

STUDIA MATHEMATICA, T. XXXVII. (1970)

A problem on Kronecker sets

by

N. TH. VAROPOULOS (Orsay)

0. Introduction and notation. Let Γ be throughout a locally compact abelian group (the model we have in mind is $\Gamma = R$). We denote by $0 = 0_{\Gamma}$ the zero element of Γ , by \mathfrak{R}_{Γ} the $Nh\partial$, filter of 0_{Γ} in Γ , and by $\hat{\Gamma}$ the group of continuous characters of Γ , i.e. the continuous homomorphisms from Γ to $T = R \pmod{2\pi}$.

Let E be a locally compact space. We denote by S(E) the group of continuous complex-valued functions on E whose modulus is identically equal to 1; if $\varepsilon \in E$ is some fixed point, we put

$$S_{\varepsilon}(E) = \{ f \in S(E); f(\varepsilon) = 1 \}.$$

When $E \subset \Gamma$, we denote by SU(E) the subgroup of S(E) consisting of those functions on E which are uniformly continuous (with respect to the canonical group uniformity of Γ restricted on E).

Definition 1. Let $E\subset \Gamma$ be a closed subset of Γ . We say that E is a *Kronecker set* if for every $\varepsilon>0$ and every $f\in SU(E)$ there exists some $\gamma\in \hat{\Gamma}$ such that:

$$\sup_{e\in E}|f(e)-\chi(e)|\leqslant \varepsilon.$$

Compact Kronecker sets have been extensively studied [3]. In this note we shall study some properties of Kronecker sets with special emphasis on the possible non-compactness of the set which gives rise to some additional complications.

Definition 2. We say that an arbitrary subset $E \subset \Gamma$ is independent if for any $n \geqslant 1$ and any choice of n distinct points $e_1, e_2, \ldots, e_n \in E$ we have

$$m_j \in \mathbb{Z} \ (1 \leqslant j \leqslant n), \quad \sum_{j=1}^n m_j e_j = O_{\Gamma} \Rightarrow m_j = 0 \ (1 \leqslant j \leqslant n).$$

It is well known and obvious that every Kronecker set is independent but that the converse is in general false (cf. [3] and [5]).

In this note we shall prove the following

Kronecker sets

97

THEOREM 1. Let $E \subset \Gamma$ be a totally disconnected Kronecker set of the locally compact abelian group Γ . Let us suppose that Γ is metrisable and countable at infinity, and let $\gamma \in \Gamma \setminus E$ be such that $E \cup \{\gamma\}$ is an independent set of Γ . Then the set $E \cup \{\gamma\}$ is a Kronecker set of Γ .

In [7] we have already proved a special case of Theorem 1 when E is in addition supposed compact. Here we shall combine the ideas in [7] with a technique due to Ryll-Nardzewski [6] to obtain the general result.

1. Reduction to superkronecker sets. Before we proceed any further we shall make some easy remarks on Kronecker sets.

Definition 3. Let $E \subset \Gamma$ be a closed subset of the locally compact abelian group Γ such that $0 = 0_{\Gamma} \epsilon E$; we say that E is a superkronecker set if for every $\epsilon > 0$ and every $f \epsilon S_0(E)$ there exists some $\gamma \epsilon \hat{\Gamma}$ such that

$$\sup_{e\in E}|f(e)-\chi(e)|\leqslant \varepsilon.$$

We prove now the following

LEMMA 1. Let $E \subset \Gamma$ be a Kronecker subset of Γ , let us suppose that Γ is metrisable and countable at infinity and let $\{e_n \in E\}_{n=1}^{\infty}$ be a sequence of points of E such that $e_n \xrightarrow{}_{n \to \infty} \infty_{\Gamma}$ (i.e. tends to the infinity of the locally compact space Γ); let further $\{e'_n \in E\}_{n=1}^{\infty}$ be another sequence of points of E and $K \subset \Gamma$ be a compact subset of Γ such that

$$e_n - e'_n \in K \quad \forall n \geqslant 1.$$

Then

$$e_n - e'_n \underset{n \to \infty}{\longrightarrow} 0_{\Gamma}.$$

Proof. We may suppose (by extracting a subsequence if necessary) that there exists some $x \in K$ and some $N \in \mathfrak{N}_F$ such that

And we shall prove, under the addition assumption (1), that $x=0_{I}$. This will give the lemma at once.

Towards that end let us suppose that (1) is verified and that $x \neq 0_{\Gamma}$. For any $\varepsilon > 0$ then, and any two sequences $\{x_n \epsilon T; x'_n \epsilon T\}_{n=1}^{\infty}$ of complex numbers of modulus 1, we can find $\chi \epsilon \hat{\Gamma}$, a character, such that

 $(2) \qquad |\chi(e_n)-x_n|\leqslant \varepsilon, \, |\chi(e_n')-x_n'|\leqslant \varepsilon \quad \text{ for all } n\geqslant 1 \text{ large enough};$ for any fixed $\chi\,\epsilon\,\hat{\varGamma}$, on the other hand, we have

(3)
$$\frac{\chi(e_n)}{\chi(e_n')} = \chi(e_n - e_n') \underset{n \to \infty}{\longrightarrow} \chi(x).$$

But since ε and the complex numbers x_n , x_n' are arbitrary, (2) and (3) are incompatible and this produces our required contradiction.

Definition 4. Let $E \subset \Gamma$ be a closed subset of Γ and let $S \subset E$ be closed subset of E. We then say that S is a *spine* of E if there exists $\{N_s \in \Re_\Gamma; s \in S\}$, a family of compact $Nh\partial s$, of 0_Γ in Γ and $\Omega \in \Re_\Gamma$ some other $Nh\partial$, of 0_Γ , such that:

$$(i)$$
 $N_s \rightarrow 0_T$

(as s runs through the filter of complements of finite subsets of S);

(ii)
$$\bigcup_{s \in S} s + N_s \supset E;$$

(iii)
$$(s_1 + N_{s_1}) \cap (s_2 + N_{s_2}) = \emptyset, s_1 \notin s_2 + \Omega, \quad \nabla s_1, s_2 (s_1 \neq s_2).$$

For every $e \in E$ we denote by $s(e) \in S$ the unique element of E for which $e \in s(e) + N_{s(e)}$.

It follows from Lemma 1 that every totally disconnected Kronecker set of a metrisable and K_{σ} group has at least one spine.

Let now $E \subset \Gamma$ be an independent subset of Γ , let $S \subset E$ be some spine of E and let $\{N_s \in \mathfrak{N}_r; s \in S\}$ be compact $Nh\partial s$ of zero associated with that spine S; we then define a mapping

$$a_s \colon E \to \Gamma$$

by setting

$$a_s(e) = \begin{cases} e & \text{if } e \in S, \\ e - s(e) & \text{if } e \in E \setminus S \end{cases}$$

It is then clear that

$$(4) \overline{\alpha(E)} \subset \alpha(E) \cup \{0_{\Gamma}\} = E_{S}$$

(the bar indicates of course topological closure in Γ).

Let further $f \colon E \to T$ be an arbitrary complex function defined on E such that $|f(e)| = 1 \nabla e \in E$. We define then

$$f_S \colon E_S \to T$$

by setting

$$f_S(0) = 1 \,,$$
 $f_S(a(e)) = egin{cases} f(e) & ext{if } e \, \epsilon \, S \,, \ \\ rac{f(e)}{f(s(e))} & ext{if } e \, \epsilon \, E \, igwedge S \,. \end{cases}$

Using the definition of a spine and the independence of \boldsymbol{E} we see at once that

(5)
$$f \in SU(E) \Leftrightarrow f_S \in S_0(E_S)$$

7

and that further the correspondence $f \rightarrow f_S$ is a 1-1 correspondence between SU(E) and $S_0(E_S)$.

We have then

PROPOSITION 1. Let $E \subset \Gamma$ be an independent closed subset of Γ and let S be some spine of E and let E_S be defined as in (4). Then E is a Kronecker set if and only if E_S is a superkronecker set.

Proof. It is an immediate consequence of (5) and therefore left to the reader.

2. The S(E) group. Let us suppose throughout in this section that Eis a locally compact, totally disconnected countable at infinity space and let us fix some point $\varepsilon \in E$ of that space. We shall topologise then S(E)with the uniform on compact topology and we shall identify T with the closed subgroup $T(E) = \{f \in S(E); f = \text{constant}\}\$ of constant functions on E. It is then clear that $S_{\epsilon}(E)$ is also a closed subgroup of S(E) and that we have the topological decomposition

$$S(E) = S_{\varepsilon}(E) \oplus T(E)$$

which implies at once the following

Proposition 2. Every continuous character of $S_{\epsilon}(E)$ (i.e. a continuous homomorphism from $S_{s}(T)$ to T) can be extended to a continuous character of S(E).

We have also

PROPOSITION 3. Let $\theta: S(E) \to T$ be a continuous character of S(E), then there exist finitely many points $e_1, e_2, \ldots, e_p \in E$ $(p \ge 0)$ and finitely many integers $m_1, m_2, \ldots, m_n \in \mathbb{Z}$ such that

$$\theta(f) = (f(e_1))^{m_1} \dots (f(e_p))^{m_p} \quad \forall f \in S(E)$$

(a vacuous product is interpreted as 1).

Proof. A special case of proposition 3 when E is in addition supposed compact has been proved in [7]. But the general case above is an immediate consequence of the compact case of [7] by the very definition of the uniform in compacta topology; the details are left to the reader (the countability at infinity of E is not necessary here).

We have finally

PROPOSITION 4. Let $\theta \colon S_{\varepsilon}(E) \to T$ be a Borel character of $S_{\varepsilon}(E)$ (i.e. a character and a Borel function); then there exists finitely many points $e_1, e_2, \ldots, e_n \in E \ (p \geqslant 0)$ and finitely many integers $m_1, m_2, \ldots, m_n \in \mathbb{Z}$ such that

$$\theta(f) = (f(e_1))^{m_1} \dots (f(e_p))^{m_p} \quad \forall f \in S_s(E)$$

(a vacuous product is interpreted as 1)

3. Proof of the Theorem. We shall prove in this section the following Proposition 5. Let $E \subset \Gamma$ be a totally disconnected superkronecker set of Γ . Let us suppose that Γ is metrisable and countable at infinity and let $\gamma \in \Gamma \setminus E$ be such that the set

$$\{\gamma\} \cup (Eackslash\{0\})$$

is independent. Then the set $E \cup \{\gamma\}$ is superkronecker.

Proposition 5 then, together with proposition 1, at once imply Theorem 1.

Before we give the proof of proposition 5 we shall prove the following Lemma 2. Let $E \subset \Gamma$ be a totally disconnected superkronecker set and $x \in \Gamma$ be some fixed point of Γ ; let us suppose that Γ is metrisable and countable at infinity and let us suppose further that for every $\epsilon>0$ there exists some $\delta > 0$ such that

$$\chi \in \hat{\Gamma}, \quad \sup_{e \in E} |\chi(e) - 1| \leqslant \delta \Rightarrow |\chi(x) - 1| \leqslant \varepsilon.$$

Then $x \in Gp(E)$ (= the group generated in Γ by E).

Proof. Using our hypothesis we can define a (not necessarily continuous for the uniform on compacta topology) character

(6)
$$\theta \colon S_0(E) \to T$$

by setting

by setting
$$\theta(f) = \lim_{n \to \infty} \chi_n(x),$$

when $\mathfrak{X} = \{\chi_n \, \epsilon \, \hat{\varGamma}\}_{n=1}^\infty$ is a sequence of characters such that

(8)
$$\sup_{e \in E} |\chi_n(e) - f(e)| \underset{n \to \infty}{\longrightarrow} 0.$$

Indeed, using our hypothesis it is easy to verify that the limit in (7) always exists and is independent of the particular sequence $\mathfrak X$ chosen in (8), so that $\theta(f)$ is well defined. The verification that θ is multiplicative is immediate.

We shall prove next that θ in (6) is a Borel mapping (for the uniform on compacta topology of $S_0(E)$).

To prove this it suffices to show that G, the graph of θ in $S_0(E) \times T$,

$$G = \{(f, t) \in S_0(E) \times T; t = \theta(f)\} \subset S_0(E) \times T,$$

icm[©]

is an analytic set (in N. Bourbaki terminology G is "un ensemble souslinien" [2]) of the metrisable complete separable space $S_0(E) \times T$. A theorem of Kuratowski then implies that θ is a Borel mapping [4]. To prove that G is an analytic set we consider for every $\varepsilon > 0$ the set

$$\varDelta_{\varepsilon} = \{(f, t, \chi) \in S_0(E) \times T \times \hat{\Gamma}; \sup_{e \in F} |f(e) - \chi(e)| \leqslant \varepsilon, |\chi(x) - t| \leqslant \varepsilon\}$$

which is clearly a Borel subset of the space $S_0(E) \times T \times \hat{\Gamma}$ (topologised with the cartesian product topology of the uniform on compacta topology of $S_0(E)$ and the natural topologies on T and $\hat{\Gamma}$) which is metrisable complete and $2^{\rm nd}$ countable ("de type dénombrable" in N. Bourbaki's terminology), i.e. "un espace polonais".

Let further

$$\pi: S_0(E) \times T \times \hat{\Gamma} \rightarrow S_0(E) \times T$$

be the canonical projection. It is then clear that

$$G = \bigcap_{n=1}^{\infty} \pi(\Delta_{1/n}) \subset S_0(E) \times T$$

and this proves our assertion (cf. [2]).

Proposition 4 tells us then that there exist finitely many points $e_1, e_2, \ldots, e_p \in E \ (p \geqslant 0)$ and finitely many integers $m_1, m_2, \ldots, m_p \in \mathbb{Z}$ such that:

(9)
$$\theta(f) = (f(e_1))^{m_1} \dots (f(e_n))^{m_p}$$

(with the usual convention for empty products).

But if we substitute $f = \chi|_E$ for some $\chi \in \hat{\Gamma}$, we simply obtain

$$\chi(x) = \chi\left(\sum_{j=1}^{p} m_{j} e_{j}\right) \nabla \chi \epsilon \hat{\Gamma}$$

which implies that

$$x = \sum_{j=1}^{p} m_{j} e_{j} \epsilon G p(E)$$

and proves our Lemma.

Proof of Proposition 5. Clearly, to prove proposition 5 it suffices to show that for every $e^{i\theta} \epsilon T$ we can find a sequence $\mathfrak{X}_{\theta} = \{\chi_n \epsilon \hat{I}\}_{n=1}^{\infty}$ such that

$$\sup_{e\in E} |\chi_n(e)-1| \underset{n\to\infty}{\to} 0, \quad \chi_n(x) \underset{n\to\infty}{\to} e^{i\theta}.$$

Suppose that this was not possible. It would follow then that there exists $q \ge 1$ some positive integer such that for every sequence $\mathscr{I} = \{\chi_n \in \hat{I}\}_{n=1}^{\infty}$ we have

$$\sup_{e\in E}|\chi_n(e)-1|\underset{n\to\infty}{\to}0\Rightarrow\chi_n(qx)=\big(\chi_n(x)\big)^q\underset{n\to\infty}{\to}1,$$

i.e. that $\chi_n(x)$ "converges to $Z(q) \subset T$ " the set of q^{th} roots of unity of T (cf. [7]). But this contradicts the hypothesis for by Lemma 2 it implies that $qx \in Gp(E)$. The proof is complete.

References

- [1] S. Banach, Théorie des opérations linéaires, Warszawa 1932, p. 23, Ch. I, Th. 4.
 - N. Bourbaki, Topologie générale, Ch. 9, § 6, No. 2.
- 3] J.-P. Kahane, Approximation par des exponentielles imaginaires; ensembles de Dirichlet et ensembles de Kronecker (to appear).
- [4] C. Kuratowski, Topologie, Vol. I, 2nd ed, Warszawa 1948, p. 398, § 35, V.
- [5] W. Rudin, Fourier analysis on groups, Interscience No. 12 (1962), Ch. 5.
- C. Ryll-Nardzewski, Concerning almost periodic extensions of functions, Coll. Math. 12 (1964), p. 235-237.
- [7] N. Th. Varopoulos, C. R. A. S. 268 (A), p. 954-957.

Reçu par la Rédaction le 11. 10. 1969