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Since ne N (8*(I+|T1)%), if follows that
(T4 1) Suy (T4 |T)(Se— Sw)y =0 for all weD(|T|S).

Taking # = z—w and recalling that I--|T| is 1-
bt G e e o +|T] is 1-1, we may conclude

((T+1T) S| TI0 = 8 (I+[T))* 8w = 8*(I+ |T))28 = S (I+|T))%a
=8I+ [T)|Tlv = 8*|T|(I+ |T))w.
Thus (iii) of lemma 11 holds. -

13. TerorEM. Let T and S be closed d j
‘ . : ensely defined linear operator
fmeHzlbefrt space H into H. If 8*(I--|T) is closed, then (TS)* ﬁs*;*s
roof. Since I+ |T| is self-adjoint and surjecti * .
is closed, it follows from theorem 1 that uriective and ST
23
SUI+TN) = (8" (T + | 7)) =((I+|T)) 8)".
In particular, (iii) of lemma 11 holds. Hence (TS)* = §*T*
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0. INTRODUCTION

One of the main purposes of this paper is to ‘characterize all the
subspaces of general Banach function spaces admitting contractive pro-
jections onto them, and to extend some of the results when the functions

% This regearch was partly supported under the NSF Grants, GP-8777, GP -15632
and the Air Force Grant AFOSR-69-1647, and was largely carried out while ?he
author was visiting the Mathem. Institut der Universitat, Wien, during the Spring

semester of 1969.
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are also vector-valued. For this, however, it will be necessary to consider
the adjoint spaces and analyze their structure. Consequently, this latter
study oceupies the first chapter, the work there having independent
interest. The projection problem itself will be solved in Chapter II, using
the preceding work. The results can be explained briefly as follows.

Let L? be the subspace of measurable scalar functions f on a general

measure space (£2, X, u) such that o(f) < co, where e(+) is a funection -
norm, Le., (i} it is a norm, (ii) o(f) = o(|f]), and (iii) 0<fi<f,, ae,

implies o(f:) < o(f,). Such a space I? is termed a normed Sunction space,
or, if complete, a Banach funciion space (BFS). (Other names are a nor-
med Biesz space, or a normed Kothe-Toeplitz space.) Recently Gretsky [13]
has analyzed the adjoint space (L°)* of I° and of certain subspaces of
B(L®, %), the space of bounded linear operators on I* to s Banach {or B-)
space 7, assuming (a) p is o-finite, and (b) certain conditions called (I)
and (J) on the norm . The aim of Chapter I, in part, is to complete and
complement [13] without these conditions, to represent B(IL?, &) itself,
and to give some results on the tensor products L'®,% and I°®,%,
where ®, and ®; are the greatest and least crossnorms, [33]. These results
are needed for the work on projections. The basic theory of [20] and [21]
(cf. also [39], Ch. 15), always assumes the o-finiteness of u and a few
of the results (to be used later) will be proved here for a general u.

Briefly then, Chapter I includes the following. After giving a char-
acterization of (L%, the most general conditién for the reflexivity of
L’-spaces is obtained in Section 1.2. Then integral representation of B(L¢, &)
relative to vector measures and some characterizations of (weakly) com-
Dact operators arve given in the next two sections. Tt is then shown that
both I¢ and (IL¢)* enjoy the metric approximation property, i.e., the
identity operator can be approximated uniformly by the degenerate ones
on precompact sets. The final section contains tensor products of I¢ and
a B-space %, subsuming some results in [14]. It is shown that L°®,%
< Ly ¢ W = I°®,%, where L§ is the Lt-space of strongly measurable
Z-valued f on Q, with o(f) = e(If), || being the norm of %, and W
is the closure of weakly measurable Z-valued functions, under a natural
norm. If, in particular, I0 = I?,1 < p < oo, then L!®, % is also.dense
in L% and equality holds if I¢ = I Some of the results of this chapter
were given in [307], without details of proofs.

The projection problem is considered in Chapter II. This seems to
have been first treated in [15] if I® = I* (using certain general theorems
on the injective envelopes of B-spaces), and a more detailed analysis of
the same cage, on a finite Imeasure space, has been considered in 8]
independently of {15]. These results were complemented for the L”-spaces,
with 0 <p < oo in [1], () < oo, and they were extended for the
L®-spaces of Orlicz, for o-finite u, with D (20) < OD(w), w > 0, in [29].
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The result for the L”, p =1, has been extended in ([19], p. 309_)) when
u is o-finite, and this was recently generalized for arbitrary u in [3’6].
The present paper contains all these results, in the context of BFS’ s,
and the final charactorization is given in Theorem 2.10 for general measure
spaces. The latter was extended, through the tl}eory of tensor pro-duct.s
above, to certain L% spaces. (L was treated in [1‘5].) Thg SO]uthI'L is
based on several reductions of the measure spaces, usmg.the lsomorph}sm
results of [34], in addition to the work of Cha?ter 1. The first t3hre'e SeOtIOE.S
of Chapter IT, contain all this work. The uniqueness of pI'OJeetlon's ot?oz
subspaces, and their form were discussed in E.iee.mon 2.4. The pl;r)]ec ion
probiem hag many important applica.tion's. This is a]ready clegar (361;1 "
work of [19]. In the non-linear prediction (and approxxma,mo;) ;_1:) 15;
the prediction, operator P relative to a Fﬂshebyshev s_ubspac(? tii "
linear: iff (=1if and only if) I—P = Q is a cor‘ltra,ctwe prPJec O]jéa,f;jon
the above characterizations will be useful in this work. This a{)jy boation
i treated in Section 2.5. Finally some remarks and open. pro e‘wen e
included. An account of some of the results of Chapter IT was g

[31] without complete detadls.

1. LINEAR OPERATIONS AND TENSOR PRODUCTS

i i ¢ he a normed function space on
1.1. Linear functionals. Let. I : ! e
(2, %, u) as described in the Introduction. Without furthez cg}]:(?i;s;oﬁ
on’g ,the space L¢ is not complete (cf. [21], Ex:;xmple 4]?1) f; iingog
[21] 701“ [39], u can be arbitrary, I is com%lete ;f’f th,erpyﬁj, e
i infini — called the Riesz-Fischer .

i 1ality for infinite sums — c& ische .
gqul;sslegtial for much of the work below, and it will not be assume

without mention. - . )
Let X, = {deX: ol < oo} and Mf = sp{fel®: f‘?%ﬁ%ﬁ%&i&
tin Zo} = {feL?: f is Zy-step function}, Whe_re Aa b R
SUIJPOE th (:unalysis of (L#)* it iy necessary to cons.l.der two cases: (. °
Of A'en;ls t}fa;J annihilate M¢, denoted (M“)i,la.nd (11‘) that fio not;, ]ilﬁ t(:o
?fil;i/(MPyL the quotient space which is 1sometrlcall3jru euicmio?g} o
(];I”)* v(cf/. ’[9], IT. 4. 18). For IP-spaces, L <P <600, (nd)thuis al;o nd
is already non-trivial for. d’ohg Oi]ii)c; ;é)azicss 1;(122 g[ézngl?;la; e
y y siderin; » the ¢
tﬁ?lf:ﬁiﬁ:iﬁlﬁgzr t?gl](l)w. E[‘heg following condition was abstracted from

[26] and used in [13]:~ el 150, A3}
Coxprrion (I). It I# = {feI*: f =lmaX(f¢), ofd<L, ;=0 )

natural map. F: Lff;bLg JMe = N (say), the space

then, i h : ), he
tI]z[:e](17 H;h?ﬁgixﬁfg seriﬁes the condition that F(L%) is contained in the
or
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closed unit ball of N° where the norm of N° is:
a(f) =inffo(f+9): ge M2,

In what follows, another aspect of [26] and i

' : certain other pr bi
of M i will 'be qsed, without condition (I). However, the prim@r? ;ﬁi;t::
of this section is only to outline this generalization, and thus show that
tlie result_s of [13] hold. Bven if the above condition (1) is assumed, and the
L-quce is wnderstood with this added restriction, the rest of thfis ,a er
c;né;z?m a novel contribution and complements [26] and [13]. The 1'n"£e£zul
of this section will be used constantly, and he details "

o o o y, and so the details are sketched,

. Definitio'n 1.1. Let B,(u) be the set of purely finitely additive
(pfa) set -functlons v: & >, gcalars, vanishing on u-null sets and with
:Epforti in Ehe support of some feL?— M® (set theoretic difference) such
at » has finite variation, |»|(Q2) < co. (About pf i £ i
called pure changes, see [9] and [39].) ( Bih b tunstious, shso
The .aim. here iz to characterize (M°)L t i
‘e to be isometri i
to B, (u). This is presented in a series of lemmas. renlly duivslens
LeMMA 1.2. Every element of (M)t i
1 defines an element .
z.e}; if z*e(M“)l., then there ewists & veB,(u) and an fye It — M® Os{LwB;LQ t(;:o)n,,‘
v has support in that of f, and v(d) =2 (fo) = 2" (foys) for all AeX
w cs_;l:)é)f. S*m>ceo M(;E[is a vector lattice, so is (M?)+ and hence it suﬁiees-
sider #° > 0. (Here and below a vector lattice al:

: elos 'ways means, th
refl functions from such, and it is self-adjoint.) It may be supp,osec?
"] >b,0.~ Then there exists 0 < foeL— M? with [¢*] = (f,) (and d(f,)
is Zar 1t1:ajrr11y close to 1). Define »(4) =25 (7,) =z*(fox 0)>O The(;l

. e Py s AL
Ziea sl—>§l , is additive, -va.mshes on u-null sets and »(2) = [*)|. Since
o isrp;;a. ]?‘ suf]f‘or:; of( [v 1g in that of f,, it is only necessary to show that
. For this by ([39], p. B7) it suffi ibi : :
W Arie A Ly ) ) ices to exhibit 4,¢X, 4, | @, and
o i;e’; 0 ];: E 1{0 35 fne Me. In fact, by the structure theorem there exist
; Ea{ ° 7if s1)130 ’ at 0 < f, 1 f, and, since fyeL® implies f,¢I? and, hence
ﬁ v .E , 18 now the support of f,, and B, = {w: foxp < 'n’} then
weZy, B, 1 5upp(fo), and let A, = supp (fo)— B, with 4, = . So A
and fu“fn%:tn :foJCEnE M°. Then | ’ ' 50

Q) =2 (f) =

+) F =f+MecNe.

z*(‘fo“‘quEn) = z*(fOXAn) =(4,),

since " e( M)*. Thus » is pfa, and the
‘ [ 2 result follows. i bermi
uniquely by #* above, will ’follow later.) owe. (ThaS s determined

The general results on i i
quotient § i
and a2 discussion in {267, p. 559): paces Imply. the following (cf. [9],

icm°®
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LmmMA 1.3. Let N°, with norm d(-), be as in (+). Then (N and
(MO are dsometrically isomorphic (written (N°)* ~ (M®)*), where N°
inherits the natural ordering from L2, in terms of which it is also a vector
Laitice and hence so is (N°)*. The correspondence j: o™ > 2" ¢(N' oy for o ( M)+
and | = f-+MeeN is given by Z*(f) =" (f)-

Tor the converse implication that every »eB,(p) defines an elément
of (¥9)*, an integral has to be defined. So let 0 < JeNtand 0 <veBy,(n),
a(f) > 0. Then using an argument in ([26], p. 571) verbatim; where no
special property of Orlicz spaces, other than the fact that the norm is
a function norm, was used, one can map N° onto a (generally proper)
subspace of L% (£) such that f « } eI®are in correspondence, and aF)=1Fle
so that it is an isometry. (The f was #. in [26], Where = is a partition.
Since f, there is monotone, one can consider a cofinal sequence ; and
]‘,,i tend monotonely to F, and this lmit is seen not to depend on the
sequence, since two such sequences can be combined to yield the same
limit.) Flowever, using the same partitions =, on the other hand, one
can define an integral for the step 7. and », and this limit exists uniquely

(as a’s are refined) and the thus defined functional #* is given by
< FeN, fef-

o*(F) = [F(Hav,
Q

@* (+) is uniquely defined,

of this kind of representation will

below, in the context of LP-spaces

The following result, proved in ([267,
bolds here without change:

Levma 1.4. The functional 7

o< ot (F) < alf)r(@), 0<F el and (i) 7] = ().

The only point nob mentioned in the above references is

w2 =sup{| [Pz ah) <1,

which is a-consequence of the definition of the integral there, and the iso-
metry noted earlier. (See, in particular, the remark on p. 574 of [ZQ].)

“Tdentifying (F9)* and (M9)*, as given by Lemma 1.3, the following
result will now be established:

propostrioN 1.5. Let 0 < & ()" = §(M®)L, and let v be the oorres-
ponding pfe given by Lemma 1.2. Then v is uniquely deteﬁmimg by & and
if &* is the fumetional determined by this v through (1), thfn z* =2". Moreover,
(N®)* is an (AL)-space when its real elemonts are tiomzderfd.

proof. By Lemmas 1.2 and 1.4, &) =1 =»(Q)

(Fo) = v(B). Let 7 7> F be the isometric (and order

1)

and is linear as shown in [26]. The use
be further pointed out in Remark 1.6
ag it throws more light on the problem.
p. 572) and in ([13], p. 36-39),
%
E

) of (1) satisfies: (i) " e (N°)

(i)

= HM*H1

VAN
and & (foxs) =28
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preserving) map considered above, and let & = 7(N®) < L*® be the closed
subspace. Then 7: * -2 ()" defined by 7 02" (f) = 2 (zf), is an isometry
and O}ﬂer preserving. Since 2* determines a pfa set function on (2, )
50 is 2 ¢(¥)" and thus the latter is equivalent to a closed, subspabe of ,thé
pfa set functions #(u), in ba (2, Z, u), of bounded additive set functions
on Z; vanishing on g-null sets. If now ve #(u) is determined by 2, then
the above mappings yield » « Z<(#)", and since (") < (L)*, the known
properties of the latter space yield 2y o spand 80 |34 = »(B) = 2 (fo).
Since |25 = |lk5] also holds, by the above correspondence, one deduczss
5l = 2:(fo) = v(B), B<Z, and » is determined only by #*¢(N9)*. Since
()" is-a.n (AL)-space the same must be true of (¥N°)* due to the order
preserving property of 7.
Next let 4* > 0 be given by (1). Then by definition of (1),

o' (F) =1 Y @(fre)r(B) =lim 3 e1a(f3) > #* (7).

=1
Since 0 < feN? is arbitrary, 2" >0, a * *
> » and. 7] = (7] = »(Q).
Thus |lo"—2*|| = [&*|—|l¢*] =0, s0 &* =2*, as desired. @

}%emark 1.6. In the definition of the mappings =: N> & < L®
and 7 : (N9)* - ()", the fact that (N°)* = (M?)L, where M is the pa.rticulm’*
vector lattice was needed only in identifying ()" with a subspace of
pfa set functions in ba(2, X, u). Otherwise the procedure works for any
vector sublattice of I Thus, if M3 is any other vector sublattice, the
procedure still yields (N9)* being identified with a subspace (& 3* of
ba(Q, Xy, p) where the norm of ve(5,)" is caleulated using the ct)rres-
pondence. Thus

(@) =sup{| [F(arf: () <1

For instance, if L¢=1I7, 1< p < co, and M?
' =10 P o TP
itself, (1) says for ao*(q“—|—p,“1 =\1) , R

o (F) = [P(fdr, F =feI?, veba(Q, 5, u),
and

Il = (@) = sup {| [fa: a(F) <1).
Q

If dv|du = g exists, then [v|(Q) = || i i
_ = |lgllq- I p =1, u is arbitrary, then
g does got exist as a measurable function. Still the :;.bove represerslréa,tion
is meaningful. In this point of view, however, only the subspace & < I*(X)

is used even in finding the morms of ». In the LP- i §
ity f example & < L*® even
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Since an arbitrary 2* ¢(¥9)* and veB,(u) can be (Jordan-) decomposed.
into (four) positive parts and added, by linearity (1) can be extended.
Using the preceding lemmas, the general result is given by the following

TuEOREM 1.7. If 2*<(N%)*, then there is o unique veBy(u), such that

2) FU) = [F(Hdy, fef B,
and
(3) I = pl(d), Aex.

Thus, (N°)* is an (AL)-space when real elements are considered.

Remark. Without using the isometric mapping z: N~ & < L%,
a direct characterization of (N¢* was also proved in [26] for the Orlicz
spaces. That method extends also for the L*-spaces when condition (I)
is assumed, as shown in [13]. The same does not seem to work for all
I*-spaces without some such condition. Note also that the singular func-
tionals ( e(M®):) have arbitrarily small supports.

To obtain a representation of (L%)", a new norm ¢ for set functions
is needed. This is somewhat different from one in [13], since similarly
defined o’ on point functions can be identically zero, if p is arbitrary.

Definition 1.8(a). Let A,(2, Zy, u), or. Ay (u), be the class of
all additive set functions G: =, —> scalars, vanishing on u-null sets and
such that o' (@) < oo where

4) ¢'(6) —sup || [ a6+ o(f) <1, fe M.
Q

The integrals here, relative to finitely additive set functions, are
taken in the sense of ([9], Ch. ITI, or [2]).

(b) The norm ¢ is said to be continuous ab zero, if for every &> 0,
there is a 0, > 0 such that u(E) <6, implies p(yxz) < & o has the Fatou
property iff 0.< f, 1f implies o(fa) te(f)-

Clearly o is a norm and A, (x) is a normed linear space. Moreover,
it dG = gdu, then o'(G) = o'(g), as in [20], and this gives the earlier
definition. Blereafter, integrals relative to finitely additive (scalar or
veetor) set functions will be often used without checking the definitions
of [9] or of [2]. In fact only the linearity and positivity of the maps will
be used, and thus any reasonable definition will serve the purpose. For
5 lucid account of how such infegration processes canl. be developed and
employed, a reference’ should be made to [23].

Tumormy 1.9. For each a*c(M°)*, there is a unique Gedy(p) such

that
(5) S (f) = [fa6, feM, o'l =@
2
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Moreover, if o(-) is continuous at 0, then G is p-continuous. Thus
Ay (p) is complete in any case, (being an adjoint space).

Proof. If f = yp, BeXy, and G(B) =" (yz), then G: X, — scalars,
is an additive set function, and (5) holds, by linearity, for any simple
fe M Sinee such functions are dense in M° by definition, then (5) obtaing
by continuity to all of M*® provided G'e A, (u), from the general definition
of the integral (as in [9] or [2]). Now

o'(&) =sup{la*(f)]: e(f) < 1, f simple} = |la"| < oo,

so that Ged, (). (The definition of the integral, with [2], was checked
in [13], for a o-finite w.)

For the last part, let G s 0, and for any & >0, choose 4e¢ZX with
("A) < 6, implying o(x4) < (¢/e’ (G)). It follows that

G =] [ £406) < o(xa) (@) <o
2

and the result obtains.
Remark. If ¢ is continuous at zero and u has the finite subset property

(i.e. every set of positive u-measure has a subset of positive finite u-measure,

called FSP hereafter), then the last part implies that & is actually c-additive.
This follows from Lemma 1.15 below. If, moreover, u is localizable (cf. [34]
and [39]), then g = d@/du, the Radon-Nikodym derivative, exists and
geL¥, the BFS with norm o', now existing non-trivially on point functions.
If only u has FSP, then for every FeZ, u(E) < oo, there is a gy (L?),
and the collection {g5}, also denoted g*, is called a cross-section [38], or
a quasi-function [22] (for which integrals are defined, see [22]), and g¢*
determines a measurable function iff u is localizable. (I° is complete if
o has the Fatou property, [39].) '

Using a procedure similar to ([26], p. 567, or Cor. 6.1 there) the '

integral (5) can be extended from M° to L° itself. Thus,

CorOLLARY 1.10. If u has FSP, dnd o is continuous at zero, then for
each " <(M®)* there is a unique quasi-function g* such that, for feIt,

® ) = [fr (= [fae),

Q

"] = o' (g") (= o'(&).

Moreover, g* is measurable iff either u is localizable, or u-simple functions
(i.e. those with support having a finite measure) are dense in L¥. In any
case Ls of gquasi-functions is isometrically equivalent to Ay (u).

Definition 1.11. Let &/, (u) = 4, ()®B,(u), Wwhere Gesd  (u) iff
G =@G,+0, with Ghed (u), GeB,(4) and norm

Gl = o' (G)+ G2l (2).

- ©
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PROPOSITION 1.12. Ewery o*e(L%)* admits o unique decomposition,

& ="+, where y* (f) = [fdG, feI?, GeAy(p), called an absolutely con-
Q

tinuous functional and z¢(M°)*, called a singular functional. Also Jl*]]
= [yl -

The proof given in [267, p. 575, for the Orlicz spaces, holds here ver-
batim. (For an alternate argument, see [13], p. 43.)

Now the main result of this section can be given as:

THEOREM 1.13. Let L? be a normed (scalar) function space on & measure
space (2, Z, u). Then its adjoint space (L* is isometrically (fmd latt_'ice)
isomorphic to o, (u). More expliciily, for each z* (IR, there is a unique
Gety(u) such that

@ o'(f) = [fa6 (= [ faG+ [F(Hacs), felf,

and
le*]l = |6y (= ¢’ (Gr)+ |61 (2))-
Moreover, if o is continuous at the origin, then @, is p-continuous.
This is an immediate consequence of Proposition 1.12, Theorems
1.7, 1.9, 1.10 and Lemma 1.15 below. .
COROLLARY 1.14. If u(Q) < oo, then (7) can be uniquely written as

(8) o* (f) = [faau+ [faro+ f F(f)d6s, feLt,
Q2 2 .

and
Il = o' (g)+ 7ol (@) + 1G] (£),

. ’ ; B,.(u). If also g is continuous at zero,
where ge L and v, is @ pfa on X, Gye v
then v, =0 = @G,. On the other hand, if M® = L*, &, = 0, but not mneces-
sorily vg- .

The result follows from the fact that, When./w(Q) < oo, for the set
functions of 4, () one can apply the Yosi(za-Hevmt theorem ([9], p. 163)
5o that Gy = G,+», where » is pfa, and 4@, = gdu. The rest follows from

the theorem. ‘ .
TeMMA 1.15. If Gedy(u) is not @ pfa, then it has an extension to '2,
and is o-additive there. The extension is unique on 2 = o(Z), the iribe

enerated by the clan Zj. o N
! Proof. First note that if ¢ is a pfa, then it is a bounded ajddmve
: s and the exception is vacuous for this part.

function on all of X, - .
STeﬁen from general considerations, as in Lemma 1.2, it follows that there

is an fe M° such that ¢ (fya)—>0as8 A, | @, where support of f may be taken
to include supp (@) Now 4, ={If|>n}eZy, and e(ys,) 0 so that
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o is continuous at zero, on the support of G. So by the last part of Theorem
1.9, @ is y-continuous. In fact, it is clear that |G (E)| is finite for all BeX,,
and for E,|d, B, <X, |G(E,)—0, so that it is finite and c-additive
on X, and hence has a unique o-additive extension to 2y = o(ZX,) by
the Hahn extension theorem. .

To see that @ is also defined on X itself and is o-additive there, note
first that X, is an ideal in Z, i.e., AeX,, BeX implies 4 N BeX,. Now
using Carathéodory extension procedure, for any TeZX,, a set HeX is
a G-set iff (hereafter, for A < Q, A° = Q—A4)

G(T) =GT n B)+GQ(T n E°.

The (sigma-) additivity of & on X, implies that the class of G-gets
Is a (sigma-) field and contains Z. It follows that @ on X'is also c-additive,
and p-continnous. This completes the proof.

COROLLARY 1.16. If o ds contimuous at zero, them every element of
Ay (u) is defined, and o-additive, on Z.

1.2, More on fimetionals. Using the representation, in Theorem 1.13,
of (I%* some generalizations of the results in [20] whose proofs, and
even some statements, crucially use the o-finiteness of u (in the form
of ¢ and o' admissible sequences), will be given for general u. These results
will be useful later on.

Definition 2.1. (a) If M® = L°, then step functions are said to
be dense in I°. .

(b) It felI?, it is said to have an absolutely continuous norm (a.c.n.)
it o(fys,) 0 for all 4,0, 4,2, Tf every element of I has a.c.n.,
then L is said to have a.c.n., or g is said to be an a.c.n.

PrROPOSITION 2.2. (3) Let p have FSP. Then (L% is isometrically
isomorphic to LY of quasi-functions iff for each «*e(L%)* and 0 <f,eL®
with 1,10, one has |a* (f,)| — 0. If u is localizable, then LS = L, of measur-
able functions.

(b) An element feL® has a.c.n. iff for every f, with |f| =f.> ... -0,
o ()0, where u is arbitrary.

Proof. (a) In Theorem 1.13, |&*(f,)| =0 as f,|0 implies M° = IL¢
and, moreover, ¢(-) is continuous at zero. Thus (L%)* = A, (u), and,
by Corollary 1.16, every Gedy(u) is o-additive. Thus 4, (x) = I&. The
converse implication follows from the dominated convergence theorem.

(b) If the condition holds, then f, = | leAn! 4,19, will show that
f has a.cn. The converse is non-trivial and the corresponding proof of
[20] does not seem to extend. The result will be proved using Theorem
1.13 here.

Sinee 0 <f, <|fl, and |f| (=f,, say), has a.cn., each f, has a.c.n.
Now by the Hahn-Banach theorem there iz an Zhe(L8)* such that
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o(fu) = @n(fu)y m 20, ||| = 1. By Theorem 1.13, there exist 0 < Gy, e, (1),
such that
@) G.(h) = [hd6,, heLt, g = o'(G,) =1.
Q2

The a.c.n. of f, implies \ac:(fnukﬂ -0 as 4,9, for each n, which
in turn implies that g¢(-) is continmous at 0. Thus by Lemma 1.15,
G,,n >0, are o-additive and @, <A, (u). Hence by the dominated con-
vergence theorem, |z} (f,)|— 0 as m - co for each =. It is to be shown
that 2 (f,) = o(f,) =0, a8 % —> co.

Let 8 = A4, (u) be the closure of {#,,n>0}. Then § is a closed
subset of o-additive set functions on the unit sphere of 4,.(z) (and also
o, (), which is compaet in the o((Z%)* L°)-topology. For each HeS,
one has, moreover (He8 < 8%,

FulH) =ﬁ(fn) = ff,,dH\l,O as n —> oo.

Since 7, <(8)™ = (L™, it follows that f,(H)|0 for each H 8. Since
8 is compact Hausdorff, the convergence is uniform. Hence f, (&,)—0,
50 0(f,) — 0, as desired.

As an immediate consequence one has

COROLLARY 3.2. If o(') is continuous at zero, geL® has a.cn., and
0< .1y, then g(g—fn) = 0, as n— co.

The following is & kind of dominated convergence theorem for
I-spaces, which is proved with the above result:

PROPOSITION 2.4. (a) Let 0 < geL® have an a.cn., and {f.} = L* be
a generalized sequence such that |f,| < g, a.e. If f.—f in p-measure, then
o(fa—f)— 0. Conversely, if u has FSP on supp(g), and o(fo—f) =0,
then f, —f in p-measure. .

(b) If for every sequence {f,} with |f,| < geL?, then f—f, m.e. implies
o(f,—7Fo) = 0 iff g has a.c.n.

Proof. First suppose {f.} = {f,} is an ordinary sequence. If f, —f,
in p-measure, then |f|< g a.e. Then there is & subsequence {fut = {F}
with J,—f #6. It g, = Sup{|fyym—F]: m> 0}, then g, <2g and g, 40,
50, by Proposition 2.2 (b), o(g,) -0, and so o(Ffo—1)—0. If the result
is not true for the full sequence, then there exists a subsequence {f,.} = {fu},
such that Iim e(fa,—H 2 >0 8o there is a further subseq}lence, denoted
by f,. itself, such that o(f,,—f)—>a=>e>0. But. fn-i—>]_f in measure, S0
that it has a further subsequence {fn,;} < {fn;} veritying fp; —f ae. T.hen
by the first part, Q(fni— f) =0, and contradicts thg abox.re agsumption.
Hence go(f,—f)-+0 for the full sequence itself. With this, _ﬁhe case of
the generalized sequence can be deduced by an argument entirely similar
to that of [9], p. 125, and the direct assertion holds.
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TFor the converse, again consider an ordinary sequence {f,} such
that o(f,—f) 0, |f,] < geL® and u has' FSP on supp(g). For any ¢ >0,
if H,, = {w: |f,—f| > ¢}, then it should be shown that Lim sup (B, =0.

Clearly, B, .2, and let 0 <GS+, the positive unit sphere of (L.
Then

0

N

1 1
G(B, )<~ f =126 < = o=,

since ¢’ (@) = 1. Thus G (%, ,) —~ 0, a8 % — oo uniformly in Ge8*. So given
8 >0, there is my, = n,(06) with > n, implying

5> sup{G(H, ,): GeS8+} = sup { [ xz, a6 GeS*'} = 0(Xme)-
Q

Since F, . = supp(g), and x has FSP there, there is EeX,, of finite
u-measure, E < supp(g), which is “p’-admissible”, as in [20], and
o' (xz) < oo. Consequently,

(B 0 B) = fxun Jmin < e(in, )e' (xm) < 8¢’ (1m)-

___ Hence lim u(E, . N B) < do’ (1), and letting 6+ 0, it follows that
lim y(E,, N E) =0. Now the FSP of u on supp(g) yields, since F in
that support ean vary on all sets of finite y-measure, (through admissible
sequences) it follows, by [39], p. 257, fi-n;y(E’n_E) = 0. Hence f, - f in

u-measure. The case of generalized sequences again can be deduced from
this result as in [9], p. 125.

(b) This follows from (a) and the necessity of Proposition 2.2(b).
This completes the proof.

Remark. If G<S* as above, and L*(Q) is the corresponding Lebesgue
space, then |f,—fll,¢<< o(f,—f)— 0 so that the result that f, —f in
- G-measure is a consequence of [9] p. 122. This is not enough to deduce
the convergence in u-measure and the above computation appears neces-
sary. Note also that |f,| < g can be replaced by the condition: “supp(f.)
is contained for all a, in & measurable set 4 on which u has FSP.”

COROLLARY 2.5. Let LE = I? be the set of all elements with a.cn. Then
Lf is @ solid (or normal) closed subspace, and o on L& has the (restricted)
Fatou property, ie., 0<f,1f a.e., and feLf implies o(f,)to(f) ond
e{fa—f)=0 :

Proof. If |f|< |g|eLg, then feLg, which is normality, is obvious.
I 0<f,tfeLll, then 0 <f —f.<f and so, by Proposition 2.2(b),

o(f—Ff) 40, and o(f,)1e(f)- ¢ is o on I, and = +oo otherwise, then
¢ is a function norm with Fatou’s property, so that L} is a BFS. (For
another proof of this, see [39], p. 478.)
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Remark. If xhas PSP on 2, then ¢ is non-trivial and so is ¢” = (2')".
A result of Halperin and Luxemburg (cf. [13], for references) implies
(cf. [39], p. 450 and p. 471) L° = I*” and ¢ = ¢'" iff ¢ has the Faton
property on L°. It can be shown in any case the set of all step functions
(in particular, M°) in L is total for L¢. If u is only finitely additive, then
even L(u) will not have a.c.n.

The main result of this section is given by

THEOREM 2.6. Let o be a function norm. Then If is reflexive iff (i)
w has FSP, (ii) L° = L, (i) L? = L where o' is the associate of o, and
(iv) o and ¢ have the localizable property (i.e., for each f with o(f) < oo,
u s localizable on supp(f), and similarly for o).

Proof. Let L° be reflexive, so that I¢ = (I?)**. This implies FSP
of p. For, if this is false, then {0} # (B, (0))* < (& (W) = ()" = I,
where equalities and inclusions are understood, as usual, under the nat-
ural isomorphisms and embeddings. Hence the subspace (B, (u))" must
also be reflexive, and this is so iff B, (u) is. But B, (u), an (AL)-space,
is reflexive iff it is finite-dimensional which implies N® is algo finite dimen-
sional. This yields that 72 = M@ N?, a direct sum decomposition (since
N¢ can be identified as a complementary manifold of M¢, of finite codi-
mension). But then, all topologies on N being equivalent, it follows
that step functions in I° are dense so that N° = {0}. This will be impossible
unless B, = {0}. Thus (I?)* = 4,(u) is also reflexive and (i) holds.
8o o’ exists on point functions non-trivially, and ¢ is non-trivial. Clearly,
If < A,(u) where the indefinite integrals of feI* are considered as ele-
ments of A, (u). This is one-to-one and into the second space. (See [37],
about such injunctions in case of Orlicz spaces.) To see it is onto, suppose
not. Then there exist a Goe(A (u)—IF) and (these two are reflexive,
since I is reflexive iff (L2)* is; so each of its subspaces is), by the Hahn-
-Banach theorem, an fye{4, (/,u) = (I8* = I° such that 1 -ffodG0,

and 0 = f fogdu, ge LY. The latter yields, by the remark preceding the

statement of the theorem (since g has FSP), ¢’ (f;) =0 beea.use Le = L¥.

Hence f; = 0 a.e. and contradicts the flrst equation. Thus I° = A4, ()

must hold. This means each element of A, (u) is o-additive and has the

(generalized) Radon-Nikodym property whlch is true iff o’ has the locali-

zable property by [34] and [38]. On the other hand, (LY = (4, (w)*
= (I8)** = (I*) implies, with the first part of this proof, that

@) (I9) = (IF)" =A4p ()

Hence the elements of 4,.(x) are s-additive, and have Radon-Niko-
dym derivatives. This is true iff ¢” has the localizable property, and
thus (2) implies also L° =L = A, (p), Wxth the isometric equivalence.
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It follows that ¢ = p’" and (iv) holds. Thus g also has the Fatou property!
(This would also follow from (ii) after it is proved.)

It remains to prove (ii) and (iii). Let 0 < f <L be arbitrary. Then
there is an (L%, with o(f,) = & (f,), and a unique 0 < Goedy (1)
such that

?

o(fo) = a3 (fo) =ff0dG<,.

If 0 <, <fo and £,]0 is any sequence, then by Proposition 2.2 (b)
since the elements of A, (u) are o-additive, 7,(@)|0 for all Geg+ th(;
positive part of the unit ball of A, (). Using the same argument of that
pl*gof, one proves ¢(f,){0, so that f, has a.c.n. Hence I# = I¢. Similarly
I# = IZ. This proves the necessity. v

For the converse implication, let (i)-(iv) hold. Then by Proposition.
'2.2(a) (and the fact that ¢ = o' following from (ii) now)i

(L =Ay(u) =I¢(w) =L8. &
Similarly, (IZ)* = I2. Consequently,
(3) ()™ = (g™ = (L) = (L&)* = I¢ = ¢,

and L? is reflexive, and (L% = L¥, (so that L is also reflexive). This
completes the proof. !

) Remark. In [11], the norm g(-) was more restricted than here,
(it has the Fatou property, among others, in its definition). So the above
result extends the result of [16]. The conditions (and methods of proof)
of [16] are of a somewhat different kind. The above theorem is the best
possible for BFS's.

The final result is a characterization of the sstond conjugate (L2)**
of I%, with Theorem 1.13. PRI J gete (1)

TEEOREM 2.7. Leét p have FSP, M° = L, o have the localizable por-p
erty, and o ‘the Fatou property. Then (LA)** o~ A (1) BB, (u) @ Cy(u),
where 0, (u) s an (AM)-space conjugate to By (). If G = Gy+Gy+6y,
Gredy(p), GaeBy(n), and Gyely(n), then o™ <(Lo)™ corresponds  uniquely
to such a G and

(4) o™ = 16l 5 = max (o(G)+ 1G] (), 611} 5
where ||Gy)| is the (AM)-norm of C,(u).
Rerilark.* The actual representation (z**, #*> can be written down
for all 4™ ¢(Z9)*, using the results of [18]. It will be omitted here. :
Proof. By T/heorem 1.13, (I8)* = Ay (4) ® By (u). Since M = I¢,
and p has‘ ESP, ¢'(+) on point functions is non-trivial and Agp(p) = I
by Prqposmon 2.2(a) and the localizability of ¢’. Hence (I =IL'®B ().
Applying the same result again to the conjugate space of the right Qs,ide,

’
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and remembering that B,(u) is an (AL)-space and o'’ = g, one obtains
() (I = (IF) ©C,(u) = 4,() ®B, (1) ®C,(m),

and the norm equation is deduced from the well-known results, completing
the proof.

Remark. If p is continuous at zero (or M? = ILg) and u(R) < oo,
then B, (u) = {0}, and C,(x) =0. The condition of the hypothesis is
weaker than this. If 72 is merely a BFS, and the Fatou property is dropped,
then also the above result holds, but the isometric equality in (4) will
then be a topological equivalence (L° and L¢" have that property).

1.3. Representation of linear operators. The general structure of (L?)*
enables a determination of the structure of B(Lf %), the space of bounded
linear maps on L° to a B-space #. This completes the work of [13] where
B(M*, %) was analyzed directly. This general representation will be
needed for the work in the following sections.

Definition 3.1.(a) Let #7,(u) be the class of additive set functions
y: Xy > %, vanishing on g-null sets and #,(») < oo where the norm #,(-)
is given by: n,(») = sup{e(z*»): |o* <1, 2" 2"}

(b) Let #,(u) be the class of additive set functions »: X'~ &, vanishing
on x null sets, with support contained in that of an element of Lf—M°
(set theoretical difference), and such that for each 2™¢Z™, #"» is a pfa,
with [#]](2) = supp {|"»|(Q2): [|z*] < 1}, i.e., of finite weak semi-variation,
in the notation of [7]. (Note that supp(»)eX; does not depend on Z.)

() Let #,(n) =W () @ P, (1), Where Ge%,(y) means G = G+ @,
with [||6]l, = sup{e(s" )+ (2" G| (Q): ¥ < 1}

It is clear that {||Gl], < n,(Gy)+ 6=l (2) and, moreover, G, < oo
iff 7,(G4) < oo and [|G4ll (2) < co. The definition in. (a) above is motivated
by the work in [37], p. 52.

The main representation can be given by the following

THEOREM 3.2. In the above notations, B(L?, &) ==y (u). More explicitly,
for each T eB(L?, &), there is a unique Ge %y (u) such that (o’ is the associate
norm of o)

(1) Tf = [fa6 = [fiG:+ [ F(f)aGs;  felf,

where the first integral on the right is similar to that in [9], IV.10, on X
(instead of Z), and the second one, (as well as the first) as a weak integral,
emtending that of Section 1.1 above. The isometry is given by

(2) 170 = 111Gl -

If o is continuous at zero, then Gy = 0 and Gy is (strongly) L-continuous. -

Studia Mathematica XXXVIIL 10
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Proof. If T*: * > (L9)" is the adjoint of T, and #* ¢ Z*, let T* o* = 4%,
So yie(L9)* and, by Theorem 1.13, there exists uniquely Goe 7, (u),
G = G+ Gye in the notation there, such that

(3) I =4al) = [faGp = [ Gt [P(f)Gpe, feI?,

2 2 2 )
and .
(4) lyaell = o (Grae) + 1Ges| (2).

But the mappings @* > Gy, i = 1,2, are linear and
1Garlly = llyzsll = 175" < |- le*]) < oo,

s0 that they are also bounded. Consequently, there exist @;: X, - & >,
such that G« = Ga", ¢ =1,2, where & arve additive and vanish on
u-null sets and whose bounds are given by the above equations. Tt ig to

be shown that (i) G = G4+ @, takes values in &, (ii) &l = 7)), and
(iii) the representation (1) obtains.

To see (i), let f == 5, Ae{,'o. Then in (3) the second term drops out
and Tyge Z, so that letting £ = 2™ the natural image,

A
Tyu(@") = 0" (Tyg) = [ 1pd(Gha’) = G (B)a*,  ao*e 2"
2 _

. » . . A o
Since HeX, is arbitrary, it follows that G,(E) = Tyge Z, and so
G 2y~ Z, and '

0'(6) = sup{e’ (4" G): o] < 1} = sup{ly [MY): (o] < 13.

I T, =T|M® is the restriction of T to M°, then 0’ (Gy) = ]I.T*Hy.
By considering the definition of the second integral, it can be simila,rllv
deduced that G,: X' % and ||G4][(2) = ||T}||, where T, = T— T;: N¢ Z.
Such a decomposition, given for funetionals in Proposition 1.12, can be
obtained for the present case without difficulty. Thus 1Tl < 17| < o0, .
80 that (i) holds and (iii) is immediate for finite sums, and the genersui
case then follows.

To prove (ii), & simple computation is needed. By ‘the definitions of
- Hlyy letting #5s be the corresponding elements,

&y = sup{o' ("G + |2 Gal (2): |lo*] < 1}

SUP {30l + W30 Nl < 1}

= sup{[vl: =<1}, by Proposition 1.12,
= T = |IT}.

I

_ T-his proves Fhe isometry and the representation. If, conversely, T’
is defined by (1) it immediately follows that TeB(L%, &) since G <%, (u)
4

icm°®

Linear operations 147

If, moreover, p is continuous at zero, then &, = 0 and G, is u-continuous
on X,. By Corollary 1.16, it follows that G, is weakly c-additive on X,
and hence, by [9], IV.10.1, it is c-additive. This completes the proof.

Remark., It should be noted that, in the above representation,
in general the measures (s will not be regular in any reasonable sense.
The above result was proved directly in [13], if I® is replaced by M°
(s0 that @, = 0), if o verifies a “Jensen’s condition” (J) and if u is o-finite.

Some consequences of the above representation will be given. The
next result is closely related to a theorem of Singer [35] (compare with
[12], p. 775 also).

THEOREM 3.3. Let 8 be a compact Hausdorff space, C(8) the. space
of real continuous functions on 8 and TeB(O’ 8), ), where Z 18 a B-space.
Then there exists a unigque vector measure v: X+—> %, X the o-field of Borel -
sets of S, such that

(8) Tf = [fav, FC(8), IT] = lI(S),
s

where ||v)|(8) is the semi-variation of v (cf. Definition 3.1(b)).

Proof. The adjoint space (O(S))* of 0(8) is an (AL)-space and by
Kakutani’s theorem [18), there is a compact Hausdorff (totally discon-
nected) space § and a regular finite Borel measure u on the o-field of
closed sets of § such that (C(8)) ~ IM8, p). Tt follows that C(S)
c (08" =L~ (8, u). Thus there is a closed set §, = § which is homeo-

.morphic to S and such that C(8) and C(8,) are isometrically (lattice)

isomorphie, by the Banach-Stone theorem. If ¢(-) = [* s, and ¢ = |0(Sy)
and § = +oo on I*(§, p)—C(8,, u), then ¢ is a function norm and
It (8;, #) and C(8;) are such that every element of the former is equal,
4 almost everywhere, to an element of the latber. Using the lifting map
(cf. [7]), identify these two spaces. Let 8; =7(8), where 7 is the
homeomorphic mapping onto the subspace 8, noted above. Thus, identi-
fying B(C(YS), 9,”) and B(L?, %), one has (by Theorem 3.2), #: 2y > %

which is additive and vanishes on g-null sets, and since e’ () =1h
and ¥, = X is the o-field of Borel sets of 8, T corresponds to T,
(6) T.f = [, FeLt,
-~ 4
T3] = lallly = supde’ (" »): ¥l <1} = [all(84)-

Let » = »,07" " so that » is a vector measure on the Borel sets of §
to 2 and [pJ(8) = [#4](81). Then (b) becomes

(7) Tf = [fdv, feO(8), ITI = IpI(S)-
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It remains to show c-additivity of ». Since § is compact, if f, |0
pointwise, f,,e0(8), then the eonvergence is also uniform so that -one has,
for each &,

[ T(f)] = W (Fu)] < IWaell £l >0, as m—0. ,

Hence, by Proposition 2.2, #*» is y-continuous and is thus ¢-additive.
This, by [9], IV.10. 1, completes the proof.

Remark. Again the measure » of (5) is in general not regular. In
order to have such a property, one has to enlarge the range space of » from
% to ™ (cf. [9]; for & general discussion on this point, see [67]). It should
also be remarked that the Radon-Nikodym theorem cannot be applied

o (v, ) without further conditions on Z.

The following consequence has some independent interest. Recall
that a B-space % is said to have the Radon-Nikodym (R-N) property
relatwg to a measure space (2, X, u), if every u-continuous vector measure,
on X, is the indefinite integral of a (strongly) measurable function relative
to u. (Bxamples of such %’s are the reflexive B-spaces or the conjugate
spaces of B-gpaces, «¢f. [7].)

THEOREM 3.4. Let (2, X, p) be a localizable space, and & = 1}"2(6’ B, %)
with the B-N and Fatou properties. If o, is a function norm, continuous
at zero, then for each T'eB(L%, &) there is a “kernel”, K (-, -): B X Q s sca-
lars, with the following properties:

(i) K(-, w) is o-additive and A-continuous on % such that if g(w) =10,
(E(, o) = sup{@z(w*K w)): o* <1}, eilg) = M < oo;

(ii) K(H,-) is measwable on £2; :

(ili) for each AeX, u(4d) < oo, v(H) fK (B, w)du, B B, then v(-) is

o-additive and A-continuous on & for whwh the B-N derivative relative to
A exists (this is so if A is Zocalizable) ;

(iv) Tf ——ﬁfzc( , ©)f (0) dp(w), fela (X
(v) 17l =

Comversely, a K (1 °): B X Q> scalars, with properties (i) to (iii) defines
a T«B(L*, &) by (iv) with norm bound of (v). v of (iil) 4s defined on Z.

Proof. By Theorem 3.2, one has Tf =![fdv, 1Tl = 7, (»), where
v: 20‘1——> % = L*2(3). Since u is localizable and # has the R-N property
re}a.twe to u, and g, is continuous at zero, one has (dv/du) (0) = h(+y 0)eZ
(since then » is ¢-additive also). Let K(H, w) = fht w)dA(t), 8o that

E(: w)ed,, (1) = 4,(A) and satisfies ( ) - (iii), Moreovel,
7f = f F@h(, w)du(o f HOE(, 0)duto)

Linear operations 149

by the chain rule for R-N derivatives (cf. [9], III. 10). Since |7 = 7, (»)
= M, the direct part follows. The converse is obtained by a similar
argument.

Remark. If L%(X) iy a Lebesgue space, u is o-finite and L%(%)
= IL'8, #, 1), where § is a compact Hausdortf space and A is a regular
measure (and with some variations of this hypothesis), such results were
proved in [9], p. 506 £f. All these are obtainable from the above, by choosing
o; and g, appropriately. It also includes [20], Thm. 6.1, by specializing
K(-,-) to a point function. Moreover, a problem of disintegration of
measures (cf. [7]) can be reformulated with the above result.

1.4. Compactness and metric approximation. In view of the preceding
analysis, and the work to follow in the later sections, it will be useful
to characterize the (weakly) compact operators in B(L?, ). This is sketehed
in the following two results. .

TeEOREM 4.1. Let TeB(L*, &). Then T is weakly compact iff the pair
of set functions Gy’ and G, in its representation (Theorem 3.2) satisfies the
following conditions:

(i) The sets (a) {o*6:(B N -): o' <1, olym) <1} and (b) {o"Gu:
") < 1} are relatively sequentmlly compact in ba(R, X, u), the space of
bounded additive sei functions vanishing on p-null sets. If, moreover, o 1is
continuous ai zero, amd u is localizable, then (G4 is o-additive and Gy = 0)
(i) can be replaced by '

(ii) there is (umiquely) a. sirongly measurable geLg such that

1 Tf = [ fodu, T = 1G]], = sup{e'(@"9): 2" <1},

ond [gdu takes its values in a weakly compact subset of %, except for a p-null
2

sety for olym) <1
Proof. By a result of Gantmacher ([9], p. 483), T: L* = & is weakly
compact iff its adjoint 7% is. But by Theorem 3.2,

Tf = [faty+ [F(f)aG,, feI* [T = Gl
Q 2

and T*: o* "G, is a bounded map. Since HeZy, o(zz) < 1 and |2 <
implies |#*G(E)| < o (ig)ny (Gh), it follows by [9], p. 97, that the set in
{)(a) is in da(Zy, w). NOW using the decomposition T = T+ T,
T,eB(M®, &), TyeB(N? %) it follows thait, by the above: quoted result,
T, (and hence T') will be weakly compact iff (i) holds. Thus the first part
follows.
Tf ¢ is continuous ab zero, then @, = 0, and by Corollary 1.16 and -

[91, p- 318, &, is p-continuouns. The weak compactness of 7' (= T,) implies
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that, due to the localizability of u, @, has the R-N property, and by
the vector R-N theorem (cf. [7] or [9], p. 541) there is a stongly meas-
urable g (= d@y/du), so that (1) holds. Conversely, if d@ = gdu, then,
from well-known results, (1) is shown to define a weakly compact T on
I? to %, as desired.

For compaet T, the above result takes the following form:

TrEOREM 4.2. An operator T'<B(L*, &) is compact iff, in its representa-
tion (of Theorem 3.2), (a) {G1(B): o(xz) < 1} = & 4s conditionally compact,
and (b) G, takes its values in a conditionally compact subset of Z.

Proof. By the representation, for felf,

(2) Tf=ffd61+ fF(ﬁdGZ =T1f"|“T2f (Say).
Q2 Q

T is compact iff T'; are, ¢ = 1, 2. Since Theorem 1.7 (and a known
result of Grothendieck) implies N¢ is an (AM)-space (without a wunit)
so that it is isometrically isomorphic to a cloged subspace of C(8), on
some compact Hausdorff space S. Then regarding T as a map on that
subspace to %, it follows from a result of Bartle-Dunford-Schwartz ([9],
D. 496), with trivial modifications, that @, has a conditionally compact
range in £ iff T, is comract. It remains to consider T,.

It T, is compact, then 4 =T, U = & is a compact set, where U is
the unit ball in M°. Taking fe U,f = yg yields G,(F)eAd. Thus the set
in (a) is conditionally compact in %. Conversely, if (2) holds, let K = {¢,(H):
o(xg) <1}, so that X is compact. Then T, U = convex hull of {(iK) u
U (—iK)}, and so is precompact. This implies T, is compact, and the
result follows.

Remarks. 1. If ¢ iy continuous at zero, then G, — 0 and G, is
o-additive, when u is localizable, @, has a density g, and a corresponding
condition on g is more involved here than in Theorem 4.1.

2. Theorem 4.2 can be specialized to get Theorems 7.1 and 7.3 of
[20]. In fact, let & = L(8, #, A), T: I° (2) = I3 (#). Then the compact-
ness of T implies the set B = {Ty,: 0(x4) <1} = & has a uniform
a.c.n., (ie, o(rq 9)40 as A,|@ uniformly in gell). The converse that
T is compact holds if # has uniform a.c.n. and that U, E is conditionally
compact for each m, where {U,} is a generalized bage in LY (%), ie. U,
are degenerate and U,g—g¢ in norm as = is refined, ||U,||< a < oo,

For, let 4,¢X, 4,0 be arbitrary. Let U, = g 421 Lt~ L%, Then
U,g-> g for each geL? by a.cn. of g. Since L% is a B-si)a,ee, by Corollary
2.5, U, g — g uniformly for g in any compact subset of L&, by [9], IV. 5. 4.
In particular, if T is compact, then & is compact by theorem and U, (&)—~E,
or  has a uniform a.c.n. by what is just proved. The converse under
the above hypothesis is a consequence of the same result of [9]. That
such {U.} exists is shown in the next theorem.
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Another condition for the converse part is to demand tl}at T*:
IF1— L2, and that T De defined by a “kernel”. This was shown in [2.0].

Definition 4.3. A B-space Z is said to have the metrie approm‘mutw%
property (m.a.p.) if the identity map on ' can be uniformly axl?p?oxm'la.ted
on precompacts of &, by degenerate operators (i.e., those of finite dimen-
sional range) of bound 1. i

The purpose of the next two results is to prove that 1° and (If)
have m.a.p.’s. This is done by first proving it for M° and thfm extending
it by use of Theorems 4.1 and 4.2 above. It appears also possible to prove
this same result using the procedure of [25], Thms, 6.1 and 6.:1, after
using certain isomorphism theorems of the next chapter (-pa,rtlculacrly,
Thm. 1.1 there). The following approach has independent interest.

THEOREM 4.4, The space M*® has the m.a.p. o

Proof. Let fe M® and = = {Hy,..., B}, Eie.En, disjoint and
w(B) >0. Lebt 0< @esdy(p) with 65 =6°(n"), ¢ =1,...,2 (non-
zero), and define f, as

@) Io= D o (in)le, @ (Ef 76 73,

i=1

Then f, (¢ M?) is a simple function relative to Ty""' tl‘he @ thus far
is not required to verify any conditions. However, it will be chosen to
satisfy also B
(4) o' (6%) = G°(E;) [e(xe )™

This is possible. In fact by the Hahn-Banach theorem, there is an
o5 «(L9* and & 0'< Gy e Fp(p), vanishing outside E;, by '_Fheorem 1.113é
smeh that o(yz) = a3, (1x) = Gz, (B, and o =1 = ¢'(Az). So let
@, = o' (6%,)Gg,, and G° be their sum. So (4) holds. Thus G° is determine

2 i £

by =n. Now if .
f= ZaiXEif M,
i1

then clearly

O o GE)
b= 2 ety ey =7

=1
v it ! exist int functions
It may be noted that if u has FSP, so that ¢' exists on pou 4
nontrivially, then (4) was directly proved in [11], p. 580, under tg;a yIj]o-
thesis that ¢ is a leveling norm and in [13], P- E%,.that o verh es (r)é
Then it becomes o' (xz,)¢(xz;) = w(Ey). Thgse a,(_ldltlo.na,l hyp(;t 9:3:;)11
not now available, and the above form suffices in this general si

and subsumes the quoted results.
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Now define the degenerate maps U,: f—f,. To see that
‘ > t e at
uniformly bounded, consider (Us) we

o(U.f) = o(fa) = sup{la”(f)]: =" <1}

= sup ﬂ f f,,dG!: o' (@) < 1}- (by Theorem 1.13)

i freniea
< sup{;j T e'(G><1} (by (3)

- < o(f) sup {Z fé%xl“;) ai6l: (@) <1}

i=1 Q2

1=1 J

<etsm{ Y'fsun [lgidie: o) <1]: o'® <1)
By

< el supfsuo[ [ wiael: o) <] ¢@ <1}
2

< e(f) sup{o’(@): (&) <1} < o(f),

. sinees_g’(G)U=f9’(]G]). Thus U, is a contraction for each s
ince U,.f = f for step functions fe M, and appropri .

4 } ppropriate =, b
earhe? par?graph,. it follows that @(Uﬂfmf’)—>0 for aJIlIJ step ;tl’lric?:’iojill;e
a8 w is refined. Since step functions are dense in J® by definition. thié

?

holds for all fe M This implie
. Th s, by 1 [
thoorem e plies, by [9], IV. 5.4, the statement of the

Note that since for I? = L7, M
) I? = =IP1<pg
case already slightly improves [5], IV.8.18,. =S
TemoREM 4.5. Every com
pact TeB (L8, &) can be uni i
ted by degenerate operators of norm, at m;st >HT”. oy approsima:
ond l;rg;f(.lvfgfg:l)'si(f,f%), tI];'en let T =T,4+1T,, where T,eB(M, &)
: 2 . efore. T is compact, then so
; s are Ty and T,.
%;1;@ MBha}; gn.a,.p., by [14], p. 179 (A,), it can be approximated 111111'form.12y
R lg’:)" €ha,(s th, ), degel(l]irate and bounded by [|T,)|. (¥%)*is an (AL)-gpace
§ e m.a.p. (by [14], or Theorem 4.4 above). H ’
. 4 g . Hence by [14
gn &1:97& 11\)7 e aJ]l’so has the m.a.p. Uonsequently, T, can be uniformly ai)p[rongz
poatef | zef i]jl,;];]?(;’\?’ E,f &), degenerate and bounded by IT5)l. T % is the
ent of =, and =,. Then 7 = ; i
T,<B(I %) bounded by ||T}|, and [|T— 7. . o e Benarste

A, |- 0 as & is refined
Moore-Smith limit is taken: Thig gives the desired result. » and the

oo, for any u, this
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The main result on the m.a.p. is given by the folowing

THEOREM 4.6. Both L* and (L%* have the m.a.p.

Proof. By the preceding result TeB(L? Z), compact, implies the
existence of a degenerate T,eB(IL% %) with |T— T, -> 0. So T is of the
form (if = has n elements)

n
T,= DyiC)oy Y, me, i =1,

i=1

This means T, e(L)*® %, the formal tensor product. Since T, T
uniformly, it follows that 7 lies in thenorm elosure of (L8* Q ¥ in B(LA, &).
Hence by [14], p. 167, Prop. 36 (in which only the completeness of % is
needed), (Z*)* has the m.a.p. But this implies, by another part of the
same result, I¢ itself has the m.a.p. This completes the proof.

Remarks. 1. If I = I?, 1 < p < oo, the above result was proved
in [25], and in [14]. The above theorem also implies that every Orlicz
space, on any measure space, has the m.a.p.

9. Actually, Grothendieck’s propositions 36 on p. 167, [14], and
39 on p. 179 (cf. conditions (A') on 167 and conditions (A) < (A,;) on
p. 179) imply that a B-space £ has the m.a.p. iff any one, and hence all,
of its #(n > 1) conjugates has the m.a.p. This then yields a more general
result that the m-th (n3>1) conjugate of L:-space has the m.a.ep. also

1.5. Tensor products. The importance of tensor products in funection
spaces L¢ is due, in large part, to the fact that someof the key results
of the sealar case can be transfered to the vector valued spaces L& . Since
this is indeed the case, for some work in Chapter 2 below, certain results
on the greatest and least cross-norms, for 1¢ and %, will be given here.
They also extend and complement certain results in [14] and [12].

Definition 5.1. (a) If & is a normed linear space and % is a B-space,
then /,(B(Z,%), p) stands for the class of additive set functions
G: I, B(Z,%), vanishing on p-null sets such that ¥ (@) < co where
the morm ¥ ,(-) is defined by

& (@) = sup g (G2): ] <1, 22},

then () and other symbols being as before (cf. Definition 3.1).

(b) The class %, (B(Z, %), p) stands for the additive set funcbions
v: X+ B(Z,%), vanishing on p-null sets and for each g e zeZ, Y2
is pfa with its support contained in that of an element of L°—M* and

{1#111(£2) < oo, where

(2) [PI1(2) = sup{Ipll(2): llell <1, 2 2T
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(¢) Let %o’(B (Z,%), :“) = J579’ (_B(ﬁf, @)5 MJ@'%G'(B (£, @)7 ©), and
Ge¥y, G = G+ @, implies B, (@) < oo, where

(3) By (G) = sup {||Gelly: llo < 1, 2¢ %}.

This definition is necessary to restate a version of Theorem 3.2 when
Z = B(%, %), since it is very useful in characterizing some tensor produet
spaces I°®,% and I'®,%, where y, 1 are the greatest and least cross-
norms. Recall, from. [33], that if

n
i = Zmi®yie£’{® v,

=1

& formal tensor product, then
n
4) y(t) = inf {Z llz;]] llysll: all representations of t} ,
=1

and 2'®,% is the completion, in this norm, of #® %. Similarly, if ¢ is
a given element of £ Q # as above, then

n
(5) Mty =swp | 310 @y was Il <1, 'l <1},
i=1
and Z®,% is the completion, in this norm, of Q #.

THEOREM 5.2. In the notation introduced above, B(I*,B(%,%)) is
isometrically isomorphic to %, (B(Z, %), u). More explicitly, every T eB(L?,
B(# ,@)) can be uniquely represented as -

(6) If = [fa6 = [fae+ [F(f)a6,, feIr,
with ‘

Tl = B(), & =G1+6,e%, (B(Z,9), ).

The proof is identical with that of Theorem 3.2. Note that by definition,
1T = sup{sup[|IT(f2)lle: Jle]l < 1]: o(f)<1}. From this theorem, it is
possible to characterize the subspace B(#%,%) of B(L%,®)
My =3p{fz: fel® weX} < L.

It is again convenient to introduce the following

Detinition 5.3. For any T L¢— B(%,%) let the two norms he
given by )

, Where

(" NN = sup{ly™(TNllew: e (N <1, Iyl < 1}
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a/nd n
@) T =swp {3 I Tla: o 3 H) <1, I<L fi A gy =0},
=1 =1

and if T My — ¥, then similarly
n

8) DN = sup {;‘ W ()i o X fm) <1, I <1}

It Ge%y(B(Z,¥), p), also let
(9) Ry(@) =sup{llly*@llly: w*I<1} & R(Q) of (3) above).

(As usual, here f A g = 0 means f, ¢ have disjoint supports.) g
THEOREM b.4. If TeB(My, ), where ¥ is a B-space and .’72‘ «;n;rw;]w

linear space, them there ewists a unique T'eB(LQ, B(:?X ,@/))f iw:u Tywith

correspondence T (fz) = (T'f)z for all fel’, ze Z. Mme;:@:;;;t o

Tl < oo, there is a umique GeUy(B(Z,9Y), u), suc

(10) R,(@) = T <ITI<ITN = NI~ = Be (@),

and thus (7) and (8) are equal in this case. Furthermore, if ;F" is the scalars,
then |T)| = |||T'][l, and if I¢ = L then |T'| = Tl = - s cince
Remark. If Z iy the scalars, this reduces to Theoreyl 3.2 s e
: if It = 17, p > 1, so that .#% = I, this result is essentially
ey —Th’ o n’ equations (8) and (9) were considered in
iven in [5], p. 196. The norr : ( e
%]11?];3“’1 a.n[d]i"egpectively in the Orlicz space cases in [5] and in [37]1
proof follows the ideas in [8] and will be sketchled. e atoment.
Proof. For any given T eB (A, @), let I' be a]i in ﬁ‘:m
The boundedness of 7' and the first part of (10) follow

1T (el = 1T (fo)lle < 1T () el

i ith
Hence by Theorem 5.2, there is a umque Ge¥,(B(Z,¥), u) Wi

T|| = Bpl®).
@  Tf= ,,f fa@, or T(f2) = Qf (fey a6y, T

‘ — 0 since linear combinations
it 7' =0 thenG=Os0thatT. .
i {Jggilu;r;f (imse i;1 Moy, So T« T’ are In one-tl(f)z-'cme colr;e?g;md‘:ﬁic(;
0 i * == r
first note that || 2 s
To prove (10) completely, ab =
is a con:)equence of (6), (7), and (9) and Definition 3 (G)A

n
e X f/\f =0.
= f.,;z,;e‘/{%,‘y B2,y Ji b
g 1:—’=Zl
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Such elements are dense in the latter, and usin,

one g (8), since T': Ay &,

(12)

I = sup {3 19" 2zl o) <1, ) <1

< sup{ 2 0T laelld: elo) <1, Iyl < 1)

n

= s {3 [ fallaw@fes o) <1, 191 <1} by 1)

i=1 Q

<suwf| [ laty"e)

2 oW <1, I9*l <1} = By (@) = |||

For the oppezsite inequality, one can proceed as in [5]. Thus for any
e>0, and g = ; i

, g Zé:f“ 0(9) <1 with f; A f, = 0, choose a e Z, (2] =1
(Hahn-Banach theorem) such that

W (T f)ller < ™ (T f) e + emy & = 1,..,n.

Then

g =2fz//g e(ldl) = elgh <1,
and, by (81)7

- * ! | * i Y
[ ra0 @)z =2 [hab]e—e< Syt < i
Hence -
(13) N T
Y 2) a i [
fOHOW:?v (12) and (13) yield (10), and. the main part of the theorem

The assertion about L? = It
. = LY, and that when # is sc
to a result in [57], p. 197. Thus the result follows.

2, ;he( ;b;?} tileorem toget*her with the fact that for any B-gpaces
C];'O’ss-]i:)rml(c;, (Ei))goféﬁl;gt%), l)ﬁr [33], p‘. 47, where y is the greames't
i ) et [1;, o ains: the following result (proved differently

COROLLARY 5.5. B(IL., (0

.. e gB
eaplicitly, (Ly)* ~ B(I, g;’,*) )
Z is amy B-space.

alars, is similar

(L%, B(#, 0)), where ¢ = scalar
= rs. More
= (I'®, %), and that L = I'Q,%, where

-1
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Algo since the theorem implies the inclusions
(14) (A#Y)* = B(My,C) = B(I¢, B, 0)) = (1°®, %),
one has the following important consequence:

COROLLARY 5.6. For any B-space %, and the BFS I, one has
(15) L'@,% « My = Ly,

where the first space (with the strongest topology) is densely embedded n
the second (in the morm topology of the latter) and the second space i8 180-
metrically embedded in the third. There is equality throughout if either It =1
or & = C, and between the last two if ¢ is an a.c.n.

Another consequence of the theorem is given in the following

COROLLARY 5.7. Let 8 be a compact Hausdorff space and C(S) be the
space of real comtinuous functions on 8. Then

(16) 0*(8)®,% o= Ly (8,») < ea(8,», 2),

where § is the Stome-Gelfand-Kakutani space, v is a finite regular Borel
measure on the clopen-sets of ;§, and § is homeomorphic to a closed subset
of §. The last symbol stands for the space of & _valued v-continuous o-additive
set fumctions on the Borel field of @, of finite total variation. The isometric
embedding on the right is onto iff the B-space % has the R-N property
relative to v.

Proof. By the classical resnlt of Kakutani ([13], p- 1020), the (AL)-
-gpace C*(8) ng(S’ , ), where the right space 4s as described. Then
using the preceding corollary the firgt half of (16) obtains, and the last
inclusion is obvious. If & has the R-N property, then the last space can
be expressed as ;(67 ,v) and only then, as is well-known. (See also [37],
p. 33, Thm. 5.)

It may be of interest to note that & has R-N property with respect
to a (finite) measure » which is not purely atomic, then it has the prop-
erty relative to every (finite) measure. (Cf. [3], p. 26, about this and
related results.) Since, as noted in the proof of Theorem 3.3, § can be
homeomorphically embedded as 2 closed subset of 8, the above result
slightly extends [12], Thms. 6.2-6.4. As pointed out, for instance, m. [121,
the result can be stated for 8 locally compact, by reducing it to the one
considered here by a standard compactification argument. )

Now a general result on least cross-norims will be given. It illuminates
the duality theory of [33], P- 138-143, and extehds also (121, Thl-n‘ 6.1,
to the IL-spaces. Recall that f: Q=2 is wealfly measurable iff the
numerical function #*f iz measurable for each z*eZ. Let W% = sp{(J:
Q> %): f weakly measurable and w,(f) < oo}, Where the norm w(+),

"
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defined by Pettis [24] for the L”-case, is given by

(17) wo(f) = suplo(a'f): o] < 1}.

The main result here is given by the following

THEOREM 5.8. With the above notation, L° '
i TOREM & = W§.

be identified isometrically as the ’ " e,
(L%)* into Z.

An immediate consequence of this result, and of (15), is the
CoROLLARY 5.9. If I? is a BFS, then ‘

(18) L@, % « My < Ly « Wy = 1°®,%,

where the inclusions are both algebraic and topological. If o is a.c.n., then
€Ny

there is equality between the second and third spaces.

Proof of Theorem 5.8. Consider the formal tensor product L9®lﬁ” .

If 1 QZ, then
ki n
t =Zfi®”i (=D fim) for some n>1.
= i=1
n
If ft = . ¢ s ‘
I igl' fiwy, then f* is weakly (even strongly) measurable and

wy(f) < 2 o (fi) ) < oo.

Let 7% (I9* > Z be defined by

(19) o (I'6) = (o (f)a6, Getp(u), 22
Q

(by Theorem 1.13). initi i
By ). Then by definition of A(-) in (), and with (19), one

9
(20) M) = I = sup{sup ™ (T'@)|: ¢'(&) <1, [lo*) < 1}
= sup{e (@™ (FY): k¥ < 1} = w,(fY.
It follows that I°®,% ¢ i
: W% = W, and the inclusion is i et
embedding. Thus the correspondence t— 7 —s ftis an isomei'xr';r ometie

In order to prove the o ite i i
] 4 pposite inclusion, let f: 2 Z be a weakl
measurable function with w,(f) < oo, and let 77: (L9* % be definecll‘ bi

(21) TG = [0*(1)d6,  Gesty(w), d e,

hen as a b-ove /i = ,wE < oo and moreover, T iS & COID[)&CU
operator. The la,tter fau()t fO]lO ws from an. &Igul’ ment of P e’ titis’ [24’]
erat ?

6.11, since the Dresent case can be proved along the s semma

ame lines using

& can
space of all compact linear operators of

icm
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the properties of integration ([9], III. 2). Alternately, the present case
can be reduced to that of [24] (in which Q = [0,1] and d@ = gdv are
not erucial) as follows. Consider the restriction o-field £(H), where He X,
and note that @: Z(B) > scalars, is a bounded additive set function.
Then by the important isomorphism theorem ([9], IV.9.11), &> G
a regular c-additive set function on a compact (Stone) space, where this
correspondence is an isometric isomorphism, and the result on the latter
space is now true by Pettis’ Theorem [24]. Consequently, the same holds
true by considering the preimage under the isometry on Z(E), in exactly
the satne way as in [9], IV. 9. 12, and since F <, is arbitrary the complete
statement obtains.

Now by Theorem 4.6, both L¢ and (I°)* have the m.a.p. So the compact
T/ can be uniformly approximated by degenerate operators 7. But, by
[14], p. 168, [*®,% can be isometrically identified with the subspace
of compact operators, in B ((L%)*, &), which are uniform limits of degenerate
operators iff I# or £ has the m.a.p. Since T7 is shown to be one such,
it follows that there exist t,eL°®%, and T™, as in the first paragraph,
with |77 — T'm|| = 0. Hence A(t,—in) = | Ttn— Tm|| — 0 as #, m — oo. Hence
t,~t in the A(-) nmorm, and ome has the correspondence t—> T* = T7.
Thus t = f and fel*®, %, since the latter is closed. So Wg < L° &
and w,(f) = A(%). This completes the proof.

If Ie = I', this result was given in [12], as noted above, and if
I° = L%, it was noted in [14], D 90. The above and Theorem 4.6 have
the following consequence:

COROLLARY 5.10. For any B-space Z, one has

(22) (LQ ®;.£0) o (_I/E)* @y%-* and (LE ®y Q")* o (L‘?)* ®; x*,

The first equality is immediate from the preceding proof, since L° hfms
the m.a.p., and of [33], p. b1, Thm. 3.6. The last inclusion is proved in

.[33], p. 52, Thm. 3.7. with e =y here. There is equality in the last

inclusion iff every bounded operator on I° to Z* is compact. Thus by
[331, p- 141, this fact together with the reflexivity of both L? and £ (When
this is assumed) imply, and is implied by, the reflexivity .of L‘-’ = EE and
of L¢®, %. (The first condition holds only if either L? or % is finite dimen-
sional!) ]

The next result is important for a projection problem in the next

chapter. .
ProposITION 5.11. Let I° be @ BFS, ¢ < L* be a closed subspace,

and F% = sp{fo: fe I 0¥ L. Let ¥ = & be a closed subspace. Then the
Following two statements. dre equivalent:
(I) There exists & contractive projection P on M onto its subspace Sy
(I1) There exist contractive projections Py on It onto &°, and P, on
Z onto ¥,
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Proof. (I) = (II). From the fact that &% is a closed subspace of
the B-space 4%, L° can be identified isometrically with a subspace of
My and &* with the corresponding subspace of &y In fact, if feI? with
o(f) =1, and @eZ with |zl = 1, then let P, be defined by Pi(g)-x
= P(gz)e 4. Then the subspace & = {P(gz): geL? of &% is linearly
isometric to ¢ and the mapping P,: L¢> & given by P,: g=P(g),
above, is the required contractive projection. Similarly, the mapping,
(Po2)f = P(fz) defines P,: #+P,we?, a contractive projection on
onto . Thus (II) holds.

(IT) = (I). It Py: I® > &%, and P,: & % are co
Then by [33], p. 58, it follows that there exists ac
on If®,% onto ¥*®,% and the latter is a cloged
But by Corollary 5.9, these two Spaces are respectively dense subspaces
of Mg and & in the topology of the latter. Also &% 15 a closed subspace
of .M, from definition. ¥t can now be checked directly, by considering
adjoint mapping of P, that (I) obtains. It is also a simple consequence
of [32] which asserts that there iz a contractive projection P: My > Sy
such that 13|L“ ®,% = P. This completes the proof.

1.6. Remarks and open problems. The I¢

“closure” properties among function spaces
known that, when u(Q) < o,

ntractive projections.
ontractive projection,
subspace of the former.

-spaces have certain
in the following sense, Tt is

D(t
LY (p) = U{Lm(#):‘T(lTOO};

where L is an Orlicz Space corresponding to the Young’s function D, and

that every Orlicz space is isomorphic to a strictly convex (= rotund)
Orlicz space. (L*(u), for any u, is isomorphic to an Orlicz, but not a Lebes
gue space!) In this way the L®-spaces form a “closure” of the P, pz=1,
Spaces. On the other hand, if M? < L? corresponds to M of this paper,
then M® is not necessarily an Orlicz space in that it is not an L9, for
some Young’s function Q. However, it is'an Lf-gpace on the same measure
space if o(-) is defined by o(f) = Ny(f) for fe M®, and +oo for
JeL®—M?, where Np(-) is a norm on the L®-spaces. Thus the L°-spaces
form a “cover” to the L”-spaces. It is remarkable that, as seen from
Section 1.1 and [26], the L®- theory already reflects the intricacies of
the IL®-spaces, at least for the duality theory.

The funetion nerm ¢() can be interpreted, in conjunction with
the lifting property (cf. [7]), as the wniform norm also, as was noted
in the preceding sections. Thus the representation, theory of ¢(8) can
be formally obtained from that of the L*-spaces. This will be briefly
Hlustrated by deducing the result of [38], and this clarifies a discussion
in [12] on this theorem. Tt illuminates the structure of the problem.

icm°®
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Let C(S) be the real continuous function spaces on a compact
Hausdorff S Then, as before, it can be identified with a closed subspace

of L°°(:9’, y) with § being homeomorphically embedded .in the eomI.)asct
S’, through the use of [18]. Then Cy(8), of Z-valued continuous fu::clglons
(% a B-space) can, be isometrically identified as o .subspace of Lg( ,.w).
Since L™ (:S’ ,v)®, % is a dense subspace of LF (8, ), it follows from Section
1.5, that

. - s .
(0x(8)* = (LR(8, »)* = (L=(8, &, %) = B(I*(8,»), 2”)
= 'ﬂg'(‘%’.*l ¥),
where o'(-) =|-ll.,, the L*(»)-norm. Here the first is an isgmetr:(}
embedding and the second topological (M2 = L™ here!). T eB(L*(8,7),2"),

and T = T|C(8), T’ (fa) = T(f)-®, ve%, then i”e(Gx(S))* and by3 ‘1‘;1::(;
orem 5.4, |[i”H = [||17’]H, so that, arguing and using Theorem 3.3,

gets (with S < 8)

i (fo) = [ (fmyid, we®, |TI = IEN = Be (@),
s

here G = G|8, Ge o£,(2",»). But in the present case, R (G) = total
wi =15
variation of @. Thus

P(fy = [, [eOx(8), |T|-= var(6).
8

. . -
| Since § is compact |T'f,] =0 as [ful ~>(1 one sees ?:;to? ‘;s*zz;ueg
and hence strongly o-additive, and‘ifbM éﬁ, %b)oi:eth(?} s(ps))* Ay
inite variation, then, by the a , Oz = )
me:su;]istolf) ﬁ?’? 1, p. 269, %’7* has the R-N property 80 thert? is ei(}lu?élsﬁr
llfzee(co;paz; with Corollary 5.7). This result was ongma;]]llyogwen ,
. i 2~ eory.
and. discussed differently in [12], mthzu; t}len].j,t s:;:;; o gé ) when
1. If % is not scalars and %" 18 R / hen
L : 2§LEIJ_$S 1ot beenh represented..Thls can be 'd(_n;le a.sblenu’,;.‘élleo o
5i if (fg,)* is determined. The solution of this will also ;
A4 &
the, projection problem of the nex:;t ch;la)ix:de;.an ot diaraciciisation
t will be of interest to o
of Lfgo;LEghQié?:ezvms to be closely related toﬂjh(:j lftufy:yogf[lz;)sz)lugzaj 4:y
e o 0 lizi e theo ) - 304.
“subnmi related tgfo(- ), generalizing the the
;‘m?}l@ng 011‘:: ra;isiligeewor‘ < éf E4] i relevant in this context, buﬁ, the
01‘ . ’ b ; i : ,‘ .- ‘_‘",“‘ S
.general case has been open: o i |

1
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II. CONTRACTIVE PROJECTIONS AND APPLICATION

2.1. Auvxiliary notions; first reduction. In this section a few concepty
on the Lf-spaces and certain isomorphisms will be recalled. Then a useful
isomorphism theorem, necessary for a first reduction of the projection
problem, will be proved. It has some independent interest.

Recall that for each o(-), an associate norm e’ () on poimi-functions
is given by

ey ¢ () = s {| [ fou|: o(9) <1},
2

and the higher associates are defined as o” = (g')’ ete., all of which are
function norms. Moreover, ¢’(-) (and thus all higher agsociates), has the
Fatow property (ie., 0 <f, 11, a.e. implies o(fu) te(f). A result of Hal-
perin and Luxemburg shows, as noted earlier, that ¢’ is non-trivial (on
point-functions) iff 4 has the FSP, and that ¢ = ¢" iff o also hag the
Fatou property, and they may only be equivalent otherwise. o(+) has
the weak Fatow property it 0 < f,1f and sup o( fu) < oo implies ¢(f) < co.
Then there is & (unique) congtant 0 < 7 <1, such that yp < p”” < ¢ (when
# hag FSP). The Fatou properties imply the Riesz-Fischer property and
thus L is a BFS. (For details, see [207], [21], or [39].) Also in what follows
all measures and o-fields are assumed complete,
by completions otherwise.

The work of the following sections depends on several isomorphism
theorems on the equivalence of measure and funetion spaces, in the sense
of [18] and [34]. The first reduction, based on [27], with [18] and [34]
(ef. also [10]), is contained in the following

TeroREM 1.1. Let L°(X) be a real BFS on (2,2, u). Then there
owisls @ measure space (S, #,), where 8 is a locally compact Hausdorff
space, & is the o-field generated by the compact subsets of 8, and v is finite
.om_each compact set, in terms. of which Lo(8, B, v), or L*(A), is isometrically

(and lattice) isomorphic to. L*(X). Moreover, every element of L(F) has
.6 a-compact support. . .

Proof. First suppose that there ig an foeL*(Z) with f, > 0 a.e. Let
% = L°(Z) be the algebra of all esgentially bounded functions. It is clear
that, if X, ig the o-field generated by €, then I°(X}) = I#(Z) in the sense
that any function in the one space differs only on a null set from. a function
in the other and vice versa, where the functions (in %) are selected with
the lifting map (cf. [7]). Since € is & vector lattice, the closed subspace
€ determined by ¢ in Z*(Z2), is an (AM)-space, [18]. Sincef, , = min(f,n) ¥,
and f,, >0, a.e,, it follows by an argument used in the first proof of
[27], Thm, 2.1, that there exists. &.compact (Stone) space S, such that

%=~ 0(8,), of real continuous functions. So its adjoint space (0(8,))*,

since they can be replaced -
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being an (AL)-space, is (by another result of [18]) again isometrica]ly
equivalent to L*(8, &, ), where v is a finite regular measure on t'he
Borel sets # of § which is also a compact (Stone) space. As r%otecl earlier
(ef., Thm. I.3.2), 8, can be (homeomorphically) identified with & clqsed.
gubset of § and thus, with the lifting map, #(8,) = I°(S8, #, »), so that
% = 0(8,) = 0, say. R .
‘ —-Le(t q:)f |—>’f60ybe the mapping on % onto C, t‘hen Fi = 0 a.e. (») iff
f =0, ae. (u), and [|flx,. = 7l A characteristic function of € goes
into a characteristic function of C. Let ¢ on € be defined as follows. For
Fe%, let ¢ (F) = o(f), where ] = ¢(f). Clearly, ¢ is afunction norm on C.
I£0 < feI¥(Z), let f, = min(f,n)<¥,and f, = p(f,) ¢&, so that ¢ Lﬂ) = o(fa)
for all n. Since f, 11 a.e. (u), and F,1F a.e (';:), ‘where ¢ is extendeq t‘o‘ha,v.e
? = @(f) unambiguously, one can define ¢ (f) = e(f). The deﬁmtl(;n ;s
correct and does not depend on the particular sequence useq. In g% s
this is immediate if ¢ has the Fatou property.' Otherwise, s,mce I if)
is BEFS, there exists another norm g on If' (%), which has Fatou’s prop:ioryl
(cf. [39], p. 450, where this latter norm is deno.ted or, and the‘assllln;l;) o
of o-finiteness of p in that proof is not -essent{a.l and.the result ho srm
general u), and ¢ < ¢. Hence the extension is obtained for thlsA 1.10 .
Since L? > I#, the elements of I?and L° have simult.:ape_aouslfy ﬁm’g:s gllf'
infinite ¢ and ¢ values, and from this ishe above definition 01: 0 b
follows at once. Let L¢ (8, &,v), or Ii? (8), be ﬂ-le corre.spt‘)ndmg FS..
Then the extended ¢ on IL!(Z) onto L_“'(fﬂ) is an 1sqmetnc 15?]1;1?3031111;?;
and preserves lattice operations. Identifying ci Zx;td( gf, ,gtahi )res
in thi with the desired measure Spa , B,y v).
. th}}iv:azi’nsider the general case that theve need not lz)e fa,;l i‘o ; 0?’
a.e. in I¢(%). Let & = {f,, ael} = L¢(Z), where fa/\];l{r =Since01}2(2) :
in I, i.e., f,’s have disjoint supports, and are non—nuf. e e
4 vector lattice, it may be assumed that f,l_> 0, a.e. haor A e;‘bound
ew}ery linearly ordered (by inclusion) subcollection of ‘; bs agxor 5’1; Thonnd
(their union), there exists & m&xima:} element &, = &, gl Lo e
PRIl Cl—llifﬂ ) fg,lsz !(J)}LzzItfegg ;)rszpﬁflﬁ):set. Forj if this gé
eI} contains and hence equ v ! Ty
fa,ls;,} there exists B < 2—8,, with u(#) > 0. That is, ;VGI; if f.n easfr o eo
is not y-meagurable (since u is complgt‘e), ‘there ex1ds tﬁeo o i
Bo A with u*(4) = p(B) by the classical Ga;rathéoV 21?’ . mgédia,tely
the outer meagure of w). From this thv_a above ?;Ee :ﬁere j
holds except for a trivial case, of no mter:si;;ﬂ Py ;n e e (P
feL8(Z), f, > 0 a.e. on H, so that leE/'\fﬂ = 0,allfel,. s apmtton,
T} 5.7 il contmdi(c ts(';}?f mall}ii(%&hz]::rf ‘ g ?gi)mi(;vihe restriction
nsider IL°(X(8p) = y - Wher 4 | Toste
o—fid§1¥ﬂiz §,. Then by the special case above LY(X(Sp) = I*(Ss, Beveh
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where .93,? is a compact (Stome) space etc. Let S = UJ {;S’,,, pely}, #
= ¢(UJ %;: B <I,). More precisely, 8= U {{B} X 8p: pely} and B = o{yp,(B):
EeX, and y,: @+ (8, &) is an isomorphism of Q 84}, the o-tield generated

by the sets shown. Then 4 = § is measurable iff 4 N S‘psﬂﬁ for at most
countably many B’s. Let » on. # be defined by

v(4) = sup{ 3vp(4 0 ) felf, A

Then § becomes @ locally compact (extremally disconnected) space
Wif,bt the topology of the so-called ““topological set sum” of the topologies
on 8, of Bourbali (cf. [34], p. 288, and further discussion in [10]). From
+thig definition it now follows that L?(X) =~ L*(#) and the correspondence
is both an isometric (and lattice) isomorphism. Moreover, if feL*(X), 4,
= {Ifl > 1/n}eZ;, since o(x4,) < o0, and y4,¢% 50 that p(ry,) =72 <0,
A, = § being compact. Since " "

supp(f) = Q 4,

it follows that

supp (f) = U 4,,
n=1
‘which is o-compact in 8. Also vﬁ(ﬁﬂ) < oo imyplies »(-) is finite on compacts
of 8. Thus I°(2) = L* (%), with (S, #,») thus constructed satisfying
all the requirements. This completes the proof of the theorem. (This
extends to the complex case also, with trivial changes of proof.)

Some useful consequences will now be noted.

CoroLLARY 1.2. If (2, X, p) is o-finite, then Lf(X) is isometrically
(and lattice) isomorphic to L°(S, &,v), where 8 is a compact (extremally
disconmected) Hausdorff space and v(S) < oo, v(-) being a regular Borel
measure on A, the o-field of clopen sets of 8. More generally, if (2, %, u)
48 such that there exists an fyeI*(X), fo >0, a.e., then the same conclusion
holds (clopen means closed-open).

The last statement was proved in the first paragraph of the above

proof. As for the first part, since p is o-finite, there is a weak unit

0 < foel#(X) which i§ determined by a sequence {y4 } < L*(X), Loj A,
. - n

— ©, u(4,) < oo, 4,1, (This is the o-admissi "t

‘ " . o-admissible sequence, cf. [20

P. 153.) Thus the result follows from the preceding. ’ 0%

EFhe_ above corollary and [34], Thm. 4.1, yield the following comple-
menting the result in [34], p. 306; - :

icm
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COROLLARY 1.3. A measure ring of a o-finite measure space (which
is therefore complete, see [34] for the termimology) is strongly equivalent to
the measure ring of a finite measure space.

Another consequence is the following result which strengthens and
elaborates the last part of [27], Thm. 2.2:

COROLTARY 1.4. If M? < I? and o < M° be a subalgebra (or @ wvector
lattice) of bounded funciions satisfying the conditions:

(i) there is an fyes,

(i) fess implies its complex conjugate fedd, and ‘

(ili) 4,, Ad,eZ, 4, N 4, = 0, p(4;) > 0, implies the ewistence of fiesd
with f; >0 a.e. on A, and f, <0 a.e. on A,.

Then §p(H) = M°

Proof. By definition of M*, given ¢ >0, and fe M®, there exists
f,eM®, bounded, and o(f—f) < &f2. Tt suffices to show that there is
flesp(s?) with o(f.—J.) < ¢/2. By Corollary 1.2, using (i), for this proof
one may assume u to be a finite measure, by going into the isometrically
isomorphic image in I°(%). Bub then this follows from the fact that
every bounded function in L*(Z) (x finite) can. be uniformly approximated
by step functions in sp(#) (if the o-algebra generated by + is %,, then
I¥(Z) o= I*(Z,) by [27], Thm. 2.1) and thus in ¢(-) norm. This completes
the proof. .

" Remark. Such a result, in a special case, was used in the proof of
[20], Thm. 1.4, and an alternate proof of it was given in [39], Ch. 15.
As noted. in the context of Orlicz spaces filling I* if u(R) < oo (cf. Section
1. 1. 6), it may be remarked that among the funetion norms, for L¥2)
with p() < oo, the topology of uniform convergence of elements in L*
is stronger than that induced by the o(-) norm.

The next result gives the existence and stracture, in an important
special case, of contractive projections which will be useful later. The
Fatou property (FP) will be needed. .

TusorEM 1.5. Let I*(X) be ¢ BES on (2, Z, ) such that o, with
FP, has the localizable property (¢f. Thm. 1.2.6). If & <= X is a o-field
and I°(F) < I8(X) is the corresponding subspace of FB-measurable functions,
then there ewisls a contractive projection P: I8(Z) > I*(#). One such operator
is P = B, which is uniquely defined by

(2) [fip = [B*(Dap, FI*(E), Aedo= 2,
4 A ‘

where B, s the ring of sets of finite p-measure. BZ satisfying (2) is termed

the generalized conditional expectation relative to . ‘
Proof. Tt I#(#) = {0} so that %, has only p-null sets, define B® = 0.

I¢ L°(%) + {0}, then &, is non-trivial, and let %, be the tribe (= a-ging)l
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generated by #,. Then L°(%,) = L*(#). To see this, since clearly I¢(4,)
< L* (%), let feLf(%). Then there exist step functions f,L¢(%) such
that f, —~f a.e. Since ¢ has the localizable property, and each f, takes
only & finite number of values, it follows that supp(f,)e%,. So fo 8
Z%,-measurable and hence f is #-measurable, or a.e. equal to one that is.
Thus feL®(#,) and the opposite inequality holds.

Let 0 < feL?(#), and define

w(d) = [fiu, AeZ.
A

Then »(+) on X is a measure and let v, = |4, 5o that 5, is ug
(= n|#)-continuous. If §, = supp(»), then §4e&,. To see this, note that
the localizable property of ¢ implies the FSP of u and hence o’ exigts
as & non-trivial associate norm -on point functions. Then,

®)  e0>0"0)>e" () = sw| [gdi]: ¢(9) <1, geIf (@)
. Q
= lim{ S0t 0< .13, o0 <1},

Let' 8, = supp(g,)e#,, and § = | 8,¢%,. Then §, = r?»except
. . ==l
Posmbly for a null set (which can and will be ignored). If this equality
is false, then there exists an 4, u(4) >0,8 N4 = @ and 7:(4) > 0.

Then there exists a §eL*(%,), o'(§) <1 and a = [Gdv, > 0. Consequently,
A
¢" () = sup{ [ gd5;: 0< gL (@), o'(g) <1
2
> sup{ [ ga5+ [ gisp o'(0) <1, geI¥ (@)
4 5

> atlim [g,d5, ¢'(g,) <1, goel? (@)

i (as. in (3))
=a+0"(v) (by (3)).

This contradiction proves S, = § a.e., and thus Sye,.

By the definition of #,, there exist Ane%By, 4,18, (a.e.), and by

’Ehe R-}\T ?heorem (since §, is a o-finite set), there is a unique #,-measurable
J, vanishing a.e. outside §,, and such that

) = [fau,  Aea,.
4

It now the mapping BY: If (X) > I(4) is defined by B?(f) = }
(or = 0 in the trivial case considered earlier), first for f>> 0, and by
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linearity for the gemeral case, and noting that IL¢ = L < (I9)*, and
the norms are equal for set functions, then P = E*(-) is a (positive) con-
tractive projection. This completes the proof. [FP is used only at
the end.]

The operator B# has the following properties of interest, and they
can be proved with the properties of the R-N derivatives and a standard
computation. .

PROPOSITION 1.6. The mapping BZ: 10 (Z) > L2 (F) of the above the-
orem verifies the following relations a.e. (u):

(i) BE® is o positive contractive projection,

() BE(fB®g) = (B*f)(B%g), feL>(Z), geL*(2),

(i) Z < B, < X implies B*E*1(g) = BN B (g) = B¥(g),

(iv) (i)-(iii) also hold for arbitrary fumction norms o, with FP, if ug
18 localizable.

As an immediate consequence of Theorem 1.5 and of Theorem 1.2.6,
one has the following :

COROLLARY 1.7. Let I*(X) be reflexive, and B = X be a sub-o-field.
Then there ewists a contractive projection P: L°(X) — L°(&).

A simple direct proof of this result can be based on the representation
of (I8)* ~ I¥, as noted in [29] for the Orlicz spaces. Except in this special
case the projections onto L*(#) in general need not be unique. This and
the characterization problem will be considered in the next three sections.

2.2. Contractive projections; scalar case. In this section a complete
characterization of contractive projections on L-spaces of scalar functions
will be -presented, breaking up the problem into & number of cases. It will
be considered first for u(£) < oo, and the general case will be obtained
through several isomorphisms, using the above Theorem 1.1 and many
other results of [34]. Hereafter, o will be assumed to have the weak Fatou
property. ‘ ‘

PROPOSITION 2.1. If A < I*(X), on a finite measure space (£, X, u),
is o closed subspace, then there exists a function foe M with support 8y Such
thai every fe M is null outside Sy. (S, ttself, with the laiter property is called
the support of #.) If M is dalso « lattice and self-adjoint, then fo >0
a.e. on S, also holds.

Proof. It & = {supp(f): fe 4} < Z, then from the fact that every
finite measure is localizable (cf. [34], p. 284), it follows that there is an
S,¢Z, which is the supremum of &. So it is also the support of . This
seb can be approximated. In fact, there exist {f,} = #, such that

8 = g{supp(fn)-
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(For a simple construction of such a sequence, see [8], p. 448, or [1],
p. 396). If

fi=2 sf%(@(fn»‘l and g, = Dfilo(f)) 2t 2,
= i=1

n=1

then o(f,—g,) — 0 and since . is complete, f,e.Z. Clearly, supp (f;) = 8,.
If 4 is also a lattice, and s.a., then f, e # implies [f,] € #, 5o that replacing
fa by |fu] in the definition of f,, one has f,> 0, a.e. on 8y, as desired.

The next result, on the structure of vector sublattices of I? , is im-
portant. Hereafter 4 is a B-lattice iff it is s.a. and its real funetions
form a lattice.

THEOREM 2.2. Lot M < I7(2) be a B-lattice, p(2) < oo, and 0 <fulf
a.6., fpe M, fe-L“(Z)‘imply fe . Then there ewist (a) a o-field & < z,
(b) @ 0 <foeL(B) N L®(B), called & weak unit which may be taken to
be in L (%) also, and (c) 0 < gye A with 90> 0, a.e. on 8,, the support
of M such that f, A < g,L° (%) < M, where the inclusions are both algebraic
and topological.

Proof. Let 8, be the support of . and 0 < hye A with support
8;, as assured by the preceding result. Let & = {4 eX: hyy e A}, Then
8,¢# and % is a field. Since A,<#, A, 1A implies o % ay, T ot € L8 (2),
the hypothesis implies hyy . so that AeZ. So & iy also a o-field.
Let L¢(%) = I*(Z) be the set of H-measurable functions. It results from
[20], p. 163, with a trivial modification of the construction there, that
& weak unit 0 < f,eI?(%) N L¥ (#) exists, and it may be assumed
bounded (by 1). The next two steps will establish the stated inclusions.

(I) There exists a 0 < gge.# such that supp(ge) = Sy and g,L°%(F) = M.
For, if f, is any #-measurable simple function, then f,hye #. Now define
the measures us, and v on # by the equations

&Y ”SO(A) = ffod,“:

v(4) = [fihydu, Aea,
Sognd i

Where f, is the weak wnit noted above. Since us, and v are equivalent
(finite) measures, there is a unique #-measurable 1> 0 (by the R-N
theorem) such that

) J ot = ps,(4) = [y = [tfhdu, 4ca.
o4

Sond i

Since du can be replaced by the equivalent measure f,du here, it is
seen that I depends only on B butnot on f;. Let g, = Ifyh,. Then supp (g,)
=8, and (even though 80¢%) g, need not be F-measurable. To gee that
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goe #, consider
¢"(g0) = sup{| [ gogdu|: o'(9) <1, gL ()}
Q

= swp{| [ fogdu|: ) <1} (¥ @)
Sy )

= 0" (fo) < o(fo) < oo. ‘

Since o and o are equivalent, g,eL°(X). But there exist 0 <1, 1%,
a.e. 'where [, are Z-simple. So I,k e 4, as noted above, a;x‘1d lnhDTlf(.,h,,
= g,eL?(Z). Hence gy« # by the second part of the hypothesis. It remains.
to show that g, verifies the inclusion relation a.lsq. ) ]

First, if &, ={deX: gyyqe#}, then as ea.rhfar %, is a a«ﬁ(.ald.
I A<, , then h, = (hy—ngoxa)* < #, for each n scmee A i a lattice.
Since hy, they <L (X), one has hyy . A a.nd- S0 A 4. Th.us Zy, < B.
Interchanging h, and g, here the opposite inclusion obtains, so that
#, = % and the o-field is determined by .# alone, and does not de;;end
onoh0 or ¢,. To see that g,L*(%#) < #, let 0 <feL“(£J)., so that f,feL? (%)
(f, being bounded). So there exist 0 < f, 17, f,, are .?—sunple, and f,gp€ F.:I{
Since f,9,1f9 a.e., it- will follow that fg,e .# provided o(fg,) < oo. For

thig, consider
¢ (fud) = sup { [ fugmlgldn: o'(9) <1}
Q

n

—sup { o [golgldu: o'(9) <1},
A; -

=1
n
Jo= Za‘ilzip AeB, 0,0
1=1

n

=sup{Ya [ flgdu: @@ <1} (by @)

iml Bynd;

= sup{ [ fuhloldus ¢'(9) <1}
% :

= 0" (fofa) < ¢"" (o) < oo
Thus by the Fatou property of ¢
(3) " (fge) = " (fuf)-

Since ¢ and ¢’ are equivalent norms, t.his yields fgoe L (X); a8 des;)red-
Now both L°(#) and .# -are vector lattices. Gonsequently,. theha (1);(;
proof implies the desired result for all feLQ (.?). Note that if ¢ has
Fatou property o =o' in (3), and the inclusion would be an isometry.
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(IT) Tt remains to prove fo # < g,I*(%). For this it again suffices
to consider positive elements. So let 0 < fe .#, and it is to be gshown that
there is a uweL?(#) such that f,f = g,u. Let for any o >0,

fo = min([n(f—ago)*], go)e .
Then 0 <fnfg2erL"(2) so that gyy,e# and Ae#, where 4
= {f/g, > a}. Thus % = f/g, is #-measurable, and ff =fig,. I u = e,
which iy Z-measurable, it is to be shown that ¢{u) < oo, Now there
exist 0 <u, 14, u, are Z-simple. Thus u,g, g, = f, a.e., and o(f) < oo,

‘Consider again, with the equivalent norm o of ¢ for a computation ag
in (3),

W o> e ()" (gym) = sup { [ gow,lgldp: o' (g) < 1)
2

n

=sup{ 0 [ filgldu; o'(9) <1)

=1 SD“B'Z
n
Uy = Dbz, b= 0, Bied, and (2),
=1

= sup {Sf Fotalgldu: o' (9) <1} = o (uafy).

Thus with the Fatou property -

{8) " (w) = " (itfo) = " (f) < oo.

Hence fof = gou, and w<IL?(%),
So the desired inclusion follows.

Finally, let T: 4 > f, # = 4. Then the boundedness of f, implies
that of T' and since f, > 0, &.e., T ig one-to-one, and onto .#. Since .4 is
-complete, by the inverse boundedness theorem, 7' ig also bounded.

Thus. the inclusions are topological and the proof of the theorem is
-complete.

by the equivalence of o and 0",

Remark, Tt L*(%) contains constants, then f, = 1, and 4 = g,L%(%)
and the relation is an isometric equivalence in the above, whenever ¢ = o
(i.e. ¢ verifies Fatou’s property). Taking

_ (I
o) "ode”

:shows I*(#) need not have non-trivial constants. Also note that if o(*)
18 an a.c.n., then the second conditions on .# (0 < foe o, fotfelo(Z)
implies fe #) is automatic, by Corollary I.2.3, and is needed in, the general
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case. The underlying idea of the proof of this and the next two theorems
is abstracted from the IL'-case of [8] and the Orlicz space case of [29].

The above analysis admits the first characterization as follows:

THEOREM 2.3. Let I°(X) be a BFS with FP and u finite. Then
M = Lf(X) is the range of a positive contractive projection om L°(Z) iff
(i) A is a B-lattice, and (ii) 0 < f,1fL®(Z), f e M, n > 1, implies fe A.

Proof. Suppose .# verifies (i) and (ii). Then by Theorem 2.2,
Jo M < g, L*(B) « A, with the same notations as in it. But by Theorem
1.5, BE%: L8(2) > I° (%), is a positive contractive projection. Let P =g, Bg(-),
so that P:L°(%) > g,L°(%)is a positive linear operator, and “since
0 < fo < kg, a.0., 0 < &y <1 for an appropriate ko, and keeping it fixed,
it will be shown that P is a contraction. Tn fact, %, is the constant con-
necting ¢ and ¢’ through the weak Fatou property of ¢ so that %, 0 < ¢ <o.
Thus (with FP, k¥, = 1 can be taken)

koo (Bf) < o (Pf) = o"(9.B*(f)) = " (fo B (f))
= " (B*(fuf)) < " (fuf)
(fo is #-measurable and Proposition 1.6)
< koo” (f) < koo(f)
Thus P is a contraction in g¢-norm. To see P? = P, consider
‘(6), Prf = quw(goEg(f)) = !]oEQ(goh):

where h = E?(f) is %#-measurable. To show Pf = Pf, it suffices to
establish B (f,g,h) = fohys,, &.e., for all heLf (). The following equation
is a consequence of (2), firgt for simple heL?(#), and then for the general
case by monotone convergence:

(1) [ fohdu = ffogohds = [ B®(fogoeh)dn, A<
A 4 .

Spnd

(by (3))

(since 0 < fo < k).

Since foxg, =fo is #-measurable, (7) implies B?(gyfoh) = Moty
a.e., a8 asserted. Hence P = g,BE? is a positive contractive projection.
Now let P = TPT,T: M > f, #, defined by Tf = f,f, as in the proof
of Theorem 2.2. Then P: IA(Z) > M i3 .8 positive projection. But

D -1 L 1
(8) o(Pf) = o(T7'9B%(fof) = ¢ 7

= 0(9.E®(f) = o(P) < o(f)

since f, is #-measurable. Thus P is a contraction, and the result hqlds
in one direction. ) :

yoE;(fof))
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Conversely, let P be a positive contractive projection on I*(X) ang
jﬂ = P(Z*(Z)). Then .# is a closed subspace, and is s.a. To see that it
is & lafitice, let fe #, and to see that |f]e #, note that |f| = [Pf| < Plf|
since P is a positive projection. Since IL¢ is norm determining f;r 74
(cf. [20]), there exist 0 < Yny 0'(9,) < 1, and 0" (1f]) = lEm f}f{gnd/,a. Algo

n L

0 <t [(P(f)— /) ndu < Fm[o” (P |f)) 1~ [ (719, du] = o,

since P is a contraction in 0" (< o) also. Thig impli
: . . This implies P(|f]) = [f|e .
:9 (1) holds. To prove (i), let 0 < f, ¢ .#, and Tutfel*(Z). Again byrgle;ini-’
ion o(h) = supn{]fth): ¢'()<1}, ome has I?(3) — N{IMZ, @):
Ge Ay(n), o' (@) <1}
So consider 0 <6y, ¢(@y) =1, and @ is o-additive
' < -additive. Such @

onlyeexmt but are total on L°( = L¢") sinceo L iy non-trivial. TLet Oyn?—f
Sp (I} (2)) c L\(Z, G;o), sinece |- lhe, < o(:). Then P has a norm-preserving:
unique extension P to . Thug -
(9)

1= Bflhg, = If — Pl < U —Ffallue, + 1P (fa—Nlh,e,

2f=Talhe, =0,

by the monotone convergence theorem. Hence f = Pfe¢ #, and (ii) holds(*).

As above, g can be re " i i
S placed by o' here since P is also a ion i
¢ -norm. This completes the proof. confraction in

’ Iﬂ:.ﬁ[‘]ms; far, w(Q) < ©o was assumed. It will now be shown that the
:):s . egtends to a,rblltra.ry 4, using the work of Section 1.1 above, and
[34], in the following two Propositions, in which FP for o is assumed.

PrOPOSITION 2.4, et (2,2 )
4. y 2y 1) be a localizable measure space, and
L) brj’ the co?ﬂres.pondmg BFS. Then 4 < LX) is the range of a po’siu‘w
coniractive projection iff condstions ( i) and (ii) of Theorem 2.3 hold.

Proof. By [34]; p. 301 and P 282, I2) =} @,L%(L,, %, u)
where (2, Z,y 1) is a finite méasure space, 2, N Qalﬂ: @, and feL°(X)
can be ex: -y ‘

pressed as f - iazlfai, fa,,;sLQ(‘Qa,;s Zaﬁ Iua,;) = LQ(E%)J SQJY7 for at

most a countable get of indices (depending on f) and w(B) = Zo‘o,ua,(E N2,
Let J, = I¢( ' . .

0

VAN

n— oo,

2,) be the corresponding decomposition # = X@, 4, ”

) ‘

() Alternately, Pf =fodv, 0 < vely(u) by Theorem 1.2.2, and 0 < ,, = Bfy =
=gffnd”1+gffnd1’2 (v is Pfa), bl and v is g-additve. So lim ffn drvy = 0 and ’
f= nf favy, and then » = », follows. Thig gives (ii) also. »e
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[#M. = ya, A). Then it is seen that ., satisfies, for each aed, conditions
(i) and (ii) iff .# satisfies these conditions. "

To show the existence of the required projection, for each aed,
by the preceding theorem, there exists a P,: L¢(XZ,) > /4, which is a pos-
itive contractive projection. Let P = X @P, by setting

Pf = ZPaifﬂleJ/.
i=1 .
It is easily seen that P is well-defined, since the representation of
S by {f,}; the direct sum, is unique. Now P is clearly positive and P? = P,
To show ||P|| < 1, consider

o0 = o3P = (| (S .s.) ad]: @1 <]

< sup{}é? ] @ =§G ¢ (@) <1

by definition of the direct sum decomposition here, and P, is a con-
traction,
<supf [ fam]: ¢ (H) <1} = e ().
Q

The converse implication that if P: L°(X)+> 4 is a positive con-
tractive projection, then .# verifies (i) and (ii) is immediate from the
proof of Theorem 2.3 where the finiteness of x was not used, and the FSP
was enough. Here localizability of x implies FSP.

* The general case of x can now be handled as follows:

PROPOSITION 2.5. Let (2, X, u) be an arbitrary measure space, and
I°2(2) be the corresponding BFS. Then a closed subspace # of L*(X) is
the range of a positive comtractive projection iff conditions (i) and (ii) of
Theorem 2.3 hold.

Proof. By Theorem 1.1, L*(Z) is isometrically (lattice) isomorphic
to I°(%) on (S, #, ), as described there. Then L¢(Z#) verifies the hypo-
thesis of [34], Thm. 3.4, and hence there exists & localizable measure
space (67 , z , ), with I° (33) on it, such that there is an isometric (lattice)
isomorphism into (this will be onto iff » is localizable) and such that
# is mapped into a sub o-ring of #. Since then L*(#) < L°(%), under
the identification, and L°(%) trivially satisfies (i) and (ii), there exists,
by the preceding propoéition, a positive contractive projection P of
I%(#) onto L°(4). .

It P,: I°(%) +> #, where the given subset of L*(Z) is now identified

" with its image in L¢(2), is a positive contractive projection, then it follows

immediately that PP, = P.P(= P say) is a positive contractive projection
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on Lﬂ(ﬁf) - #, under the identifications. Hence, by the preceding pro-
position # satisfies (i) and (ii).

Conversely, if # satisties (i) and (i) and since IL? (%) always verifies
them in L"(gé), it follows immediately that .# satisfies (i) and (ii), in
I (.éﬂ) also. So by the preceding result, there is a Q on LQ(@ﬂ) onto ./,
and if P; = QP (= PgQ), ‘where P: L*(%) ~ 1°(%), then P, |4 = Qut =1
since A < L°(%) = L*(%), and Py: I#(%) — M is the desired projection.
Transfering these isometric maps to I*(2), the result obtaing, and the
proof iz complete.

Thus far, only positive projections are considered. It will now be
shown that the general case of confractive projections can be reduced
to the above case. In this reduction, the following property (D), found
in [8], will be useful and it is auntomatic for the I, 1 < p< oo, and the
Orlicz spaces L®, with @ (#)/t4 oo (cf. [1] and [29]). (D) was () in [8].)

Definition 2.6. (a) A projection P :L(X) — . is said to have
property (D), i N = {feL®(Z): f- # = 0}, then P(A4") = 0, ie., P anni-
hilates all functions in 7¢(Z) whose supports are disjoint from the sup-
ports of all functions of .. . :

(b) If A = L*(Z), and. (;ST y g , ;) i3 the localizable measure space into
which (2, X, u) is embedded under the algebraic isomorphism of [84]
(cf. proof of Proposition 2.5) let .4 he identified as a-closed subspace
M of I? (3’67) =3®,I° (ﬂ;a). It 8; is the support of ., = I¢ (,é}a), guaran-
teed by Proposition 2.1, let §° be the supremum of {8} = S. Thus (cf.
[84], p. 282) 8° is a .@mea,surable set, and any function in .# whose
support is disjoint with §° is null. Then the inverse image of 89, say §,,
in X, will be called the support of .

Remark. If =P(L"(2)), where P i3 a contractive projection
then clearly @f = P(xgof) is also a contractive projection onto A, where
8, is the support of .. Moreover, @ hasth e propgr‘ny (D). ENf= P(y ng)),

then N? =0, and P =@+ XN. (Hereafter FP for ¢ will be assumed.)

In view of the above remark, in the analysis of the range of contrac-
tive projections, it is no restriction to assume (D). Thus the general case,
extending Proposition 2.5, can be given as follows:

THEEOREM 2.7. Let A < L8(Z). Then A is the range of a comtractive
projection P, on L°(Z), with property (D), iff there is a multiplication map
" U (U f = nf); where 5 is measurable [l =1 ae., such that Q = U, PU,

18 a positive coniractive projection, onto U, (M), with property (D).

Remark, This result extends the L'-case, of [8] and also contains

the results of [1], [29], and [36]. The proof utilizes some computations
of [8], and will be outlined here,
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Proof. The direct part is easy since then there exists, by Proposition
2.5, a positive contractive projection @: Le(X) 1 U,(A#), which by the’
earlier remark, may be taken to have (D). So P = UQU,: I*(Z)— 4
is a contractive projection, with (D), onto .. )

For the converse, let P: I°(X)—.# be a contractive projeetl‘on.
The map U, will now be constructed, in the following four steps. In view
of Propositions 2.4 and 2.5, in which the positivity of P was not needed,
it suffices to prove the result for u(Q)< co.

(1) For any feL?, let 0; =fj|f] if f 0, and =1 if f = 0’_,50 that
by is measurable and |0;] =1, a.e. If now fe.#, and 0 < h < [f], then
[f— 0kl = |fl—h-and Pf =f. It is claimed that if @ = 6;P8,, then (‘a:)
supp(@) = supp (Ph) < supp (k) = supp(f), and (b) Qh= 0. To see t}_us,
gince LX) = N{L'(Z, @): 0< Ge Ly (n), o (@) =1}, as noted earlier,
consider a 0 < Ge &, (1), 0'(F) = 1, and Gis o-additive. Then [[.- he<o(-),
and let & = sp(L*(2)) = I'(Z, G). So lj on I°(X) has a unique (norm-
preserving) extension P to %, and Pf =f still. Thus |].P§f~— Hfh?”.li,;
< If— 6k, ¢. Hence the L'-theory applies to %, and the inequalities

(10) 0< [ (fI—1)d& = If—b/hiha > IPG— 6hlg ,
) = 103~ Qo> o Qo> [ (=11 a6 ()

ield both (a) and (b) at once. -
e %;heff(z), supp (k) < supp(f), then also (a) and (b) hold
for this » and f (e #). This is again obtained. by redl?icmg the C'::SG to (i).
'Thus, it A = {h<|f]}, then hy, verifies (i) and hyAO_ = hyell (;’), ]c;an
be approximated by 0 < h,thy, h, < nl|f| (e #), and if g, = Qh,, then
by (i) 0<yg,1g,¢L*(X). However,

lgo—Qoll6 < 10— gulh,+ 19 T — Bo)le = 0,

go that g, = Qhy, and thus the statements hold. (Actually the above
two steps can also be proved, replacing monotone sequences by seql}s]?cs:
converging in G-measure, and using the proof of [9], II1.3.8, *:V;r 1? '
using Propositions 2.4 and 2.5 so that 0 < Ge o7, () can bg ir i a(%

(iii) I fe.# and heL*(X), then fys, fyg<-# where = supp (h)-
This follows from (i) and (ii) since supp(fxs) = S, so thab

Frge = (P(fas)+Pligd 15 = P(f10) e

Ly
‘and P is a contraction so that [|fyelhe = Pf1glhe () and P(frg) = f;%%c(i
(iv) To construct the U,, let 8, be the support of 4. ?Then, as noS
earlier, §, = |S,, S,¢Z, disjoint, and there is .an f, e with support S,.

(%) Such a G can be chosen by Theorem L.3.2, ‘again, since @ or P is a IT’-‘OJ' ection

(ef. (M),
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Let 5 be defined as

W [ on

1 on S;.

Then % is measurable, |n| =1 a.e.,, and U,(f) = 5f is the desired
operator, i.e. § = U;PU, is a contractive projection with (D) (since P
has (D)). Only positivity of @ need be checked here. So let 0 << heI?(X).

Then for a countable set of indices {e;}, one has h = thsa,;+ thz,
=1
Jys et . Thus,

Qh = D TP, (hys, )+ 0= D05 PO, (hys) >0
i=1 =1
by steps (i)-(iii).

It follows that @: L°(X) — U, () is a positive contractive projection.
Note that U, is isometric and even preserves lattice operations when
all functions are real. This finishes the proof (*).

Remark. The preceding two theorems imply that, when ux(2) < oo,

P: L* — #, a contractive projection is of the form :
2) P = Ui g, B U, = U0, B%() T,y
where gy« 4 hag the support of #, and U, is an isometric multiplicative
-operator. Here f; is a weak unit in L¢(%), # < X, is determined by .4,
and thus f, is a fix point of B?.

Theorem 2.2 and the above show that . is topologically equivalent
to g,L*(#). This, however, is not a convenient enough description of .#.
‘The desired result is given by

TuroREM 2.8. Let L8(X) be a BFS, u(Q) < co. Then M < IF(X)
8 the range of a contractive projection implies A is topologically equivalent
to a BFS L*(#) on some measure space (S, B,v) (8 = Q, F < X can be
arranged). Conversely, if M is isometrically isomorphic to some L°(A) on
a (S, &, ), then it is the range of a contractive projection. More generally,
A s the range gf a contractive projection iff it is isometrically isomorphic
to some BES, L*(F), on a measure space (S, #,v), and g is equivalent to
2y 46,y koo < 8 < o for some k> 0.

Proof. The main ideas are already contained in the preceding com-
putations. The result iy completed on reducing it to the I*-cage.

(%) A shorter proof is obtained by noting, Pf = [fd» (Theorem 1.3.2), and
I

¥ =9T—~, Q = 0+U0Q~ the Jordan and Hahn decompositions, and let 7 = vof) With
=1lon 2%, = —1 on @~ and Qf = [fdv (cf. Wright, TAMS, 139).
I
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Direct Part. Sinee by Theorems 2.2 and 2.7, if # = P(I?(X)), where
P is a contractive projection, U, (.#) is topologically equivalent to g,L° (%),
where 0 < gyeU,(#), and has the support of .#, it is only necessary
to show that ¢,L°(%) =~ L*(Q, #, u,) for some measure yx; on #%. To
prove this, consider the equation (2) of Theorem 2.2, i.e.,

(13) [ fou = [ godp = m(4)  (say),
Spnd 4

where f, (2 weak unit in I?(%) n L®(#)) and g, are defined there. Then
4, has support Sy, and by equations (3)-(3) there,

(14) koo (fg0) < o(ffo) <K o(fg0)y feLl*(%,n),

for some 0 < k%, ¥ < co, and %k, =% =1 if p has Fatou’s property
and I° has constants in it. Write g, for ¢ with measure x. Note that the
mapping f+>f,f is a linear homeomorphism of L?(#) onto itself, i.e.
o(fo) and p(-) arve equivalent. If g, (f) = g,(gf), then (14) and the
preceding observation imply that ¢, and g, are equivalent norms, u and
4, being measures on (2, #). Consequently, g,L*(#, ) and L°(Z, 1)
are equivalent. Thus .# is topologically equivalent to L¢(Q, &, ).
Converse. Suppose there is a T: L%(8, 4, ») + 4, a topological equi-
valence: It goe # is an element with support that of #, (by Proposition
2.1), then h = T~ (g,)L*(8, #, ) and [h| >0, a.e. Then by Corollary
1.2 of the preceding section L*(S,#,») is isometrically equivalent to
an L‘*’(:S', .f;’, ;), with » (S~) < oco. Hence, for this proof it may be agsumed
»(8) < oo, to start with. Then there is a weak unit 0 < fo< kyy a0,
foeL®(, vy and if ke = T(fo)e 4, supp(hy) = 8o. I 5 = Fofllo] om 8o,
and = 1 elsewhere, then U,(hy) >0, and U, is an isometry on If(Z).
¥ V =U,T: I#(%) — U,(#), then V is a topological equivalence and
is an isometry if T is. To complete the proof, it is only necessary (by
Theorem 2.7) to show that U,(.#) is a lattice and is s.a., since it is clearly
complete. ) )
Sinee T is, moreover, given to be an isometry for thls- pa?t, sois V.
To show that ¥ is positive (so that U, () is a lattice), the trick is to reduce
the result to an IL'-cage, using the representation of Theorem 1.1.13.
Thus if 0 < Gre o, (n), o'(G) =1, L(Z) = L} (Z, Gy), leb 0< Gedl y(v)
o' (@) =1, I8(%) =« TM%, &). Let %, and & be as eonsldergd befo_re.
The isometric map V extends to these subspaces as a contraction, w;h.lch
have weaker topologies. Using the same symbol, let 0<fy, feL®(#B),
fo being the weak unit noted above. Thep NV (fotNhe, = ][(fo+f)}11{,)g
— fologt Ifle = 1Vfolbg,+ 177lhe and since Vo> 0 because f=>0,
it follows that Vf > 0, and U, is thus s.a. The same equation also shovivs]:,l
on replacing fo, f by fi,fo With fiA fo =0, that (VF) A (Vf,1)1= 0. let
this one deduces if feU,(#), then |fi<U,(4). In fact, ¥V '(f)eL (Q),

12
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so that (V*(f)}* «L*(#), the latter being a lattice. So V(( VX)) e U, (a2),
and have disjoint supports. Since V"' is also an isometry on U, (M) LY %),
and f = V((V"'f)*—(V~'f)7), one can now choose the &, @, (with similar
notations) such that ¥~! is the (extension of the) isometry on. the corres-
ponding subspaces of L1(X, &) and L'(%, @). This is possible since the
various operations are taking place only on pairs of elements of I? (#)-and
L*(2)-spaces themselves and these are contained in all the subspaces
& for all &'s considered. Thus, using the isometry in the oviginal Z-gpaces,

Wha, = IV a1V 77 ha, < VO g+ 107 g
=IVNT LT )7 he = 17 Dlhe < I1fhz, -

For the last part, if . is topologically equivalent to an, IA(B), let
T: M — L*(B) be the map effecting this equivalence. Then fe . implies
g = If<I*(#), and let g (g) = o(Tf) < ko(f). Then there is %’ (0<k, &
< o0) With % ¢(f) < o(Tf) < ko(f), and it may be assumed that & =1
here. 8o ¢ is equivalent to o and L@ (#) = L*(%). Thus T: M > L*(F)
is an isometry, and the above computations can be given to ¢ . This comple-
tes the proof of the theorem (*).

The following special case is stated for a reference and is & conge-
quence of the above proof together with that of Theorems 2.2 and 2.4:

THEOREM 2.9. Let L°(X) be o BFS, u(£) < oo, ¢ has the Fatou prop-
erty and I° has constants. Then M < IX(Z) is the range of a contractive
projection iff it is isometrically isomorphic to some L°(%F) on some measure
space (S, &, v).

Using the results of [34] and of Theorem 1.1 of the preceding section,
the above result can be extended, for arbitrary measures, in - exactly
the same way as Propositions 2.4 and 2.5. In the decomposition there,
LX) = @, I(Z,), for the loealizable case, one notes that the maps
of the topological equivalence depend. only on the bound of the weak
unit in each. IL°(4,), on a finite measure space. Since the latter can be
chosen to be uniformly bounded (by 1), the proofs proceed without any
major modifications. The main result of this section can thus be presented,
a8 a summary of the preceding work, as follows:

THEOREM 2.10. Let L8(X) be a BFS on a measure space (2,2, u).
Then the following statements are equivalent (o has FP):
(a) A is the range of a (positive) contractive projection on I°,

(%) A ghorter proof is again obtained, with Theorem 1.3.2 for P and the fact
that a positive projection T on I¢ can be expressed - as T'(f- Tg) = 7' (Tf -Tg) for
F59eL® 0 Le (cf, Lloyd, TAMS, 125). A multiplication can be introduced in Rang (T),
which contains an algebra. Then the result follows from [27], Theorem 2.1.

* ©
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(b) There exists an isomelric isomorphism p: L¢(Z) > LX) (p = I)
such that (i) y(A) is a B-lattice, and {ii) 0 <f,4feL*(Z), fpep(H), all
n, implies fey(M). 5

(e) A <= LP(X) is (positively) isometrically isomorphic to an L° (%) on
a measure space (S, &, »), where ¢ and g are equivalent function norms:
boo<g <o 0<h< 1.

If o has also the Fatow property, and 2(x.) < oo for each 4(4) < oo,
then (¢). can be strengthened to ¢ = g, where g also has the Fatou property.

Remark. If I# = I”, 1< p < oo, the above result was proved, for -
various cases, in [8], [1], [19] and [36], and if I* = L®, & satisﬁgs a growth
condition, u is o-finite, it was obtained in [29]. Notg.tl}at it L° = _l°°,
and # = ¢,, of convergent sequences to zero, then b(ii) 1s.n01§ satlsfleg
and, the well-known result that there is no contractive projection on I
onto ¢, is a consequence of the above theorem.

2.3. Contractive projections; vector case. In this section, the above
results will be extended to a class of Lj-spaces of %‘-va.lqed strong%y
measurable functions, where £ is a B-space. This will generalize the main
result on L} in [15], and also includes the ILf-spaces for 1< p < oo.
Unfortunately it is not so comprehensive as Theorem 2.10, but seems
to be the best that the present methods yield.. )

Let MYy = sp{fo: fel®(X), 2%} c I, as in Chapter I If o is
4. ¢. n., 50 M® = I then 4% =L, and may be a proper subset other-
wise. Also let ¢ have FP.

TemoREM 3.1. Let I#(Z) be BFS on (2, X, u) and  be a B-space.
If <% and &° < I*(2) are closed subspaces, and My as abqpei lei.f
S = sp{gy: ge % y< ¥} Then the following statements are equive efn;t.

(a) There ewists a contractive projection on M omio the subspdace yg.
(b) There emist contractive projections on L°(Z) onto ¥° and on
e " i ¢ < I5(% sOME MEASUTE

(6) &Y is isometrically isomorphic to anﬂ.,i/,g, < Ly (%) Qon o maasre
space (S, &, v), ¢ is equivalent 10 g, kyo < o < ¢ for some 0 < k<1,
there is a contractive projection on % onto %. - .

If, moreover, o has the Fatou property, and o (y.4) < oo for all u{4) < oo,

= m (c).
then 1§roogf- Th(at)i (a) = (b) was proved in Propositiiqn 1.5.11, (rlrol)l» 1;;2
is a consequence of Theorem 2.10 a;?o;; and P;ogmsmon I.5.11. The
i irect consequence O: eorem 2.9. A
comlgf;l:elife d;;‘:: additignal hypothesis always holdsltf.or the Orlicz
spaces, the following is a special case of the above resulb: i

COROLLARY 3.2. Let L%(Z) be an Orlicz space on (L2, ;,t;). ﬂ,,fore,;ﬁ

and &g are the corresponding spaces, then all the statements of the the
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are equivalent with the same function norm g (-), which can be either of the two
known norms in the theory of Orlicz spaces. ‘
Any mention of .#* can be dropped if o(-) = Iy, L< 9 < oo, Thus
the above result takes a particularly simple form for the IP-gpaces:
COROLLARY 8.3. If % <« I, 1. < p < o0, is a closed subspace (for any
measure space (2,2, u)) and ¥ < Z, then the Jollowing are equivalent:
(a) There is a contractive projection on the subspace Sy of L.
(b) There ewist contractive projections on I¥ onto P and on & omio Y.
(¢) There exists an LY (F) on some (S, &, v) such that g is isometrically
equal to it, and there is a contractive projection on & onto ¥.
Remark. If p = 1, this was given in [15], a5 a consequence of certain
results on a metric characterization of the Lg-spaces among all B-gpaces.
On the other hand, the above result, and particularly Proposition I.5.11,

is based on a characterization of B(L%, #), holding for other cases as
well.

2.4. More on projections. Thus far only the existence of contractive
Projections on the L°-spaces was determined, but the uniqueness and
structure of such projections was not considered. This is again non-trivial,
and two cases will be treated in this section %o elucidate the problem.

ProPOSITION 4.1. Let P: LX) — I°(4) be o comtractive projection
where & < X 4s a o-field and bg has the FSP. Then there ewists a locally
integrable quasi-function g* (2.e., measurable on every set of u-fimite measure)
such that Pf = E?(g*f), fel®*(2). If 0< foeL?(B) and p 4s localizable,
then g* is measurable and BF (9 =1, ae

(About quasi-funetions, cf. [22], or [39],
called cross-sections.)

Proof. By the FRP of u, I¢ (2) is non-frivial (and the same holds
! where ¢ and o

p. 257 ff., where they are

of I (%)), and in fact is norm-determining for L’ (X)
are equivalent. Let 4 X be a seti such that 0 < 0(%4) < 00,0 < ' (y4) <oo.
In fact, for every set A <X of finite measure there exist both “p and o'-
admissible” sequences {4,}, 4,14 and 0 < 0(xa,) < oo, 0< 0" (%a,) < oo

for all n (¢f. [207). So 4 may be replaced by 4, for large enough n. Congider
now @ ¢(L*(X))* defined by

@) () = [2P(Nap, feI*().

It is continuous and can be regarded as @y (L84, Z(A), pa)),
where X(4) is the trace of X on A, and py(7) = u(d N ‘).

Since u, is a finite measure, by Corollary I.1.14, z% can be uniquely
expressed as

@) Af Flaung = o4(f) = [foadpa+ [ F(fac,, feIr(s),
a4 A

icm°®
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where g,eL¥(Z), and G is a pfa, with |6,,](4) < co and vanishes on
w-null subsets on A. Replacing f by any f, yze L* (%), where f, > 0 a.e, on
A (which exists) and Bed, (2) becomes, on recalling that P is identity
on IX(#),

3) J fidpa = [ fogaduet [ P()acy, Bes.
AnB A~B

4n~B

The first two integrals are s-additive on #(A., and the la.s?; one is
a pfa on it and hence it must vanish on A. Thus (4) becomes with Pro-
position 1.5 above,

(4) [Plaw = [foudu = [B*(gdn, Bes(4).
B B B

Since the integrals on the extreme are Z (and even #(4) ).-measura.blt?,
they can be identified. As A varies on u-finite sets {g,} defines a quasi-
function. ¢*, by definition. Thus the relation can ‘be expressed a8
Pf = B®(fg*), feI°(Z). (In passing from the p-admissible sequences to
those of 4 of finite p-measure to using ¥SP, the result of [13], p. 19,

e consulted. . )
o 1I::‘inaﬂly, if the;e iy a weak unit f, ¢ L* (%), f, > 0, a.e. and p is localizable,
then ¢* can be chosen p-measurable, so that

fo=Ff, = B?(f,9) =, B%(g)

by Proposition 1.6(ii) above. Since f, >Q a.e., it follows that B (g) =1,
a.e., and the proof is complete.

Remark. It can be shown that in the last pa:rt above (as was done
in [28] and [29] for the Otlicz space eases) if a,]..so g isana.c.n., then é] t:;i
a.e. In particular, this shows that the genera,hze(} com.htuqma,l ejxpel?l ai !
is the unique contractive projection on L*(Z) 1——>L (#)it I (Z’) i8 Tel zi.v .

Tor other subspaces, the following result gives a sufficient condition
f iqueness: '
Ior ?R?)POSITION 4.2, Let I8(X) be a rotund reflexive space such tha’i Ii; Igé')
is also rotund (or equivalently, L® is a ¢otund,.'reﬂem?;e and smoot, e é
where “smooth” means the morm s Gdteaus differentiable). _"I'hm ;1,' ;; 1:::0%
subspace 4 of L¥(X) can be the range of ai mos? one oo:ntro‘wtwe Pproj g .

Proof. If . is the range of two contractive p?OJectflons ;’ﬁ;an vgé
then it will be shown that their null spaces aa\.txl-:sB i-l;zgl;en,;ic?f. theli, (%?int,s

. But this is equivalent to proving i ° A
%eai‘??intical. (Reca;](ll that I? = A#@ A4;; then P (I > N = A7)
is wi lished now. ‘

Thlstinﬂ k;e ;iz?l?mnamy ~simp]jﬁeatio:r*1 is needed. Le: Jﬂf :lft(Lzo ;213
M* =P*((I%)*). Let § 4", 8" < 4" be the elements of wnl .

(5) a.e.,
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It will be ﬁh(;wn that each feS determines a unique gfeS* and conversely.

To this end, let feS. Then there is an af «(L9)% [l#f] =1 and 1 = o(f)
= @} (f) = [ fg;du, by the representation theorem. o’ (g;) = lf|| = 1. Since
Q

Pf =f one has

(6) 1= [(Phgan= [fP*(g))ap < o(f)o'(P*g) <1.

Thus there is equality throughout, and o' (P*g,) = o'(gy) = 1. The—

rotundity of o’ implies, since 4™ (f) = F(#*), F(-) attains the value (of its
norm) at only one point on the umit ball of L*. So P*g, = g;. (The
parenthetical statement is just a consequence of a classical result of
V. L. Smulian, stating that rotundity and smoothness are truely dual
in reflexive spaces.) Hence g;eS%. The mapping : f gy, called the
spherical image map, is one-to-one and onto since the hypotheses on
¢ and o' are symmetrical. Thus i: § — §* and i*: 8* i~ 8 are both onto
and one-to-one. .

Now to complete the proof, let .#; = P;((L%*), # = P,(L*), the
latter given to be the same, ¢ =1, 2. If S7 < .#; are the corresponding
sets, then i(8) = §j,j =1,2, are identical by the above paragraph.
Since «#; = §p(8), 4 =1, 2, #} = A;. This completes the proof.

Remark. The hypothesis here is not necessary as seen from the
particular space 4 = L°(%) = L°(X) when the latter is reflexive but

- not necessarily rotund or smooth, since then ¢ (and ¢’) is an a.c.n. Thus
further work is needed on this question. If I? = I?, 1 < p < oo, u(R)<oo,
the above result was noted in [1].

2.5. Prediction operators; an application. The results of the preceding
sections yield a simple characterization of the linearity of prediction
operators in the general theory of non-linear prediction (and approximation)
in function spaces. This is, in fact, one of the motivations for the study
of the projection problem above.

Let 4" = L* be a subspace. It is said to be a Tshebyshev subspace
if for each we L* there is 2 unique x 4" such that o(w—x,) = min{p(z—1y):
yeA"}. The mapping P,: If > 4 is well-defined, and has the properties:
() Py =Py, (i) Py(aa) = a Py(a), a> 0; (iii) Pya+y) = Py(2)+y
for all yeAt”, and (iv) # > 0 implies P (2) > 0 (cf. [28]). However, P,
is not necessarily linear on IL°. If Q — I—P,, then @ is linear iff P v 18,
and when this happens, @ is a contractive projection on I? with 4" ag its
null space. The-subspaces .4 admitting linear prediction operators can
thus be. characterized as follows (ag usual ¢ has the FP):

TeEEOREM 5.1. Let L® be o real BEFS on (2,Z,p) and A < L°(Z)
be a Tshebyshev subspace. Then the prediction operator P, on L°(X) onto
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A is linear iff the quotient space T[4 is isometrically isomorphic to an
L (%B) on.some (8, &, v), where § is equivalent to 0 (ke <Ko, 0<ky <)

Proof. If P, is linear, then @ = I—P, is a projection with ..# as
its null space. Moreover

1) e(@f) = e(f—Puf <elf)y feI®(2),

since P, f is the closest.to f. Thus @ is a (not necessarily positive) con-
tractive projection and 4" = Q(LQ(Z)) is, by Theorem 2.10 above, isomet-
rically isomorphic to Le (#) of the given description. Algo L?(2) = .4@A"
8o that 4 is isometrically isomorphic to I?(2)/.# and the latter thus is
igometrically equivalent to Lt (). This gives the direct part.

Conversely, let 4" =~ I°(X)|.#, so by hypothesis A4 gLE(.@), and
M 18 a closed subspace of L°(X) since . is complete. On the other hand,
I#(2) & S L (%), where F is the canonical map and T is the isometry.
Since these are onto maps and open, F, = ToF: I8(X) — Lt (%) is also
onto and open. Then pick one element each (by the axiom of choice) in
I#(Z2) from the sets Fi'(g), geLﬂQ (&), and let this seb be denoted by N.
Bince P, is linear (and open), and Lt (%) is complete, it follows that
Fyt: Le(#) — Nis a continuous one-to-one and onto operator. It is also
eagily seen that ¥, =8p(N) is a subspace of L?(X), and then is topologically
equivalent to LE(EJZ). Thus it i§, by Theorem 2.8, the range of a contractive
projection @ on L4(X). If A = (I—Q)(Z%(X)), then it follows that the
spaces L°(ZX) /‘i{, N 1,LZ’(.%‘), & and I°(E)|# are topologically equivalent.
Hence 4 and 4 can be identified. Thus if P, = I—Q: L¢(X) — 4,
then P, (#) = A, and one has, since Q(A4) =0,

{2) o(f—Puf) = 0(@f) = @U—9)<olf—9); geAk.

Hence P ,f is a minimal element in 4 and since the latter is a Tshe-
byshev subspace P_,f is the unique element in # closest to f. Thus P,
is the (linear) prediction operator onto .. This completes the proof.

Disoussion. 1. The converse proof is simpler if ¢ is reflexive. Then
(L8 = I¥ and (A" o2 Mt = I#(#), and 50 there *is. a contractive
projection onto M-, Since (I4)** = I° and P** on (LQ). is a contractive
projection, then I—P**: (I9)™ 4" = A is the projection operator as
in (2) above. ]

9. The condition given on .# by the above ’?heorem is not very easy
to check in practical problems. For instance, 1:t' M8 a measux:a.bie sub'spa.ce,
(i.e. = L*(%#) for some o-field # < Z}, then it was shown in [29.], m.thg
context of Orlicz spaces, thab the prediction operator P, (When it e':a_sts)
will be Linear iff the space is I?(Z). Thus direct (and usable) conditions
appear somewhat infricate. .
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Theorem 5.1, for I* = L7, 1 < p < oo, using reflexivity and rotun-
dity of I”, was given in [1]. Also this indicates, since always A4 ~ 4t
(< (L°)*) above, a motivation for an investigation of the projection problem
in (I?)*-spaces.

2.6. Remarks and open problems. The uniqueness problem for general
Le-spaces, seems difficult. Condition (D) of Definition 2.6 above, was
shown to lead to uniqueness in the I'-case in [8] (where it was introduced)
and for the L®-spaces with a.c.n. in [29]. The argument of the latter can
be used to show that uniqueness obtains in the presence of condition
(D) when. ¢ is an a.c.n. On the other hand, the result of Proposition 4.2
implies that condition (D) is automatie for the reflexive rotund and smooth
I*-spaces. The general case iy still open.

It was noted in the preceding section, on prediction operators, that
a characterization of subspaces of (I9)* admitting contractive.projvections
is & natural problem. In general, (I%)* is only a space of (finitely additive)
set functions, and such a study is not even available in the I?-context.
Even though the structure theory of Lebesgue and Orlicz spaces of
additive set functions is now available (cf. [37]), the corresponding study
for «/,-spaces has not been touched. This and the projection problem
on spaces of set functions are completely open. In the other direction
of vector valued functions L%, a characterization of arbitrary subspa.ceé
admitting contractive projections (analogous to Theorem 2.10) seems

to need new techniques.

Finally, it is possible to define the %, ;-spaces for each 1> 1 with
o(+) a function norm, similar to the %, ,- spaces in [19]. It will be very
interesting to find conditions, with the work of this paper, for a B-space
%“ t.o be isomorphie to an L*-space, or to be an Z, ;-space. This is very
similar to the treatment of [19], p. 309, and the work here appears
particularly relevant to this problem.
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Biprojective tensor products and convolutions
of vector-valued measures on a compact group

by
M. DUCHOXN (Bratislava)

Tntroduction. Tf z and » are regular complex-valued Borel measures
on a compact Hausdorff group @, then the convolution of g and » can
e defined. by appealing to the Riesz representation theorem and letting
v be that unique regular Borel measure on @ for which

Gf f@auer () = [{[fandp@)d©)

G @

nolds for all continuous funetions f on G. Moreover, it #(G) denotes the
set of all complex-valued countably additive, regular Borel measures
on @, then . (@) may be made a Banach space if we define linear opera-
tions pointwise and the norm as el = 1p](@) (total variation of x). Further
M (G) with convolution multiplication is a Banach algebra (cf. {167,
{101, [13])-

Tn this paper similar questions are dealt with for vector-valued
measures. In the Banach space Tca (#(@), X) of all regular countably
additive Borel measures with values in a Banach space X a convolution
multiplication. is introduced which is & bounded bﬂj.nea;r mapping frf)m .
rea (# (6, X) x rea (#(&), X) into rca (#(@x @), X ©X), where X X
ig the biprojective tensor product of X by X. Some properties of the
convolution are given, further results will be given elsewhere.

1. Preliminaries. We need & generalization, for vector-valued measures,
of the classical theorem asserting the existence of the product of measures
defined on ‘two measurable spaces. This is established in such a Way that
usual product of two scalars is replaced. by the tensor product of)two
vectors. Namely, let meagurable spaces (S, &) and (T,7), com.p}ete
locally convex topological vector spaces X and Y, and (coymtahly additive)
vector-valued measures u: ¥ —>X and v:J — Y be given. We denote
by & ®,7 the o-ring generated by the sets of the form BExF,EBeS,
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