear topological spaces with an ordering relation defined
by a convex cone.

Slightly modifying the same technique, we obtain in section 6 a general
duality theorem for the convex programming problem, which in a special
case gives the duality theorem of Gol’¥tein ([4], p. 16). Let us remark
that the duality theorem presented in section 6 seems to be the first
one for the general convex programming problem in which the objective
functional is replaced by a convex mapping with values in a space with
an ordering relation defined by a convex cone. In all known duality
theorems the objective funetion is only a functional.

Section. 7 'contains an extension to linear and linear topological
spaces of the duality property of convex functions. Moreover, it is shown
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that this duality property is a special case of a more general property
of the Lagrange function. This property is rather of algebraic character
in the sense that no topology is needed to prove it. Besides, there is also
a proof of a general duality theorem for a general programming problem
in a linear topological space. As a special case we obtain the Joffe-
Tihomirov ([7], p. 77) duality theorem, which is proved for a pair of
dual spaces. Another duality theorem with the existence of Lagrangian
multipliers is proved for programming in linear spaces and in linear
topological spaces endowed with ordering convex cones having certain
properties.

Section 8 concerns mainly convex-concave functions. However,
some properties of conjugate functions are also investigated. Thus, the
necessary and suffieient conditions for a minimum of a convex function
on 2 linear space and on a linear topological space are given in terms of the
subdifferential of the conjugate functions. Further, an extension to linear
and linear topological spaces of the Moreau theorem concerning the
commutativity of the i]if sup of a funetion f(z, u) is proved. Besides, the

theorem of Joffe-Tihomirov which gives the neeessary and sufficient
conditions for the existence of a saddle-point of a convex-coneave funetion
is extended to linear and linear topological spaces. Moreover, two new
criteria for the existence of a saddle-point of a convex-concave function
are presented. These criteria are discussed for linear spaces, linear topolo-
gical spaces and locally convex linear topological spaces. Let B, Y,Z
be real linear spaces. Suppose that there exist convex Kyc Y, K, cZ.
The cone Ky has the property: yeKy and —YyeKy imply y = 0 (zero-
element). It is not excluded that the cone K, can be reduced to the zero-
element. In the linear spaces ¥, Z an ordering relation is defined by the
convex cones Ky, K,, respectively. Thus, y, >y, (or ¥s < ¥;) Mmeans
Y1— YKy and 2, > 2, (or 2, <z means ¢,—z¢K,. We shall denote
by y*, 2" linear (i.e. additive and homogeneous) functionals on Y, Z,
respectively. :

1. Separation problem. Given three subsets X,, X,, X, of E and
three pairs of mappings
a: X, ¥, b: X;—>Z, i=0,1,2.

The problem is to find the necessary and sufficient conditions for
the existence of a non-trivial pair of linear functionals y; and 2} such that

Yolas(@)1+25[b2(2)] <0 for all » of X,
L Yo [ao(@) 1427 [be(#)] =0  for all & of X,,
Yolo(@)]+25 [b:(2)] >0  for all » of X,.

Studia Mathematica XXXVI.2 - ']
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2. Assumptions. Let us assume that the following relations are satisfied:
and 5,(0)< 0, 0eX,,
a,(0) and 0< b,(0), 0eX,,
ay(z)y and by (x) < by(z) for v in X; N X,
and by (%) < by(#) for # in X, N X,
)< by(@) for # in Xy, N X,.

a1(0 1< 0

o

() 0»1(%‘) a
a, (1) < ay(w)
and by(x

o (2) < ay(2)

We assume the central symmetry of the set X, with respect to the
zero-element of E and suppose that the mappings a,(x) und by(x) are
odd, ie.

(3) ag(— @) = —ao(%) and by(—z) = —by(2) for x in X,.

Denote by X2 the subset of elements of the set (
that satisfy the following relations:

(4) @y (@) +a, ba (@) + by (—2) <O

Denote by jfl the subset of elements such that

—X, A X)\X,

(—2)<0 and

(5) X, € (—X; 0 TNINT,
with the following property:

(6) o (2)+a(—2) 20 and b(x)+b(—a2)=0 for 2 in j."l.

Now let us define the sets

) X=X uX, and X,=2X Uk,

where X, = (—X; N X)\X\X,\X,,

X, =X \(X,u —X,) and X, =X,\(X,uX,).

Thus, the set jf{ is obtained from. the set X,\X, by removing those
elements of the set X; N —X, that satisty relation (4) in which # is replaced

by —u. It ig also obvious that the set X; is obtained from the set X,\X,

by removing those elements of the set —X, n X, that satisfy relation.

(4) or (6), in virtue of (5).
In the product space ¥ x Z let us define the set W = ¥ X Z of ele-
ments (w,v), where ue¢Y,veZ and

u = 2 1A a,;,(a;;-')—z (@) — Y tay ()
7
v = 2 by

+Yx,

8

501”)—2 #bo () — =2 by (@) -2
7

icm
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for all @}, 47, #;, 2z and yx running over X,, X,, X;, K, and Ky\{0},
respectively, and for all finite systems of non-negative ¢/, t; and ¢; such that

(9) Jy'<1, Yg<i <1
7 7 7

3. The general separation theorem for mappings. The following
theorem is bagie for all further considerations:

TusoreM 1. Suppose that the set W has an internal point (see -
Appendix). Then for the ewistence of linear functionals y; <0,z <0
satisfying relations (1) and (y),2;) # (0, 0) it is sufficient that for amy
arbitrary finite system of non-negative numbers {tf, t;, 4;'} satisfying relation
(9), elements

and

{2} = X,,

and for arbitrary zgx in Kj

{w} =X, {9} <X,

the equalily
210
ymplies the relation
2 Bag(a))+ X Go(a))— ) 4 a:(af) ¢ K \{0}.
7 . 7 7

Proof. It is easily seen that W is a convex set and it follows from
implication (10) that the point (0, 0) is not in W. Since W has an internal
point by assumption, it follows from the basic separation theorem (see
Appendix) that there exist linear functionals y; on ¥, #; on Z and a real
number ¢ such that (7, 25) (0, 0),

(11) Yy (w)+25 (0) >

for all # and v such that (u,v)e W. Hence, we obtain ¢< 0 and, conse-
quently, one can put in (11) ¢ = 0. In particular, putting in (8) #§ = tj'-
=t =0and 2 = 0, we obtain y; < 0. By the same argument it follows
from (11) that &f < 0, sinee, for ¢ > 0, tyz Ky \{0} whenever yx K \{0}.
In particular, putting in (8) ¢} = t =0 and 2z = 0 we obtain from (11)

Yy [aa (@)1 +25 [a(2)] > 0

Analogously, putting in (8) # =1# =0 and 2z =0 we obtain
from (11) - ’

(13)

w,)—}—Zt b, () — Zt"bq(w ) =2g
(10)

and  y;(0)F#(0) > ¢

(12) for all » in X.

Yo [0 (@)1 424 [b1(2)] >0  for all = in X,.
Similarly, putting in (8) ¢ =t = 0 and 2 = 0 We obtain from (11)

Y [ag(2)] 425 [be(2)1< 0 for all & in X,.
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Hence, replacing z by —& in the last inequality we infer from
assumption (3) that
(14) Y5 [ao()]+25 [by(2)] = 0  for all ¢ in X,.

‘We shall show that relations (12), (13) hold when X, X; are replaced
by X,, X, respectively. In virtue of definition (7), if # is in X, but not
in X, then » is not in X; and we can distingnish two cases: either (a)

zisin X, N X, or (b) 2isin X,\X, and #is in — X,. In case (a) we have,
by (14),

0 = 5 (8 (@)]+25 [bo(2)] < y5 [y (2) ]+ 25 [by ()],
since 37 <0,2;<0 and xeX, n X, implies a,(x)< ay(s) and b, (m)

< by(#), by relations (2). In case (b) —a is in X, < X, and —weX,,
by (7). Hence, it follows in virtue of (12) that

(15) 0> y5 [aa(—2)1425 [ba (— @)1 > —y; [04(2)]— 25 [B (@)1,
since y; < 0,25 < 0, and replacing in relations (4) 2 by —a, we have
G (—0)< —ay(2)  and  by(—a) < —by(a).
Thus, relation (13) holds for all # in X, in virtue of relations (15).
. §uppose now that » is in X,. In virtue of definition (7), if @ is mot
in X, one can disting'uis}l two cases: either (i) # is in X, n X, or (il) @
is in X \X, and z is in X,. In case (i) we have, in virtue of (14)
0 = gy [ao(#)]4 25 [bo(2)] > 4} Lo (2)1-+ 25 [by ()],
since ¥y < 0, % < 0 and for #in X, N X, we hayve, in virtue of relations (2)
@) < ay(z)  and  by(z) < by ().
ﬁI_n case (ii) » Es in 361- It follows from definitions (5), (7) that
—X, € X,, since X, N X, = @, the empty set. Hence —z is in X
and we infer from relation (13), where » is replaced by — z, that
(16) 0< Y [ (—)]+24 bu(—2)] < —y) (22 (2)] 27 [by ()],
sinee 43 < 0,2 <0 and in virtue of (6) we get
0(—2) > —ay(2) and by(—2)> —by(a) for » in X,.
Thus we infer from relation (16) that relation (12)

# in X,. This completes the proof of the theorem.

) Remark 1. Let us suppose that the following conditions are satis-
fied: b,, b, and b, dencte the identity mapping of the linear space B = Z;
— ¥

the cone K, consists of the zero-element only; the set ify of

is true for all

internal
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points of the cone Ky is not empty. Under these hypotheses condition
(10) of Theoregn 1 is necessary and sufficient provided that K,\{0}
is replaced by Ky and that the smallest wedge (see Appendix) containing
the set —X, U X, U X, is a linear subspace of E.

Indeed, suppose that for a finite system of non-negative numbers
{t,%,%} and elements {s}} = X,, {#;} < X, and {z;} < X, we have

,2 t'}m}’—}—; ta; = ;‘ .
Hence, we obtain
SEAE+T ) = 365 )
and it follows from (1) that
an - = Zagie@)] -3 innEl< - X 1 93 [aa(ef)].

Suppose that
S Bay @)+ 3 tay (7)) — jz 4 ag(x] ) eKy.
7 i

Since y; <0, it follows from (17) that yi vanishes at an internal
point. Thus, y5 = 0. It follows from relations (1) that the linear functional
#; assumes non-positive values on the smallest wedge containing the set
— X, u X, U X,.Since this wedge is a linear subspace of E by assumption,
it follows that the linear functional z; vanishes on X; (i = 0,1,2), in
contradiction to our assumption. In order to prove the sufficiency of
condition (10) modified above, one must replace the sets Kp\{0} m}d
K,, involved in the construction of the convex set W, by the sets Ky
and {0}, respectively. .

Let us observe that under the hypotheses in Remark 1 it follows that
the linear functional y; is not identically zero.

Remark 2. Tt follows from Remark 1 that in this particular case
where the linear space Y is the space of all real numbers we obtain
Mil’man’s [9] theorem on separators of non-linear funetionals as a corollary
to the theorem contained in Remark 1. In this case tﬂhe linear functional
y¥ yields 2 negative constant number and the set Ky is the seb of all
positive numbers. It is easily seen that condition (6) yields in this case
ay(2)+a,(—2) > 0 for 2z in :Yl and follows from the first inequality (4),
i.e. ay(x)+a,(—o)< 0 for # in X.. We have also by(x)+b,(—a) =o—2z
=0 and jﬁ, is empty. ’ \

Remark 3. Denote by V the convex set of elements

v=3 t;’bgtm;’)~; bo(@) =2 tby(a)  for o, af, @]
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running over X;, X,, X;, respectively, and t >0,4>0,% >0 with
restriction (9). If for every (non-trivial) linear functional 2* > 0 there
exists in V an element v depending on 2* such that

(18) : Fw) <0, vV,

then the linear functional y; in Theorem 1 is non-trivial, i.e. y; 0.

Indeed, if y; =0 in Theorem 1, then it follows from (1) that
2¥(») < 0 for all v in V. But in virtue of (18) we have for 2* = —z; that
—z¥(my) < 0 for an element v, in V. Thus, assuming ¥, = 0, we obtain
a contradiction. :

Remark 4. If ¥ and Z are linear topological spaces, then it is natural
that the linear functionals y; and #; are supposed to be continuous. For
this purpose it is sufficient to postulate the existence of an interior point
in the convex set W instead of an internal point. In ‘particular, it is
sufficient to postulate that the cones Ky and K, have non-empty interiors.
In the case where these cones have empty interiors it is sufficient to
assume thab

(a) W has an internal point and

(b) ¥ and Z are complete metric linear spaces with closed convex
cones Ky and K, such that Ky— Ky and K,— K, have non-empty
interiors.

Assumption (b) guarantees the continuity of y; and z. This sta-
. tement follows from a theorem of Klee (see [6], p. 104).

Remark 5. In the case considered in Remark 1 it is assumed that
by, by, by denote the identity mapping of ¥ =7 and K, = {0}. Besides,
the smallest wedge containing the set — X, U X, U X, is the linear space
E. Suppose in addition that ¥ and F are linear topological spaces. Thus,
if W has an interior point or, in particular, the cone K3 has an interior
point, then the linear functionals yy and # are continuous.

4. The separation theorem for convex mzippings. We shall now

discuss the case where one of the mappings a,, by, or both of them are
convex.

THEOREM 2. Suppose that in addition to the assumptions of Theorem 1

the following conditions are satisfied: the subset X, of H is conver and the
mappings

a: Xy »Y and by X, >Z

are conves. Then Theorem 1 is true if assumption (10) is replaced by the

following one: for arbitrary non-negative mumbers {€, 1,1’} such that
i <1 :

7
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the equality

3 Bo(a)+ 3 by () —bo( 3 4 4)') = 2x
7 7 7

(19) N )
implies the relation

S ay(af)+ 3t (@) — as( 3 4 @7 ) ¢ K0}
7 7 7
Proof. We shall show that implication (10) follows from (19).
Suppose that
(20) DR URCARSX t}bl(w})—§ by () = 2g.
7 7

One can assume that Y ¢ = 1. For if this is not the case, then one
can multiply the above equation by the number ( pX t}')“. Wehave, by (20),
' i

1r

,Z 0o (a) -|-;’ ANCAES bg(;,’ LA
=2 b, () + DLLACED) 4 ba(2y) +
+1 ; ' byl ) — bg(;‘ 1)) = 2x+ereKz,
sinee 2, > 0 in virtue of the convexity of b,. Hence, it follows that the

second relation of implication (19) is satistied. On the other hand, we
have

;’ B (#))+ ;,’ 4y (25)— ; i as (@)
= 2 tf}ao(x?)—[— 2 t;al(w})_az(jz t}’m]{l)
i )
— [ 34 aslay)— az(; # a)] ¢ Ky \{0},
7

in virtue of (19), since the expression enclosed in brackets is > 0, by the
convexity of a,. Thus, the second relation of implication (10) holds.
Remark 6. It is easy to see that if only one of the mappings a,, b,
is convex, then in condition (10) only the corresponding ﬁxpreﬁsiqn has
to be changed. Let, say, a, be convex; then the sum Z 1 as(w; ) in (10)-

2
must be replaced by the expression a,( ¢ «;'). This follows from the
7
proof of Theorem 2. ) ]
Tebt us observe that all the remarks made above are valid also in

this case.
‘We shall now consider a particular case of Theorem 2 where b, and b,

denote the indentity mapping of the linear space B =7Z; the cone Kz
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consists of the zero-element only; the subset X, of ¥ is empty and the
" set K of internal points of the cone K- is not empty.
THROREM 3. Given: two subsets X, and X, of the linear space B and
two mappings a,: X; - ¥; ay: X, — ¥, where X, is a convex set and g
s a convex mapping. Suppose that 0 is an internal point of the smallest
convex set containing the set — X, U X, and that the assumptions of section 2
are fulfilled. If condition

(21) © = Jw;eX, implies 34 a,(x}) < ay(x)
7 7
i satisfied, then there exist linear functionals & on B = Z and y* <0 on
X satisfying the inequalities of relation (1).
Proof. We have Nta = Yt 'x;, which
It 1 j . . - 7 i
< Y4 ax(a), by (21), assuming without loss of generality that 3t =1,
! 7
Thus, condition (10) is satisfied. .
Remark 7. If X, < X,, then relation (21) is replaced by the following
© = Sta;, >0, 4<1 and j<X, imply Dtiay (%) < ay(x). Then
7 7 7
the elements v in (8) are of the form

v ‘.
v = Yt — Saj,
7 7

where o' e Xy, aje X1, ;> 0,4 >0, 3¢ <1, Y4 < 1.
/ 7

implies

?

In the particular case where the linear space Y is the real line, we
obtain the generalization of the Mazur-Orlics theorem presented. in the
Appendix to [1]. Let us note that this generalization does mnot follow
from the corresponding theorem of Mil’'man [8], where the funectional
a, is supposed to be sublinear, i.e. subadditive and positive-homogeneous.
It is clear that this requirement is stronger than the convexity of a,
assumed in [17].

5. The Lagrangian saddle-points. In this section we are concerned
with the problem of maximization under constraints in linear spaces.
Let ¥ and Z be two linear spaces with ordering relations defined ou T
and Z respectively by the convex cones Ky and K,. A point y, of T
s said to be maximal over the sef Y, = 7, it yyeY and, for each ye¥,,
¥ =Y, implies y < y,.

Let X be a convex subset of a linear space F. Given two concave
functions f: X - ¥ and g: X -7, we shall say that 2o maximizes f(xz)
subject to #¢X and g(x) > 0 if F(®o) is maximal over the et [f(#): ze X,
g(x) > (_)]. ‘We are interested in the conditions under which the Lagrangian
expression

(22) 9(@; 2", 9%) = y*[f(@) 1+ 2*[g (2)],

Z bay (5))

icm°®
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where y* and ¢ are respectively linear funchionals over ¥ and Z, has
a (non-negative) saddle-point with z = %y, i.e., the following eonditions
are satisfied: there exist linear functionals y¥ and 2F such that

¥%=0 and 23>0,
(23) @(w,zf, ?/:)g@(mo;z:: y5) < D(y, 2*,?/:)
for all # in X and 2* > 0.

Hurwicz ([5], Theorem v. 3.1.) has shown that the Lagrangian @
has such a saddle-point if the convex cones Ky and K, have non-empty
interiors. Hurwicz and Uzawa [6] have proved a stronger theorem which
shows that the Lagrangian saddle-point might exist in some situations
where the positive orthants (i.e. the order-defining cones) have no interior.
These results are covered by the following theorem, which is a particular
case of Theorem 2:

THEOREM 4. Suppose thai x, mazimizes f(x) subject 10 neX, g(x)>= 0
and that the following condition is satisfied: the set W of elements (u, v),
where

%= —f@)+yx, v=—g@)tex fora e
and, yg running over X, K, and K \{0} respectively, has an internal poini.
Then there exist linear functionals y; > 0 and 2; > 0 such that the Lagrangian
expression @ («, 2", y*) defined by (22) has a saddle-point at (o, 7) for all
z of X and &% = 0; i.e., ® satisfies inequalities (23). If Y and Z are linear
topological spaces and W has an interior point instead of am internal one,
then y; and 2 are comtinuous.

(i) If, in addition, for any non-null nonm-negative linear functional
", there exists an element » of X (depending on 2*) such that 2*[g(z)] > 0,
then y; = 0.

(i) Suppose that y; and z are continuous. In this case, in condition
(i) “any® is replaced by “any continuous”.

Proof. Consider the set W, of elements (u,v), where u = —f(z)-+
+ I (@) +Ygx, v = —g(x)+2x for o, 2x and yx running over X, K, and
K\{0} respectively. W is convex and does not contain the element
(0, 0), since f(z,) is maximal. By assumption, it follows that W, has an
infernal point. In virtue of the hasie separation theorem, there exist
linear functionals y5 >0 on Y and #F >0 on Z such that

Yo [f(@)—F(2)1+7 [g(2)] < 0
Hence, we have y; [f(@)]+2[9(2)] <o} [f(z)] for z in X. Thus;

we obtain 2§ [g(x)] <0. Since g(m,)>0 and = >0, it follows that
% [g(2o)] = 0. Thus, we obtain

Y5 [f (2) 1425 [9(@)1 < 93 [F(@0) 1+ 25 L9 (20)] < 95 [F (@0)]+ 2 [9(m0)]

for # in X.

" for all # in X and 2* > 0, which proves (23).


GUEST


142 : M. Altman

We have actually repeated the same argument as in the proof of
Theorem 2, where X; and X, are empty, a; = @ = by =0, ay(#) = —f(x)+
+f(io), and by(w) = —g(®) and X, = X. Assertion (i) follows from
Remark 3 and assertion (ii) follows from the same by a. similar
argument.

6. The general duality theorem. There are two important groups
of theorems in the theory of mathematical programming. One of them
concerns the existence of Lagrangian saddle-points and a general theorem
of this kind is contained in section 5. The second. group of theorems is
connected with the duality problem. A general duality theorem has been
recently proved by Gol’Stein ({41, p. 16). Another approach to this problem
is contained in the paper by Joffe and Tihomirov [7]. The argument
used there is based on the theory of conjugate functions developed by
TFenchel(!) in the finite-dimensional space and by Moreau (*), Rockafellar
in the general case. However, the mathematical programming problem con-
sidered in the duality theory is not as general as that discussed in section 5.
TIn other words, all duality theorems pertain to the case where the objective
function of the corresponding mathematical programming problem
is a functional. Thus, the question arises of extending the duality problem
to the case where the objective function is an operator, ie. of covering
also the case considered in section 5. It is shown in this section that sueh
an extension is possible by using a technique which is similar to that
exploited in our general separation theorem for mappings.

Tet ¥ and Z be two Banach spaces with ordering relations defined
on Y and Z by the convex cones Ky and K,. Suppose that K has
2, non-empty interior.

Tet X be a convex subset of a linear space B. Given: two functions,
f: X > Y and g: X —Z, where f is convex and g is concave. Consider
the set A of all generalized sequences {z,}, acA, 4 being a directed seb
(see Appendix) such that z,«X and g(z,) = 4,2, where 2, >0 and
2z, — 0. We shall suppose that A is not empty. The sequence of elements
®, is called a feasible sequence. For the set A of all feasible sequences let
us introduce the notion of a weak minimum solution as follows.

Definition. The point y, of ¥ is called the weak minimum solution
of the generalized mathematical programming problem if for any non-
null non-negative continuous linear functional y* the following relation
is satisfied:

(24) inf liminty*[f(z.)] = " (), 9" >0.

{mged @

(!) For references see [7).

icm°®
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In order to formulate the general duality theorem let us introduce
the following notation. Put

(25) C e ) = ziﬂg{?/* [f@)]—2" 9@}

for ¥* >0, Jy*| = 1 and 2* > 0.

THEOREM 3. If y, is the weak minimum solution to the generalized
mathematical programming problem, then

(26) infy* (y,) < sup supyp(y*, #°) < sUDY* (¥0)-
=0 y*=>0 8*>0 >0
=1 ll*ji=1 ly*li=1

Proof. Since the interior of the convex cone Ky is not empty, by
assumption, let ¥z, 7zl = 1, be an interior point in K. For the positive
numbers § and &(é) let us consider the set W; of elements (u,v), where

u = —yo-+f(@)+ x+yr and o= —g@)+2xt+e(d)z,
and where &, ¥, 2 and z are running over the sets X, Ky, K, and the
set [2: |l2]] < 1], respectively. It is easily seen that the set W, is convex.
We shall show that for every positive ¢ there exists a positive ¢(6) such
&hat (0, 0) is not in W,. If this is not the case, then there are a positive
8, a sequence of positive numbers a and sequences of elements z,¢X,
yieKy, 2y Ky and 2, such that f(z,) = yo—8ix—Yk, 9(%) = 2k+ a2
with a — 0 and ||z,]| < 1. Henee, it follows that {z.} is a feasible sequence
and for any non-null non-negative linear continuous functional y* with
Iyl =1 we have y*[f (2] < ¥* (%)) —8y* (Ux) . Thus,

liminfy* [f(@,)] < ¥* Yo— ) < 4" W0),

since 4*(§z) > 0. The last relation shows that ¥, is not a weak minimum
solution in spite of our assumption. This contradiction proves that (0, 0)
is not in W, with arbitrary positive 4. Since W, has a non-empty interior,
it follows from the separation theorem that there exist linear continuous
functionals —y; on ¥ and —z; on Z such that

— i (u)—25(v) <0 for all (u,v) in W,

Hence, it follows that ¢} > 0, 25 > 0 and y; 7 0, by the same argument
ag in our general separation theorem for mappings. Further, we obtain

@7 Y5 (—90)+ 95 [F @)1+ 045 () — 25 [g (2)] = 0

for all # in X. One can assume that |ly3] = 1. Hence we obtain from
(27) and (25)

(28) Y o) — 8 < Ys (¥o) — 09s () < P (U5, 45)s
where 6 >0 is arbitrary and ¥ (¥g) <1
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On the other hand, we have, by (25),

(4", &) <Y [f(2)1— 2" [9(2.)]
= @] () — 2" (&) < ¥ If (21— 24 (2)

for any feasible sequence {w,} c X, where z,>0 and ¢, — 0. Hence,
we infer from the last relation that

p(y", ") <liminty* [f(z,)]

for any feasible sequence {z,}. :

Thus, it follows from (24) that w(y™, ") <¥*(y,) and, consequently, _

we have

(29)  sup{p(yh Mgt =0, 9] = 1,4 >0}
< sup{y* (yo)ly* = 0, |y*] =1}.

Relations (28) and (29) imply relation (26); which proves the theorem.
In the particular case where Y is the real line we obtain the following
duality theorem of Gol’Stein ([4], p. 16) as a corollary to Theorem. 5:

THEOREM 6. If the set A of feasible sequences {w,} is not empty, then

(30) supy(s*) = infliminff(a,),
2*>0 4 a

where y(2*) = inf{f(x)—2*[¢(2)]}, and f(x) is & real-valued function on X ;
aeX

inf means int over all feasible sequences {w,}cA.

a

It is obvious that relation (30) follows from (26), sinece for 4* >0
and |ly*] =1 we have y*[f()] = f(#) in relations (24), (25) and so on.

Let us note that the method of conjugate functions [7] is not applicable
to Theorem 5.

7. The conjugate functions. In this section we shall show that the
same technique of separation can be applied to the theory of conjugate
functions of Fenchel-Moreau.

Let X be a linear space. Given: real-valued function flz), ze X,
defined on X. A function is called trivial if either f(@) =coorf(z) = —co
for some weX. Such functions are not considered in this section. Tet Y
be the linear space of all linear functionals defined on .X. The notation

y(z) = <, y> means the value of the linear functional yeY at the point
zeX. Pub

(31) ) = zu£{<w, P—f@)}, ye¥.
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icm®
F*(y) is called the conjugate funetion. From this definition we im-
mediately obtain the following
LeMMA 1. f(#) > f** (@), v X.
Proof. In virtue of (31) we have
@) = <z, p—~F*),

Hence, we obtain in virtue of (31)

flz) = su§{<w, =y} = *(=).

zeX,ye¥.

TeEOREM 8. Let flw) be a convex real-valued finite function on X.
Then .

(32) (@) =f(@)

where

for zeX,

(@) = sulp{@, D=} = <@, go>—F* ()
”

for some y, of Y.
Proof. Consider the set W of elements (u, v), where

v =f()—fle)+i and’

for fixed 2 of X, arbitrary 2 of X and arbitrary ¢ > 0. It is clear that W
is a convex set and (0, 0) is not in W. Besides, the set of internal points
of W is not empty. For instance, (—f(2)+f(0)+1, —a) is an internal
point of W. Hence, it follows from the basic separation theorem that
there exist a negative number ¢ and a linear functional y, on Y such that

V=2—0

e[f(z2)—f(@)]+<e—a, ;> <0 for all z in X.
Let y, = —c 'yg; then we obtain
—[fle)—=f(@)]+e—w, > <0 for all z in X.
Hence, it follows that
<2, Yor—JF2) < <&, yo>—f(#) for all z in X

and, consequently, we obtain

(o) = sulg{@, Yoy —F(2)} < <&, yop—F().

The last relation yields
f(@) < <2, yor—1*(ya) < sup{<e, >—F*()}
ye¥

and f(#) < f**(z). This relation and Lemma 1 imply (32).
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Remark 9. a. If X is a linear topological space and f is continuous
at z, then on replacing Y by the space X * of all linear continuous funetionals
on X, Theorem 8 remains true for all points » of continuity of f. The
proof is exactly the same as that of Theorem 8.

The continuity of ¥, follows from the inequality <{z—u, y,)
< flz)—f(), since f(2) is continuous at and ¥y, is linear.

b. Let X be a locally convex linear topological space and f be a lower
semi-continuous function on X. Put domf = [zeX: f(2) < oo]. Then
**(@) = f(o), wedomf*.

Tndeed, suppose that f(we) > f*™*(z,). Then (f**(2,),®,) is not in
the closed convex set W of elements (%, v), where 4 = f(#)+?andv =0
for all > 0 and all # of domf. In virtue of the strict separation theorem
there exist a number ¢ and y; of X* such that

sup{e [f(@)+ 1+ <o, Yoo} < of ™ (@0) + <o, 9

for £ 0 and wedomf. Since domf c domjf*™ < domf (see [7], p. B8),
it follows that mueao—mf and ¢ # 0. The assumption ¢ > 0 leads to a con-
tradiction. Thus ¢ < 0 and one can put ¢ = —1. Thus, sup{ } is attained
at t =0 and we obtain :

) = sup{<a, Yo>—F(@)} < <o, Yor—F" (@),
ie. f*(¥)+1*(m,) < <@y, ¥3>, which is impossible by the definition
of f**. Thus, f**(x,) = f(®,), by Lemma 1.
*  In the case of a pair of dual spaces (X, Y) this theorem is proved
by Moreau (see [7], p. 57).

Let us emphasize the existence of a linear functional y, maximizing
the expression <, y>—f" (y) in Theorem 8 as well as in Remark 9 a, in
‘which ¥, is continuous if f is continuous at #. This observation is important
and an application will be given.

Let f(#) be a real-valued function. on the linear (topological) space

X, and let us define
(33) cof(w) = it} a;f (@) |o = Na, w56,2 0, Y a; =1}
i i i

for all finite representations of z;
(34) f(#) = inflimintf(z,),

where inf is taken over all generalized sequences {x,} convergent to z,
The following lemma is an obvious comsequence of definition (31),
LEMMA 2. If fi=fo, then f; = ff, where f, > f, means fi(x) > fo(®)

for all z in X. f* is always convex. )

] ©
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Let f be a real-valued function on a locally convex linear topological
space.
COoROLLARY 1. The following relation holds:

f** = cof.
Proof. Since cof < f, it follows from Lemma 2 that (cof)*>f™.

Suppose that & = (cof)*(y*) > f*(y*) =b for some linear continuous
functional y* on X. Then we have .

a = sug{(m, ¥*>— cof ()} > suxp{«v, y*>—f(z)} =b.

For & > 0 let 2, X be so chosen that a = (@, y*)—ﬁ(ﬂon)—k £
= b-(a—Db). For ¢, > 0, in virtue of definition (34), there is a generalized

sequence {z,} convergent to @, such that cof(z,) = liminfeof(a,)—&;.

Hence, it follows that, for the positive number 5, a can be chosen s0 as

to satisty the equation cof(z,) = cof(z,)—e—e. In virtue of definition

(33), for & > 0, there exist a finite set of real numbers a; and elements

#%e X such that a?>0, Y af =1, z, =) ajafand coi{z,) = aif(zf)— &;.
i T

Thus we obtain
& = Gl U3+ 05— S S+ 3 e = b a—D).
Hence, it follows that choosing o and &; 50 as to satisfy the inequality
o ¥+ 3 < =W,
we obtain

—b - o a—D
G ¥ — X afad) > bk 5> @y —f )+

Multiplying these inequalities by a3 and summing over i, we obtain

a—b
(@ ¥ 3 aEfla) > @y 7= Y f @)+ =5

T
Hence, it follows that a <3, in contradiction to our assumption.
Thus,

((T()—f)* — f* and f** — (E(—)_f)** < (COf)** Sf**.

But cof = (cofy*™ in virtue of Remark 9 b.
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OOROLLARY . If the function | defined by (34) is conves, then f** =},
COROLLARY 1*. If cof (x) is finite, then for every @ of the linear space
X there exists a linear functional y, defined on X such that

(*) cof (w) = <@, y,>—F* () = sup Ky pd>—F* ()} = (@).

Proof. Usmg the same argument as in the proof of Corollary 1,
we obtain (eof)* = f*. Hence, it follows in virtue of Theorem 8 that
cof = (cof)™ = f**. Moreover, there exists a linear functional g, Y
such that

cof(v) = (@, Y,>— (cof)" (y,)
= sup {¢@, y>— (cof ()} = sup (<, y>— @y =1 (@),
ye.
sinee (cof)* = f*, where ¥ denotes the linear space of linear functionals
y on X.

Let X be a locally convex linear topological space with an ordering
relation defined by the convex cone K. Given: a set U and a real-valued
function f defined on U. Let g be a mapping g: U — X. Pub
(35) M(z) =inf{f(u)]g(w) > 2, ueU}, =X,
and M (z) = oo if there is no « in U which satisfies the inequality g(u) > =

(36) M(xy = m.f{hmmf M(z,) |z, — x},

where inf is over all generalized sequences convelgent toward x. Denote
by X* the space of all continuous linear functionals 4* on X. Put

(37) v = sup{(g(w), yH—f(w)}, yeX*.
TerOREM 9. If the function M (x) is convea, then
(88) M) = sup (o, y"> = (")} = sup{<a, ¥ — (Y™} = v*(a).

Proof. The inequality g(w)> & implies

®

@y 'y —flu) < sup {<$yy> —f(w)}.

ac:c\
Hence, it follows that
sup {x, ¥ > —fu)l < s
ww}j{( VYO —fu)} < u:;]p”s;lp {<@, y">—flw)}.
Thus, we have
G0 sw s (gD =S} <mp s (vt ).

x wg(u)=z uelU za<gl
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On the other hand, the inequalitx 2 < g(u) implies
<o,y —flw) < sup (<@, y">—Ff(w)}.

’Iln u/a:

Hence, it follows that
sup {<z, "> —f(w)}<sup sup {<z,y">—f(w)}.
zr<g(u) z  wglu)>x
Thus, we obtain )
(40)  sup sup {<o,y">—f(u)} < sup s {o, "> —f(w)}
ueU <y u g
If 4* is non > 0, then there is an & in K such that <&, y*> < 0. Thus,
g(u) =0 implies g(u) > —1& and (&, y")> > 0 for arbitrary positive I.
Henee, it follows that
sup {<z, y">—fu)} = (— 18, y">—f(u) > oo
zx<g(u)

if ¢ > co. Thus, we obtain

(41) sup sup {<=,y*>—flu)} =

ueU  zx<g(u)

oo if y* is non>0,
[s,fg{<g(u)’y*>—f(“)} if y*>0.
In virtue of Corollary 2, we have
M(z) = M (),
M (") = sup{(@, y">— M ()}

= SHP{@,:'/ > inf f(u)} =sup sup {<z,y">—f(u)}

{u)=T x  wg{u)=z
if 4* is non> 0,
=sup sup {Kz, yH—flw)} = o) i 450,
in virtue of relations (35)- (31) and (39)-(41). Thus, we have obtained
M*™ () = " (), which proves relation (38).

Tet us note that for a pair of dual spaces (X, ¥) the same Theorem 9
is contained in [7], p. 77- As an application of Theorem 9 it is easy to
obtain a general duality theorem in locally convex linear topological
spaces. The generahzed sequence {u,,}, aeA (directed set) is called feasible
it g(u,) = =, '+, where x, > @, %, — 0, ¢ being a fixed element in X. Put

(42)  m(z) = inf{limintf(u,)|g(u,) = T+, , @, > @, ¢, — 0},

where inf is over all feasible sequences. m(z) = co if there is no feasible
sequence. )

Studia Mathematica XXXVI.2
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Lemma 3. m(v) = M (»), where m and I are defined by (36) and (42),
respectively.

Proof. For an arbitrary feasible sequence {u,} we have, by (42),
glu,) = 2o+ a) > w+a,. Thus, s4a, -z and M(z+a,) <f(u), by
definition. Hence, it follows that

inflimint M (z+x.) < m(w).

On the other hand, it follows from definition (36) that for », — a,
there exist o with g(u,) >, (f M(2,) < oo). Thus, g(u,) = (g{u,)—
Tyt @)+ (B,— %) = @, +,, where a,> and @, —0. Hence, there
is a feasible sequence {u,} and, by (42), m(») < liminf M (x,). Since the

sequence of ¢, —  is arbitrarily chosen, from. (36) we obtain m(z) < M (z).
Putting # = 0 in Theorem 9 and in Lemma 3, we obtain the following
duality theorem in locally convex linear topological spaces:

m(0) = M (0) = sup mf{f(u)— <g(u),y™>}.
Y*=0 uelU

For a pair of dual spaces (X, ¥) this theorem is proved in [7], p. 77.
As a corollary it contains the general duality theorem by Golktein ([4],
p. 16), where U is a convex set, f(u) is a convex real-valued function and
g(u) i3 a concave mapping.

In some general cases, a stronger duality theorem can be obtained
as well as the existence of Lagrangian multipliers on the basis of
Corollary 1*. .

Let X be a linear space with an ordering relation defined by the
convex cone K. Let M () have the same meaning as in (35) and pub

p(y) = ilg{@(u), =)}, ye¥,

i.e. replacing in (37) X* by ¥, the linear space of all linear functionals
y on X. Then we obtain

THEOREM 9*. For every © of X, there exists a linear Sfunctional y, >0
such that

00 M (%) = <@, Yo —p(¥) = 51;10){@, P—y(y)}
v
= sup{{z, y>—p(¥)} = y" ().
VY
If X is a Unear topological space and (a) K has a non-empty interior

or (b) X is complete metric linear and E—K has a non-emply inierior,
K being closed, then ¥ cam be replaced by X* and y,, by 4 e X*.

@ ©
lm Separation theorem 151

Proof. In the same way ag in the proof of Theorem 9 we obtain
if y is non > 0,

wy) Hy>o0.

Hence, it follows in virtue of Corollary 1* that there exists a linear

M*(y) =

. functional y, satisfying relations (*) for f = M. Thus, replacing M* by

we obtain the required equalities. Tf X is a linear topological space and
K has non-empty interior, then it follows from Lemma 7 of [3], p. 417,
that ¥, is continuous, since g, > 0. If X is a complete metric linear space
and K~ K has a non-empty interior, then by a theorem of Klee (see [6],
p. 104, footnote 9) ¥, is continuous, since y, > 0. Thus in both cases (a)
and (b) Y can be replaced by X*, the linear space of all linear continuous
functionals on X. It is known that all of the following spaces are complete
metric linear and have closed space-spanning positive orthants K (i.e.
K—-K = X): (8), (), (Ip), p > 0, (Ip), p > 0. Thus, in all these spaces ¥
can be replaced by X*. As an immediate consequence of Theorem 9*
we obtain the following

Duality Theorem and Existence of Lagrangian Multipliers. If X is
a linear space, then there exists a linear funectional y, > 0 such that

(**)  co M(0) = inf{f(u)—<g{u), yo>} = supinf{f(u)—<g(u), ¥>}.
uel7 y=0 uelU

If X is a linear topological space satisfying econdition (a) or (b) in
Theorem 9%, then #,>>0 and y >0 in,(**) denote continuous linear
functionals. .

If U is a convex set, f(u) is a real-valued convex function defined
on U and g: U — X is a concave mapping, then co M (0) = M (0), and
we substitute in (**)

co M(0) = M(0) = int{f(u)[g(u) > 0, ucU}.
In the particular case where U = X let us put instead of (37)
(fog)(y”) = sup{<g (@), ¥ —f(@)}.
Then relation (38) yields
(43) m(z) = M (@) = (fog)*(a), <X,
where M (z) is convex by assumption and

m(o) = int{limintf(e,)|g(2,) = 2.+, , 2. > 0, 2 -0},

M(2) = inf{f(@)|g() > =, TeX},
M (%) being defined by relation (36).
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If g = I is the identity mapping of X with K = {0}, then fol = f*
and relation (43) yields § = f** provided that f is convex. Thus, we see
that Corollary 2 is a particular case of relation (43), where g = I and

= {0}.

We} shall now investigate some relations between the operations
o and. *. Let X be a linear space and f(z) be a real-valued convex function
on X. Let Z be a linear topological space with an ordering relation defined
by the convex cone K and let g be a concave mapping g: X ~ Z. Suppose
that B is a convex bounded set contained in Z. We shall assume that
either K or B has a non-empty interior and that B contains the zero-
element. But the existence of such B with a non-empty interior is very
restrictive for Z. Put

(44)  g(o) = int{liminif(z,)|g(2.) = g(@)+a+252> 0,2, >0},
where inf is over all generalized sequences {,}, aed (directed set). It is
easy to see that if Q(z) = inf{f(%)|Z > », T<X}, then

() = @) = infliminfQ (v,) | @, - a},
provided that Z = X and. g = I is the identity mapping of X. Thus,
in the particular case where Z = X is a mnormed space with K = {0}

and g = I is the identity mapping of X, we have g = f, f being defined
by relation (34). For the linear continuous functional 2* on Z let us put

(45) (fog) (&) = 511Xp{<g(m), &y —f(a)}.

Then the following theorem is true:
THEOREM 10. The following relation holds:

(46) gl =(fon ),

where f is conves, g is concave, and where

(47) (fog)'(2) = Sﬂ.’{@’ Zy—(fog)(@")}, 2eZ.

Proof. For the positive numbers ¢ and «(f) let us consider the set
W, of elements (u, ),

v =) —g@+tts  and v = —g(y)+g(@)tepte(t)z

for fixed » of X and ¢ > 0, and where ¥, 2¢, # and s are running over the
sets X, K, B and the set of non-negative numbers, respectively. We shall
show that for every positive ¢ there exists a positive ¢(¢) such that (0, 0)
is not in W,. If this is not the case, then there are a positive i and two

©
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sequences of positive numbers o and s, sequences of elements 2,¢B, 2% ¢ K
and y, such that

¢(@) = flw)+t+5., g =g@)+ok+oz, with a 0.
Hence, it follows that
fo)<q@—t and g =g@)+anti,

where z, = 2x>0 and z, = az, -0, since B is bounded. Thus we
infer by (44) that

inflimintf(y,) < g(2)—1.
This contradiction shows that (0, 0) is not in W,. Since W, is a convex
set with a non-empty interior, it follows from the separation theorem

that there exist a negative nmumber ¢, and a linear continuous functional
2; < 0 such that

o[fW)—a(@) +tl+4[—g(@)+g(®]<0 for any y in X.
Putting 2} = ¢ 2} > 0, we obtain
—[f(y)—g@+0—2 g9+ g9(®)1<0,

i.e.,
), Z>—f)—1<Lg(2), 4>—q(®)-
Hence, it follows from definition (45) that
(Fog) (&) —t < <g(®), %> —q(@),
ie.

Y@)—1 <D {Cg(@), "> — (o) ()

Since ¢> 0 is arbltra.ry, we hawe, by (47), < (fog)*(g(@)-
Suppose now that b = g(#) < (fog)*(g(®) = a. Henee, 1t follows from
deflmtlon (47) that for a positive e, there exists a continuous linear funectio-
nal zeﬂ > 0 such that

b = <g(®), 7 >— (fog)(#) + e+ (2—a).

For & > 0 in virtue of (44) there exists a generahzed sequence {w,}
such that q(#) = liminff(z,)—e and g(z.) -g(w)-1~z,,-|—z with 2,>0

and 2 - 0. Thus, for s, >0 there exist elements @, of {z,} such that
q(a) = f(@,)— es—¢,. Thus, we obtain

(48) b = (@) — sa— &1 = (@), o> — fog)(zsu)+e,,+(b a).

El
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It follows from (45) that
(fog) (z) = <g(@), &> —f(x.)
= Qo)+ 2t e, 2y —f(w) > <g(@)+2, , o >—f(a,).
Hence, in virtue of (48), we obtain '

(49) (@) —ea— ey < <27, z:0>+f(wa) +eo+(b—a).
If ), ¢, e, and a are chosen 5o as to satisfy the inequality
"ok a—b
oy 2>+ et a8 < 5

then relation (49) yields 0 < (b—a)/2. This contradiction shows that
relation (46) is true.

‘We shall now investigate another relation between the operations
o and *. Let f(x), #eX, be a real-valued convex function defined on the
linear space X and let Z be a linear space with an ordering relation defined
by the convex cone K. Given the convex mapping ¢g: X - Z. -

Let us define the set W of elements (w, v), where

u=f)+t and o=g(y)teg, yeX, ek,

for y, 2z and ¢ running over the sets X, K and the set of positive numbers,
respectively. For the linear functional 2* on Z pub

(50) (fog)(e*) = sup <y (a), #*> — f(w)}
and
(51) (fog)*(z) = sup {<z, &= (fog) (@)}, 2ez.

The following theorem can be considered as a generalization of
Theorem 8: ‘ i
THEOREM 11. Let us assume that the set W for convex f and g has an

internal point. If w, YeX,g(@) = g(y) implies (@) <f@), and. for every
2 and 2* > 0 there exists an element y of X such that

(52) L9 (y)] < £ [g(x)] (y depends on » and on 2¥),
then
(53) (fo9)*(9(@) = fla), weX.

Proof. For arbitrary but fixed s of X let us consider the get W,

of elements (u,v), where u =f)—f(@)+t and v = 9y —g (@) +2¢
and thare ¥, 2g and ¢ run over the sets X , K and the get of positive numbers,
respectively. It is clear that the set W, is convex. It is eagy to verify

that (0,0) is not in W,. For 9 —g(@)+2g =0 implies g(z) > g(y).

©
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Hence, by assumption; f(#) < f(y) and, consequently, f(y)—f(z)+% > 0
if ¢ > 0. In virtue of the basic separation theorem, since W, has an internal

point, there exist a nurber ¢ < 0 and a linear functional 2} on Z such that

(54) o[fW)—f@1+2lg(y)—g(@)]1<0 for all y of X.

Since 2 < 0, it follows from (52) that ¢ # 0 and, consequently,
¢ < 0. Putting 2 = ¢4} >0, we obtain

— @) —f @)+ [g()— g(#)] < 0
for all yeX. Hence, it follows that
' W), #>—Fly) < <g(@), &> —fla)  for all yeX.
Thus, in virtue of (50) we have the relation
(fog) (&) < <g(@), &> —F (@),
which yields, by (51),
(54a) f(@) < <g(®), %>~ (fog)(z") < (fo9)*(g(w)).

*

On the other hand, we have, by (50), f(z)> <g(w),.z*>:— (f_og)(z )
Since #* iy an arbitrary linear functional on Z, we obtain in virtue of
definition (51)

@)= (fog)*(g (@)

This inequality and inequality (54a) imply relation (53) and the
roof is completed. ’
g Let us observe that in the particular case where Z. =X a;,nd.’K = {0},
all the hypotheses of Theorem 11 are obviously fulfﬂled Prowded tt}at
g =T is the identity mapping of X. Since foI = f, relation (53) coin-
cides with (32). Thus, Theorem 8 is a particular case of Theorem 11. N

COROLLARY 3. If Z is a linear topological space,‘The?wm 1.1 remm:s
true. In this case it is assumed that the set W has an mter'.wr point atnd the
linear functionals 2* on Z are everywhere replaced by linear continuous
functionals #* on Z. _ .

The proof is exactly the same ag thaﬁ; of Theorem 1‘1‘ Theorerré 1*1
has been formulated as a relation between the operations o ﬁff 1;10];
However, this relation yields actually a property qf the ngra,nget ;310
for the convex functional f and the convex mappmng g Since no 0(1; ﬂgf;
is needed to prove iti, this relation is rather of algebraic character. 3 i
other hand, Theorem & proves the duality property of convex fune 1;)11&1;
Since this theorem is a particular case of Theorenll 11, it follgws ¢
the duality property of a convex function is a particular case of a mor
general property of the Lagrange function.
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8. Convex-concave functions. It is the purpose of this section to
generalize two theorems concerning a real-valued function of two abstract
variables. The first theorem concerns the commutativity of the infrup
and has been proved by Moreau (see [7], p. 79). The second one concerng
the existence of a saddle-point and is due to Joffe-Tihomirov ([7], p. 80).
Both theorems are proved for the case of two pairs of dual spaces. Howe-
ver, following the argument in [7] it is easily seen that the generality
of these theorems depends only on the validity of the duality property
of a convex function. Owing to this fact and on the basis of Theorem 8
We are now in a position to give a significant generalization of both the-
orems mentioned above. New theorems are also presented.

Let X and U be two real linear spaces. For the real-valued function.
f(@, u) defined on the product space X x U let us introduce the following
notation

domf = [z, u: |f(z, u)| < oo].

The projections of domf inte X and U are denoted by domyf and
domyf, respectively.

For every uedomyf, f,(z) = f(=, ) is a function on X and in. this
Sense we shall use the mnotation fy(y) = Fuly, u), where y is a linear
functional ‘on X. We shall say that the function f(z,u) is conves with
Tespect to w if for every uedomyf the function f(z, u) is convex. In the

. same sense we use the expression that the function fle, ) is concave
« with respect to u. The function flw, w) is said to be conves-concave if it
is eonvex with Tespect to # and concave with respect to u. The following
lemma iy evident:

LEMMA 4. If the function f(x, w) is concave with respect to u, then
faly,w) = swp{C@, >~ f(o, w)}), ye¥,

s conven on ¥ X U, d.e. with respect to both variables y and w jointly, where
Y denotes the linear space of all real-valued linear functionals defined on X,
Put :

(55) h(y) = int iy, u),

uedomgyf
where y¢Y, the linear space of all real-valued linear functionals de-
fined on X.

THEOREM 12. Suppose that the function f(z, w) is conven with respect
to @ for every w in domy,f. Then

mf  sup  f(w,u) = sup - inf  f(z, u)
zedom x7 uedompyt uedomyyf wedom xf

if and only if 1(0) = K™(0).
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Proof. If u is in domyf and @ is not in domyf, then f(z, u) = co.
Hence, it follows that

inf  sup f(@,u) =inft sup Sz, u),

zedom g7 uedom gyf z  uedomgyf
sup inf f(#,u) = sup inff(z,w).
ucﬂome aedom xf mdnme x

Since f(x, 4) is convex with respect to x, we have in virtue of Theo-

rem 8
fl®,u) = Sup{@;?/)—f;('y:%)}, ye¥.

Thus, in virtue of (55), we obtain the following relations:

inf sup f(z,w) =inf sup sup{<w, y>—fu(y, w)}

a uedomyyf z uedompf ¥

= infsup sup {<z, y>—fL(y, w)}

z vy wuedomyyf

— infsup {(@, y>—h(y)} = iAW’ (z) = — 1™ (0).
x v z

On the other hand, we have
inff(w, u) = —fu(0, %)
Tz

and, consequently, we obtain
sup  inff(z, u) = —h(0),

uedomyf «
in virtue of (55). )
- Vl;?heetheo(rerzl of Morean (see [7), p. 79) for f(x, u) defined on XX U
concerns the case of two pairs of dual spaces: (X, ¥) and (U, V)',

Let us remark that if in Theorem 12 the linear space X is a linear
topological one, then the linear space ¥ of- all 1i];lea,r‘ﬁmct10na,1st':z/ callz
be replaced by the linear space X* of all linear contmuous. func. iona
defined on X. The proof is obviously the same. How.ever, in this case
we must assume additionally that the fu:action. f(=z, u) is continuous WI:Gh
respect to the variable %. Under this assumption, Theqrem 8 caane re-
placed by Remark 9a. In the case of dual spaces 'conmdered. by .orfzau
it is sufficient to assume lower semi-continuity instead pf contmmty.
The same is true for general locally convex linear topological spaces, in

i of Remark 9b.
VH’WE% f be a real-valued function defined on t]?e linear space X le;
function f* defined on the linear space ¥ of zYll linear functlol}als 1(;2
by relation (31) will be called the algebraic conjugate of f. If X is a . ear
topological space and ¥ = X* is the linear space of all continuous linear
functionals on X, then f* is the conjugate of f. .
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Definition. The linear functional y,¢Y -is called the algebraic
subgradient of f(z) at z, if the following relation holds:

(56) f@)—f(m) = <@—a,, 3> forall » in X.

If y, is a continuous linear functional y, = y; ¢ X, then it is called
the subgradient of f(z) at the point #,. The set of all algebraic subgradients
of f(z) at z, is called the algebraic subdifferential of f(x) at the point x,
and it is denoted by 9f(x,). The set of all subgradients of f(z) at z, is
called the subdifferential of f(x) at ®, and it is denoted by 9f(2,). If f(z)
is convex, then Jf(z) # @. If f(x) is convex and continuous, then 9f(z)
# @. These assertions follow from the proof of Theorem 8 and Remark 9a.

If f* is the conjugate of f, then the inequality f(2)4f*(y*) = <z, ¢
holds for arbitrary » of X and y* of X*. The same inequality holds for
the algebraic conjugate function replacing y* of X* by y of Y. The
question arises when the inequality becomes an equality. The following
theorem gives the answer to. this question

THEOREM 13. The equality

F@)+1@0) = <@y 95> or  fl@o)+F (o) = <oy o>

is true if and only if yy <0f (m,) or y,edf(2,), respectively.

Proof. Suppose that the first equality is satisfied. Hence, in virtue
of the definition of the conjugate function, we have (=, y*>— f(z)
< (mo,*y;‘>~f(mo) for all » in X. Thus, ¥y <df(z,), by (56). Let us assume
that 4y edf(w,). Thus relation (56) yields (@, y;>—f(2) < (@, Yo >—f (@)
and, consequently, T (W) < <@, 13> —f(m,). Since the opposite inequality
is always satisfied, we obtain the required equality. The proof for the
algebraic conjugate function is exactly the same.

COROLLARY 4. If 0f (o) # @, then f**(x,) = f(x,). The same assertion
holds for the algebraic conjugate function, if Of (o) +# .

Proof. In virtue of Theorem 13, the relation y, «df (m,) implies

fl@) = <y, y;>—‘f* (.1/:;) <™ (®o) -

But f(@,) = f* (x,), by Lemma 1, and we obtain the equality.
Let us observe that Corollary 4 shows that if Yy «0f(@,), then

(BT flwo) = <o, yo>—1* (4 =m§X{<wo, Y=} =1 (@,).
.

The same is valid for the algebraic conjugate functions.

Let us introduce the following notation. If f*is the algebraic conjugate
of f, then @yedf*(y,), yoe ¥, means f*(y)—*(yo) = <@y, y—y,> for all
y of Y Such a notation is justified, since B (Y) = <@y, ¥>, ye ¥, is a linear
f);lmctlonal on Y. Similarly, if f* is the conjugate of f, then , <af* (y3)

eans

@)= W) = @, y" —4f>  for all y* of X*,
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Using this notation we shall discuss the minimum problem of
a real-valued function f(x) defined on X. For the conjugate functions
Theorem 13 can be formulate as follows:

THEOREM 13%. The equality
P @)+ @) = <@o yo>  or F () +1 (@) = <@o, 5>
is valid if and only if zyedf* (yo) or wyedf* (47), respectively.
Proof. Suppose that the first equality is satisfied. Then, in virtue

-of the definition of the algebraic conjugate function, we have -

F* (wo) = <y, ?/u)“f* (Yo) = <Zo, ?/)"’f*(?/)

for all y of Y. Hence, it follows that az,edf* (y,). If @edf™ (y,), then
(g, Y>—F" () < <@, Yo>—F"(y0) for all y of ¥ and, consequently,

f**(mo) = s‘;PKWo: y>—f* (D)} = @o, YO~ (W0).

The proof of the second assertion concerning the case where X ig
a linear topological space is exactly the same. )

Let us remark that in all cases where X is a locally convex linear
topological space the condition of continuity of f can be replaced by the
lower semi-continuity of the convex function f, since we then have
f** =1, in virtne of Remark 9b.

TEEOREM 14. If f(z,) is a minimum of f(x) on the linear space X,
then the algebraic conjugate f* satisfies the following mnecessary condition:
x4 9f*(0).

If ™ (mo) = F,) or Of () # O, then this condition is also sufficient.
Similarly, if f(z,) is @ minimum of f(x) on the linear topological space X,
then the conjugate f* satisfies the following mecessary condition: ,cdf*(0).

If f** (o) = flm,) or Of(z,) # @, then this condition is also sufficient,

Proof. Suppose that f(x) achieves its minimum at the point w,.
It follows from the definition of the algebraic conjugate function that
f*(9) = @o, y>—f(wy) for all y of ¥. Since —f*(0) = inff(a) = f(0),
we obtain f*(y)—f*(0) = <{z,, y> for all y of ¥, i.e. z,edf*(0). Let us prove
the sufficiency. In virtue of Theorem 13* the condition ,e#f*(0) implies
FH0) 1 () = 0. If 9f(2,) # O, then it follows from Corollary 4 that
F** (@) = f(x,). Hence, we obtain f(z,) = —f*(0) = inff(z). The proof
in the case of a linear topological space X is exactly the same. The only
change is the replacing ¥ by X* and the symbol # by 0.

COROLLARY 5. If f is a convex function on a linear space X, then f(x,)
is a minimum of f on X if and only if @,e97*(0). If f is & convex function
on a linear topological space X and f is continuous at x,, then f(x,) is a mini-
mum of f on X if and only if zy<0f*(0). If X is a locally comvew linear topolo-
gical space, then it is supposed that f is lower semi-continuous.
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The proof follows immediately from Theorem 14, taking into account
the fact that if f is convex, then 9f(z,) # @, and if f is convex and con-
tinuous at z,, then 0f(z,) # @, in virtue of Theorem 8 and Remark 9a
or f**(z,) = f(#,), by Remark 9b.

Let us observe that in virtue of (57) we infer that

relation y,<O0f(z,) implies e f*(y,),
relation vy <0f (x,) implies ©,edf* (y7).

It ™ (m) = flwo) or Bf(m,) # @, 0f(m,) # ¥, then the opposite
implication is also true, in virtue of ‘Corollary 4 and Theorem 13*

Thus, Corollary 5 says that if f is a convex function on a linear space
X, then the following three relations are equivalent: f(z,) is a minimum
of f on X; 0edf(w,) and z,<df*(0). Analogously, if f is a convex function
continuous at @, on a linear topological space X, then the following three
relations are equivalent: f(z,) is a minimum on X; 0 df(x,) and 2, <af* (0).
If X is a locally convex linear topological space, then f is assumed to be
lower semi-continuous on X,

The existence of continuous Lagrangian multipliers in the duality
theorem for programming in linear topological spaces is obtained in
section 7 under the assumption that the ordering convex cone has certain
structural properties. This result is proved on the basis of Corollary 1%
We shall now investigate the sane problem in the case where no restrictions
are made coneerning the ordering convex cone. Thus, necessary and suffi-
clent conditions are obtained in virtue of the dnality theorem based on
Theorem 9.

Let X be a locally convex linear topological space with an ordering
relation defined by the convex come K. The functions M () and (y")
are determined by relations (35) and (37), respectively.

Lmyma 5. The linear continuous functional vy s a Lagrangian maul-
tiplier if and only +f 0 <dM*(yF). '

Proof. Buppose that y; is a Lagrangian multiplier, i.e.

j?(f{f(’“)* <g(uw), 45>} = sup it {f(u)— (g(u), y*>}.

V=0 uelr

It follows from the proof of Theorem 9 thai

if y* is non >0,
") iyt >0,
Thus, in virtue of (37) we obtain

M (") =

—M(y5) = —p(y}) = sup{—p(y*)} = sup {—M"(y")},
e o
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ie. —M*(y;) = M*™(0). Hence, we conclude, by Theorem 13*, that
0<0M* (y3).

Suppose now that 0edM*(yy). Then using again Theorem 13* we
obtain — M*(yy) = M*(0). But it follows from the prootf of the necessity
that the last relation and the assertion that y; is a Lagrangian multiplier
are equivalent.

‘We are now in a position to formulate the following

CRITERION oj' THE BEXISTENCE OF LAGRANGIAN MULTIPLIERS; If
OM(0) # @, then every y; <dM(0) is a Lagrangian multiplier. If 3 (0)
= M(0) and J (x) is convem, then there exists a Lagrangian multiplier if
and only if M (0) = @.

Proof. Suppose that 9 (0) is not empty. Then y;<9M (0) implies
00 M*(y;) and, in virbue of Lemma 5, y; is a Lagrangian multiplier.
Suppose now that 4} is a Lagrangian multiplier, then 0edM™*(y;) and,
by Theorem 13, M*(y;)-+M**(0) = 0. But in virtue of Theorem 9 we
have M**(0) = *(0) = M(0). Thus, we obtain M*(y;)-+M(0) =0.
Hence, we conclude, by Theorem 13, that y; «dM (0) 5 @.

Let X and U be two real linear spaces. For the real-valued function

A f(z, u) defined on the product space X X U, the point (;vm u,) is called

a saddle-point of f if the following relation is satisfied:
(88)  f(@y, w) < f(@y, ) < fl®,uo) for all # of X and w of U.

For fixed # of U, the linear functional y,e¥ defined on X is called
the partial algebraic subgradient of f,(x) = f(z, w) at the point (z, u)
if the following relation holds:

Fl@, u)—f(@y, ) = {o—p,yo> for all & of X.

The set of all partial algebraic subgradients of f(z,u) at the point
(2, u) is called the algebraic partial subdifferential of f(z, u) at the point
(@, u) and it is denoted by 9,f(%,, »). If X is a linear topological space,
then the partial subdifferential 8,f(%,, #) can be introduced in the same
way through replacing ¥ by X*. Analogously, for fixed # of X, one can
introduce the algebraic partial subdifferential @,f(,u,) of f(z, u) at
the point (#, u,) and the partial subdifferential 9,f(,%,) of f(w,.u) at
the point (z, u,). Similar notions ean be introduced for the conjugate
functions. Put

Fly,w) = su;i{<w,y>—f(w,u>} for y of ¥,

falz, ) = sup {<u,v>+f(z,w)} for v of v,

uedomyyf
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where T is the linear space of all linear functionals defined on U. For
fixed u of U, ¥, of ¥ and w, of X, 2,97y (¢, %) means that

Falyy @) —Fulyo; w) = @, y—yo>  for all y of V.
Similarly, #,e0,fy(yy, %) means that
", W —falyy, w) = @, y*—y;>  for all y* of X*.
Analogously, for f;(z, ), u,cd,fs (4, v,) means that
fo(@, 0)—f2 (@, v) = Cug, v—2,>  for all v of V.
Similarly, u,e0,fs (2, v;) means that
Fo @y o) —fa (3, 05) = oy 0 — 5> for all o* of T*,

where U* denotes the linear space of all continuous linear functionals
on the linear topological space U. Let us observe that f3 (z, v) is actually
the algebraic conjugate of the function — f(#, u) for fixed z instead of
f(@, u). We uge this notation, since we are interested in the maximum
with respect to u. In virtue of Theorem 14 we obtain the following

TEmOREM 15. If the point (g, u,) 45 @ saddle-point of the function
f(@, u), then the following necessary conditions are satisfied: wy €9,y (0, uy)
and uyed,fr (g, 0).

If O.f (g, ue) = @ and 9, (2, u)) = G or if f(@, u) is convew with
respect to & and concave with respect fo w, then the necessary conditions are
also sufficient. If X and U are linear topological spaces, then the following
conditions are mecessary: ,<d,f*(0, u,) ond “thy €0, (24, 0). ‘

If 0.1 (20, we) # @ and 0,f(my, wy) = B or if f,(2) = f(=, u) is conver
and continuous at @, and f,(u) = f(w,u) is concave and continuwous at Ugy
then the necessary conditions are also sufficient. If X and U are locally
conves linear topological spaces, then the continuily condition is replaced
by the lower semi-continuity of f,(x) and Jo(u) on X and U, respectively.

Proof. Since f(w,,u,) minimizes fl@,w) on X and maximizes
(@, w) on U, the proof immediately follows from Theorem 14 and
Corollary 5.

For the function f(z, u) let us define
(59) 9y, v) = sup {Cu, v)—fu(y,u)}

uedomyyf

= S‘U.p inf {f(w7 u)+<:“:'u>_‘<myy>}'

uedomy;f zedomyf
Then we have

(60)  9ly, 0) = supint{— o, y>+f(o, W} = sup{—fi(y, w)} = —h(y).
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Put
{61) k(v) = g(0,0) = sup{<u, v3—f3(0, w)} = [£3(0, )]*(v).
u
THROREM 16. If (w4, uo) is o saddle-point of f(z, u), then the following
conditions are mecessary:
(62) ZoePh(0)  and  wu,e0%(0).

If flm, w) is comvex with respect to @ and concave with respect to y
then the necessary conditions are also sufficient. If X and U are linear
topological spaces, then the following conditions are necessary:

(63) @oc0h(0)  and  1y<0k(0).

If f(@, w) is convew with respect to x and concave with respect to u and,
in addition, f,(x) = f(x,u) is continuous at z, and fi(0, u) is continuous
at w,, then necessary conditions (63) are also sufficient.

Proof. We shall prove that conditions (62) are necessary. It follows
from the second. inequality of (59) that :

Fu(0,u) = sup{—f(z, )} = —f(@,, u,)-

Since f(wy, w) -1 (0, u) > {0, 2,> =0, it follows from the first
inequality of (58) that

f:(oy w) = —f(@g, u) 2 —f(e; %)
Thus, we obtain
B(0) = inffy (0, u) = fi(0, u)) = —f(y, up)-
Hence, it follows, in virtue of (60), (58),
—h{y) = g(y, 0) = supinf{—<w, y>+f(x, u)}
U x
< sup{— @y, Yo+ (%, W)} = — Loy YO+ (@0, %)
= — (@0, Y~ 1(0).

Thus
(64) h(y)—h(0) = <mo, 4>, L. @medh(0).

Similarly, we obtain in virtue of (59), (58),
k(v) = g(0,v) = supinf{<u, v>+f(z, u)}

= int{<uy, v>-+F(@, %)} = <ty Y+ f (%o, %) -
P
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But, in virtue of (61), k(0) = —h(0) = f(%,, %,). Hence, we obtain
(65) B(0)—B(0) = (g, >,  i.e. teedk(0). '

Let us prove that conditions (62) are sufficient. Since the algebraic
conjugate function f}(y, 1) is convex, by Lemma 4, it follows from The-
orem 8 and (61) that

Ful0, u) = SLIP‘K%, v>—[ful0, )T (0)}
= Sup {Ctto, > =9 (0; 0)} = SUP {Cto, v)—h(0)} < — K (0),
in virtue of (65). Thus, we have
Fa(0, ) = —&(0) = h(0).
Since fy (¥, w) > h(y), relation (64) implies
(66) Faly, w)—F0 (0, u) = <@o5 4>

for arbitrary (y, ). Since f(z, u) is convex with respect to =, we obtain,
by Theorem 8,

Sl@y u) = SBP{(%: W—fuly, w}< _f:;(oa Up) 5

by relation (68). For = u,, the last relation yields f(a,, #,) = — (0, u).
Hence, f(@, 1) < —f(0, %) = f(@a, wp). Sinee fy (0, u,) = —intf(z, %),
we have :

flwy we) = —f (0, Ug) = [, )

for arbitrary # of X and relation (58) is satisfied.

If X and U are linear topological spaces, then replacing Theorem 8
by. Remark 9a the proof remains exactly the same.

In the case where (X, Y) and (U, V) are two pairs of dual spaces,
Theorem 16 is proved by Joffe and Tihomirov ([71, p. 80).

Let us observe that the functions h(y) and k(v) involved in the
assumptions of Theorem 16 are not symmetric with regard to the variables
# and u. We shall show that it is possible to formulate a theorem on

saddle-points of f(z, u) so that the corresponding functions will be gym- -

metric. For this purpose let us put

(67) f:(w7'¢7) = gup f{<u7”>’|‘f(x7“)}1 . veV, |
. UE OmU
68 = inf f; = i

Ip the case of linear topological spaces X and U the space V of linear
functionals is replaced by U™
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THEOREM 17. If (x4, u,) is a saddle-point of f(z, u), then the following
conditions are necessary:

(69) ' 2,e9h(0)  and  ueed1(0).

If f(w, u) is convex with respect to & and concave with respect to u, then
the necessary conditions are also sufficient. If X and U are linear topological
spaces, then the following conditions are mecessary: ’

(70) Lsedh(0)  and  u,<00(0).

If f(z, w) is convem with respect to x and concave with respect o u and,
in addition, f,(x) = f(x,w) is continuous at x, and f,(v) = f(z, u) is
continuous at u,, then the necessary conditions (69) are also sufficient.

Proof. Tf (#,, u,) is a saddle-point of f(x, u), then using the same
argument as in the proof of Theorem 16 we infer that condition (64)
is satisfied. Repeating this argument for the function — f(x, «) we obtain

(71) Uy eDL(0), . Lw)—1(0) = Citg, 03

. The proof that conditions (69) are satisfied in the case of linear
topological spaces X and U is exactly the same. Let us prove that con-
ditions (69) are sufficient. If condition (64) is satisfied, then we have,
by (55), for all ¥, u,

Foy, w)—h(0) = o, y>, L& (Lo Pd—Fuly,u) < —1(0).
Hence, using Theorem 8 we obtain
sgp{<mo,y>—fff(y, 4)} = f(mo, w) < —h(0).
In particular, we have for ¥y =0
(72)  —f5(0,u) < f(z0, w) < —h(0) for all uw of T.
Thus, we have, by (53) and (67),
— R(0) < fz (2, 0) < —R(0)
and, by (72),
(73) —F2(0, we) < F (%, o) < —R(0) = fz (20, 0).
On the other hand, relation (71) implies, by (68),
(@, 0)—10) > (g, vy, Le. {ug, ) —fz (@, v) < —1(0)
for all &, v. Hence, applying Theorem 8§ to the last inequality we obtain
sup {Ctg, V> —fa (2, 0)} = —F(&, 1) < —1(0)

Studia Mathematica XXXVI.2
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for arbitrary z and v, and for » = 0 'we have
—fa (@, 0) < —f(@, up) < —1(0).
Hence, it follows from (68) that
—1(0) < £2(0, ue) < —1(0).

Thus, we infer from (73) that
(74) U0) = —£al0, 1) < f(o, o) < f3 (%0, 0) = —1(0).

Hence, it follows from (68) and (60) that

infsupf(z, u) = 1(0) < — h(0) = supinff(z, u).

Since the opposite inequality is evident, we conclude that 1(0)
= —h(0) and

_f:;(oa o) = f (g, o) =_f;(ﬂﬂ0, 0).
Thus, inequalities (58) result from the relations

—ful0,u0) = isz(my’“o) and  fz(wy, 0) = supf(z,, u).

If X and Y are linear topological spaces, then on replacing Theorem 8
by Remark 9 the proof remains exactly the same.

Remark 10. If X and U are locally convex linear topological spaces,
then. we assume that f, (@) = f(z, ») and f,(4) = f(2, u) are lower semi-
contm.uous on X and U, respectively. The proof remains without change
by using Remark 9. This remark is valid for Theorem 16 as well as for
Theorem 17.

) Other properties of conjugate functions as well as some applica-
tions will be discussed separately.

APPENDIX

_Let X be. a linear space containing the convex cone K. The order
rela.t19n > defined in X by the cone K means that > ¥y (y < ) if and
f)]lly‘lf L—y eK, where @, yeX. Thus, # > 0 is equivalent to zeX. If ¥
1s a linear functional on X, then 4* > 0 means that y* (@) = 0 for all z of K.

Definition ([8], p. 410). ¥ M is the subset of the linear space X,

- then pe M is called an internal point of M if, for each #¢X, there exists
an &> 0 such that p+4-dwe M for |6) < .

Basic SEPARAT‘ION THEOREM ([3], p. 412). Let M and N be disjoint
conves s‘ub&ets of a linear space X, and let M have an internal point. Then
there emists a mon-zero linear functional I which separates M and N.

Separation theorem 167

THE SEPARATION THEOREM IN LINEAR TOPOLOGICAL SPACES ([3],
p. 417). In a linear topological space, any two disjoint convex sets, one of

which has an interior point, can be separated by a non-zero continuous linear
fumctional.

Definition ([3], p. 26). A partially ordered set (D, <) is said to be
directed if every finite subset of D has an upper bound. A mapf: D — X
of a directed set D into a set X is called a generalized sequence of elements
in X. I f: D — X is a generalized sequence in the topological space X,
it is said to comverge to the point p in X, if to every neighbourhood N
of p there corresponds a doeD such that d > d, implies f(d)eN.

Definition. A convex set W in a real linear space L is called a
wedge if tW < W for arbitrary ¢> 0.
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