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A problem on Kronecker sets
by

N. TH. VAROPOULOS (Orsay)

0. Introduction and notation. Let I" be throughout a locally compact
abelian group (the model we have in mind is I" = R). We denote by
0 = 0, the zero element of I', by R, the Nhd, filter of 0, in ', and by r
the group of continuous characters of I', i.e. the continuous homomorphisms
from I to T = R(mod2x). .

Let E Dbe a locally compact space. We denote by S(E) the group
of continuons complex-valued functions on ¥ whose modulus is identically
equal to 1; if ¢eF is some fixed point, we put

8.(B) = {f<8(H); f(e) =1}.

When F < I', we denote by SU(E) the subgroup of S(Z) consisting
of those functions on F which are uniformly continuous (with respect
to the canonical group uniformity of I' restricted on E).

Definition 1. Let E = I' be a closed subset of I We say that ¥
is a Kronecker set if for every ¢ > 0 and every feSU(E) there exists some
y el such that: ' ' '

sup|f(e)— ()l < &
ceE .

Compact Kronecker sets have been extensively studied [3]. In this
note we shall study some properties of Kronecker sets with special
emphasis on the possible non-compactness of the set which gives rise
to some additional complications.

Definition 2. We say that an arbitrary subset B < I'is independent
if for any m 3> 1 and any choice of 7 distinet points ey, €sy ...y €, ¢ B We
have

mpeZ (1<j<m), D me=0r=m=0(1<j<n).
i=1
Tt is well known and obvious that every Kronecker set is independent

but that the converse is in general false (ef. [3] and [5]).
In this note we shall prove the following
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TeBOREM 1. Let B < I' be a totally disconnected Kromecker set of the
locally compact abelian group I'. Let us suppose that I" is meirisable and
countable at infinity, and let v I E be such that B U {y} is an independent
set of I'. Then the set B U {y} is a Kronecker set of I".

In [7] we have already proved a special case of Theorem 1 when F
is in addition supposed compact. Here we shall combine the ideas in [7]
with a technique due to Ryll-Nardzewski [6] to obtain the general resuls.

1. Reduction to superkronecker sets. Before we procoed any further
we shall make some easy remarks on Kronecker sets.

Definition 3. Let H < I' be a closed subset of the locally compact
abelian group I" such that 0 = 0.¢H; we say that B is a superkronecker
set if for every s > 0 and every feS,(F) there exists some xsl:' such that

sup |f(e)— z(e)| < e.
el

We prove now the following

Lemva 1. Let F < I' be a Kronecker subset of I', let us suppose that I"
is metrisable and countable at infinity and let {e,< B}, be a sequence of
points of B such that e, — oo (i.e. tends to the infinity of the locally compact

space I'); let further {e, e B}, be another sequence of poinis of E and K < TI"
be a compact subset of I' such that

en—-e'nsK Va>1.
Then

6,— 6 0
—, —> .
n n n—>00 I

Proof. We may suppose (by extracting a subsequence if necessary)
that there exists some zeK and some N e, such that
e,—e, = vek
(1) ' ' n n n—>-(ao ’
bn,~— 6n, i, Bn1~€n2¢N, Ony — ny N, myym =1, n # .
And we shall prove, under the addition assumption (1), that # = 0.
This will give the lemma at once.
Towards that end let us suppose that (1) is verified and that # 0.
For any ¢> 0 then, and any two sequences {@,T'; 4, T}, of complex

numbers of modulus 1, we can find yeI', a character, such that
2) 1x(en) —@al < ey I7(6) —a,] <& for all n>1 large enough;

for any fixed xef’, on the other hand, we have

(3) ZE:,W)) = x(6,—6,) e X (®).
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But since ¢ and the complex numbers z,, x, are arbitrary, (2) and (3)
are incompatible and this produces our required contradiction.

Definition 4. Let E < I' be a closed subset of I' and let S< F
be closed subset of E. We then say that § is a spine of E if there exists
(N,eMp; se8}, a family of compact Nkds, of Op in I' and QN some
other Nhd, of 0, such that:
@) N, —0p
(as s runs through the filter of complements of finite subsets of 8);
(i) U s+, > 5

seS

(iif) (31+lvsl) n (32'}'1\732) =0,5,¢8:+8, T 8,8:(5 F5).

For every e<E we denote by s(e) ¢ 8 the unique element of ¥ for which
ees(e)+ Ny )

Tt follows from Lemma 1 that every totally disconnected Kronecker
set of a metrisable and K, group has at least one spine.

Let now E = I' be an independent subset of I', let § = E be some
spine of B and let {N,eMN,;se8} be compact Nhis of zero associated
with that spine S; we then define a mapping

ag: E—>1T,
by setting
e if eeS,
%@ =1, 500 i ecENS.

It is then clear that

(4) a(B) = a(E) V {0r} = Bs

(the bar indicates of course topological closure in I'). ) .
Let further f: B — T be an arbitrary complex function defined on
E such that |f(e)] = L veeE. We define then
fet Bg =T
by setting
fs(0) =1,
fle) if eel,
Fsla(e) = f(e)
flse)
Using the definition of a spine and the independence of E we see at
once that
(5) fe8U(E) < fse8o(Hs)
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and that further -the correspondence f —fg is a 1-1 correspondence
between SU(E) and 8,(Eg). : ‘ -
) ‘We have then :

PrOPOSITION 1. Let B < I be an independent closed subset of I' and
let S be some spine of B and let Eg be defined as in (4). Then B is a Kro-
necker set if and only if Eg is a superkronecker sel. - : :

Proof. It is an immediate .consequence of (5) and therefore left to
the reader.

2. The S(E) group. Let us suppose throughout in this section that B
is a locally compact, totally disconnected countable at infinity space
and let us fix some point ¢« F of that space. We shall topologise then S (F)
with the uniform on compact topology and we shall identify 7' with the
closed subgroup 7 (E) = {f<S(E);f = constant} of - constant functions
on E. It is then clear that S, (F) is also a closed subgroup of §(F) and that
we “have the topological decomposition s )

, S(B) = 8. (B)DT ()
which implies at once the following

PROPOSITION 2. Every contimuous character of S,(E) (i.e. a continuous
homomorphism from S,(T) to T) can be extended to a continuous character
of S(B).

We have also o

PrOPOSITION 3. Let §: S(E) - T be a continwous character of S(E)
then there exist finitely many poinis ey, ey, ..., e, B (p=0) and finitely
many integers My, Ma, ..., myeZ such that vt R

0(f) = (fled)™ ... (fle,))™ ¥V feS(B)
(a vacuous product is interpreted as 1). o

"Proof. A special case of proposition 3 when ¥ is in addition supposed
compact has been proved in [7]. But the general cage above is an immediate
consequence of the compact case of [7] by the very definition of the uniform
in compacta topology; the details are left to the reader (the countability
at infinity of F is not necessary here).

We have finally

ProrosiTioN 4. Let 8: 8,(F) >T be a Borel character of S,(E)
(t.e. @ character and a Borel function); then there exists finitely many points

61y yy e-ny Epe B (D 20) and finitely many integers my, My, ..., Myel
such that

0 = (o™ ... (Fle)fs ¥ feS,(B)

(a vacuous product is interpreted as 1).
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Proof. Sinee E is countable at infinity, S,(B) is metrisable with
the uniform on compacta topology, S.(H) is also of course complete:
Tt. thus follows from a well known theovem of Banach [5] that 6 is
continnous. Our proposition 4 is-then an immediate eorollary of prop-
ositions 2 and 3 put together. '

3..1),1‘00{ of the Theorem. We shall prove in this section the following

PROPOSITION 5. Let B < I' be a totally disconmected superkronecker
set of I'. Let us suppose that I' is meirisable and countable at tnfinity and
let y eI'\E be such that the sei

c PV (ENOY
is independent. Then the set B U {y} is superkronecker.
Proposition 5 then, together with proposition 1, at once imply

Theorem 1.
Before we give the proof of proposition 5 we shall prove the following
TEMMA 2. Let B < I" be a totally disconnected superkronecker set and
wel’ be some fized point of I'; let us suppose thal I' is metrisable and
countable at infinity and let us suppose further that for every &> 0 there
exists some 0> 0 such that

gl suplz(e—11< b = lz@—1<e
e
Then méGp‘(E) (="the group generated in I by E).

Proof. Using our hypothesis we can define a (not necessarily con-
tinwous for the uniform  on- compacta topology): character

(6) 0: Sy(B) ~>T
by setting B -
(D 6( =1if:°xn(m),

when X = {xnej’};’f:l is & ééquencé of characters such that
@) sup |y, (e)—f(&) =2, 0-
e

Indeed, using our hypothesis it is. easy to verify that the limit in
(7) always exists and is independent of the particular sequence £ fahos_en
in (8), so that 6(f) is well defined. The verification that 6 is multlphqa,tu'g
is immediate. ) .

We shall prove next that 6 in (6) is & Borel mapping (for the uniform
on compacta topology of Sy(E)).- -~ C

To prove this it suffices to show that @, the graph of 6 in So(B)xT,

G = {(f, 1) eSy(B) xT5 t =0} = 8(B)xT,
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is an analytic set (in N. Bourbaki terminology @ is “un ensemble
souslinien” [2]) of the metrisable complete separable space S,(E)xT.
A theorem of Kuratowski then implies that 6 is a Borel mapping [4].

To prove that & is an analytic set we consider for every ¢ > 0 the set

A, ={(f, 1 1) 8o B)XT X T; Sﬂp\f(e) z2@) <6 z{@) -1 < &}

which is clearly a Borel subset of the space SO(E)xTxf' (topologised
with the cartiesian product topology of the uniform on compacta topology
of 8,(#) and the natural topologies on T and f) which. is metrisable
complete and 2™ countable (“de type dénombrable” in N. Bourbaki’s
terminology), i.e. “un espace polonais”.

Let further

m: So(BYXTXI — 8,(B)xT

be the canonical projection. It is then clear that

oo

G =M a(dy,) c 8(B)XT

n=1

and this proves our assertion (cf. [27).

Proposition 4 tells us then that there exist finitely many points
€1y sy ..., 6ol (p>0) and finitely many integers my, ms, ..., myeZ
such that:

) 8(f) = (fle)™ ... (fle))™

(with the usual convention for empty products).
But if we substitute f = |5z for some xef’, we simply obtain

»
z(@) = X(Z""’M)VZEﬁ
j=1

which implies that

»
= D me;<Gp ()
j=1

and proves our Lemma.

Proof of Proposition 5. Clearly, to prove proposition 5 it suffices

to show that for every ¢®<T we can find a sequence X, — e
such that : 0 = el

i:g)lxn(e)_lln—_?mo’ Xn(m)n':)meie'
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Suppose that this was not possible. It would follow then that there
exists ¢>1 some positive integer such that for every sequence .5

= {anﬁ}?f;x we have
suplxn (O)—1] = 0 = £,(g2) = (@) 2, 1

n—r00
i.e. that y, () “converges to Z(g) = T the set of ¢™ roots of unity of T
(ef. [7]). But this contradicts the hypothesis for by Lemma 2 it implies
that ¢zeGp(E). The proof is complete.
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