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Colloquium on
Nuclear Spaces and Xdeals in Operator Algebras

On a theorem of L. Schwartz
and its applications to absolutely summing operators

by
8. KWAPIEN (Warszawa)

1. Imtroduction. -In a recently published paper [12], L. Schwartz
has presented a theory of p-radonifying operators. He has :ﬁmmd_ nUMErous
applications of its main theorem (the “duality the.orem for ra.dom.iy%ng
operators”; ef. [13]). It has been also observed by him Fhat p-ra@onﬁymg
operators and p-absolutely summing are “almost identical”. This creates
the possibility of applying the “duality theorem” to the theory 9f p-abso-
Tutely summing operators. The aim of this paper is to show how this theorem
may be used to obtain in a simple way already known results as well as
new ones in the theory of p-absolutely summing operators. To make
this paper self-contained § 2 restates some of the results of L. Sehw‘vaxitz.
We use here neither the theory of cylindrical measures nor of radonifying
operators. All the theorems are formulated in .the 1amg1-1age of absolutely
summing operators. The “duality theorem® is essen‘tlally the same a8

of this paper.
Theofif: 1:1[s recall fhal,)t it B, F are Banach spaces and 0 <p < + o0,
then an operator w: E—F is said to be p-absolutely summing (w;:al
shall write wem, (B, F)) if there exists a constant ¢ such -that for eac

DByy ooy Byl

RIS Sy

Zn @ <0 sip 3 I, adP-
i=1 *

w is said to be 0-absolutely summing (1 emy (B, F)) if for each £ >0
there exists @ 8 > 0 such that if @, ,,..., v,<H and

1 o ’

sup Y —min{l, @ @} < 8,
L8NS Eoe :
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then

51
2;111111{17 ll ()]} < e.

d=1

Let us observe that the definition of a p-absolutely summing operator
for 0 < p <+co is meaningful when ¥ is a homogeneous quasi-normed
linear space (cf. [3], p. 159), for instance the space I, with 0 < s < 1,
and the definition of a 0-absolutely summing operator is meaningful
when F is a metric linear space. The last definition is a reformulation
of Behwartz definition of a radonifying operator in the terms of absolutely
summing operators. It is known that if 0 < ¢ < p, then 7, (B, F) < m,(B,F).

2. If Q is a topological Haussdorf space, u a probability Radon
measure on 2, and 0 < p < oo, then by L,(2, u) we shall denote the
space of all u-measurable functions on @, f(-), such that

([1f@)Pap@)’ < oo it 0<p < oo,
Q

17l =

supess |f(w)| < oo
| [ ming1, |7(0)}du(w)

ifp:oo,
if p =0.

I Q =[0,1] and g is the Lebesgue measure, then we shall write
L, instead of L,(Q, u).

A linear operator y from a Banach space & into L,(2, p) is called
p-decomposable if there exists a map @: 2 — B’ such that

1° for each zeE the function on 2, {z,(*)>, I8 p-measurable and
equal to y(z) u-almost everywhere; .

2° there exists an Fely(Q, ) such that (o) <f(w) u-almost
everywhere. )

Remark 1. Tt B is separable, then 1° implies that ¢ is Bochner-
measurable. If ¥ is reflexive, 1° and 2° imply that there exists a ¢ which
is Bochner-measurable and which satisties 1° and 2°.

THEOREM 1. If B is a Banach space, 0 < p < oo, and yi B = L,(2, uy
is p-decomposable, then y is p-absolutely summing.

Proof. If p >0 and DByy Lyy ovny Ty el then

; ly (@)IP =.~Qf(2 KKa,, tp(w)>]p)d,u(w)

=1
n

<( Ji@Pau@) s 3 e, op.

20 TS Bout

icm°®

‘ it p = 0 for each &> 0 there
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It p =0, e>0 and #,,4,,..., 5,H, then for each M >0

n

Ny 2 in @1, @l
b

n

N i, f min {1, [¢a;, p()>) di(0)}

el

- (2 —~mitt{l, o, p(0))1}) ()

1 . ,
max{l, f(w)}dpo)): sup  M'-mingl, Kai, o' 1+

<
= ( L A S ey

Hoy<M

+pl{o: flo) > M}.

Now it is enough to choose M so that
pifo: flo) > MY < o
and put
b=t [ mexts, fNdn@)

2 e

TagoreM 2. Let B, F be Banach spaces, 0 < P < o0, a:wl let u: _E"——>-f’
be a contimuous linear operator such ﬂmt the dd]O‘!’{'llt wem, (f’ s Elz.h a{
y: B> L, (82, p) is a continuous linear operator and mﬂeer ip? ,:: I b
the metric approwimation property (cf. 20), then yu is p- ec:o P d

Proof. We shall preve that the image of the unit ball f’f Eis ;Dom‘i{; :
in the lattice Z,(£2, ). This is equivalent 130' the fo]lowmgAst:I zm;l;as:
if p > 0, there exists a constant M such that if 4,, 4,, 15 ,,}th o s
nrable mutually disjoint subsets of Q and @;, Zay ooy Tl WI il <

for ¢ =1,2,...,m, then

3 [ pula)(@)Pduo) < M;
j=14;

|
exists a p > 0 such that if 4,, 4,,..., 4m
are measurable mutually disjoint subsets of Q and @y, Ty, .-, Ty B With
o) < 1 for 4 =1,2, ..., M then .

¢ 5_} fmin{l, 7 lyu(@;) (o)} du(w) <& for g < Qt

7=1 4;
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Suppose that y is of the form

* y =D ¥z,

7=1

where ¥, ..., YneF'y By, ..., B, are measurable mutually disjoint subsets
of @ with u(B;) =1/n(i =1,...,n), and ypis the characteristic function
of B. Then

[ e @Pape)
j=1 4y

7

{uay, ) y4:2 (@)
=1

Pau(w) = Y] Y KKuzy, yiyPuid; 0 BY
j=1 i=1

.
n

n
1 7 1 17
<= Dyir<0 s Sy
i=1

e
VIeF <1 A

"’l':T '
=0 su &, yDPu(B) =0 ()P _ »
e ~ Ky, 9P u(Bd ysﬁsv,%g}jQQ ly (@) (@) dp(w) = Ol

where C is a constant, as in the definition of p-absolutely summing operators
(resp. when p = 0, by a similar computation we get

m
> [min{1, gy (@) (@)} dp@) < ¢,
i=1 4,
whenever

sup |yl < 8,
YeR, W<

where § is a constant corresponding to e, as in the definition of a 0-ab-
s'olutely summing operator). Let y: B —L,(2, u) be a continuous
linear operator. If either I has the metric approximation property or
p=1, .then ».18 in a closure in the pointwise convergence topology of
an equicontinuous family of linear operators of the form (*). It follows
from the above formulas that there exists a constant M such that for

ez?,c.h‘ml, Byy oy B e ]| <1y .oy 2l <1 and A4y, ..., 4, mutually
disjoint measurable subsets of @

1

fl?“(mi)(w)lpd,u ()< M @
4

m
=1 4;
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(resp.

min{l, nfyu () (o)} du(w) < e,
Ay

1

m
=1

whenever

sup ()l < 9,
vl i<M
and the existence of g is now obvious). .

Thus the image of the unit ball of B is bounded in the lattice L, (2, u)-
Hence there exists a geL, (2, u) such that v(@) = u(@)(-)/g(-) is a linear
continuous operator from B into Ly (2, x). There exists (by the famous
,lifting” theorem) a map y: - (Lol 2, ) such that for each fe
Lo, (2, u) the function <f, p(+)y is p-measurable, p-a.e. equal to f(-) and
fw(@)|| =1 for each w <0. Now ib is easy to see that the map g: Q- F
given by ¢(w) = g(w)v(p(w)) bas properties 1° and 2°. This complebes
the proof.

Let 0 < p<2 and let z() be & symmetric stable process on (2, w)
with the exponent p (cf. [1], P- 495). The stochastic integral

volf) = [ F)d;

defines a linear operator y,: Iy —~> Ly (82, p). For our purposes it ?s enough
to know that, for each 0 <<g<P,7p is an isomorphic embfa,ddmg of L,
into L, (R, u); Le. ¥p (L) = Ly(L2, u) and yp: L,, — L,(2, p) is an isomor-
phic embedding. If p = 2, then the same I8 true for each 0 <<g<<o°
(ct. [13], Bxample P 4).

3. The following theorem has its origin in a paper of Vakhania [15]
(cf. Remark 2): ‘

TrrorEM 3. Let 1 < p < oo, and let w: Ly — L, be a continuous linear
operator. Then the following conditions are equivalent:

10 pous Ip— Ly(£2, u) 18 g-decomposable for each ¢ < o°;

2° pyu: Ly — Ly(2, 1) is 0-decomposable;

3° y: L,—~ L, is 0-absolutely summing ; &

4° w: Ly — Ly is p'-absolwiely summying, where p° =1 Jt(p—1)-

Proot. Of course 1° = 2°. Tt 2° then, by Theorem 1, ot L, L, (£, ,zf.)
is 0-absolutely summing. Hence i 0-abgolutely summing goecm&se Sy.g is
an isomorphic embedding of L, inte Lo(%2, u). Thus 2° = 3T.h ince
7o (B, F) < m, (B, ), 39 = 4°. Let we mpr (L s L) and p < oo. B,Y : ;(;2311
2, s Ty — Ly 18 p’-decomposable; hence, by Theorem.l, itis p -i;.h S0 o y
summing, and so ': Iy~ (Lp)' 18 g-absolutely SumItJl.mg for each ¢ = { .
The last is also true when p = oo, because then u’ 18 nuclear. Now, by
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Theorem 2, y,u: L, L,(2, u) is g-decomposable for each ¢ > p’ and
hence for each ¢. Thus 4° =- 1°, and this completes the proof.

Remark 2. Since I, is a complemented subspace of L,, it follows
that the above theorem remains valid if I, is replaced by 1,. Condition
4° is then equivalent fo

4% 3 el < o0, () is the sequence of standard wnit vectors in by
k=1

For the spaces [, it was proved by N. Vakhania “uhaJt 4% is equivalent
to 1° and to 2°.

THEOREM 4. Let either 1 < p < 2 and 0 Kg<porp =2and0 < g<oo.
Let w: B~ L, be a continuous Uinear operator. If u'em,((L,), ), then
wemy (B, Ly). )

Proof. By Theorem 2 we infer that Yot B — L, (R, u) is g-decom-
posable and hence y,u: - L,(2, u) is g-decomposable. By Theorem 1,
Ypt: B Ly(Q, p) is 0-absolutely summing. Since ¥p 18 an isomorphic
embedding of L, into L,(2, u), % is 0-absolutely summing also. This
completes the prootf.

The following may be considered as a generalization of Theorem 1, [4]:

TEEOREM 5. Let B be a Banach spdae.

P If 0<p<2 1<r<2 then w,(L, B) = n,(L,, B).

2 If2<p< oo, 1<r<2, then 7y (B, L,) = m,(B, L,).

Proof. 1° It is enough to show that wm,(L,, H) c 7y (L, B). Let
%e my(L,, E); then » may be factorized, w: L, > L, - J, where v 7ty (Lyy Ly)
and w: L, — B is a linear continous operator (cf. [10]). Since m,(L,, L,)
< m,(L,, In), by Theorem 3 (4°=.3°) we have vemy(L,, L,). Hence
U = wvemy(L,, B).

2° ue m (B, L,)if and only if, for each continuous linear operatior
0: Ly > B, wveny(Ly, L,). Thus it rerains to prove that if ue 7, (Ly L),
then we m, (L, L,), but this follows from Theorem 4 applied to ' and then
to u. This completes the proof.

Tt is eany to see that in a Hilbert space 2-absolutely summing operators
are the same as the operators of Hilbert-Schmidt type. Hence, by The-
orem. 5, we have
) COROLLARY 1. Let 0 < p'< co. A linear operator in a Hilbert space
18 p-absolutely summing if and only if it is of Hilbert Schmidi type.

_ This Corollary has been proved by Pelezyriski [8] for p > 2 and by
Pletjsch [10] for 1 < p < 2. In terms of p-radonifying operators it hag
beeri proved by Sazanov, Minlos, and Schwartz. '

7 G.OR.OL?LARY 2. Let B be a Banach space; then wemy(Ly, H) if and
only if it is factorizable through o Hilbert-Schmidt operator, i.e. w = vw,

icm
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where v: Ly~ B s a continuous linear operator .amd w: Ly —~ L, is an
operator of Hilbert-Schmidi type.

Remark 3. Theorem 5 may be generalized as follows:

Let F be a subspace of L, and let B be a Banach space. Then:

1° wy (F, B) = ny (¥, B);

2° if p =2, then =, (B, F) = m,(E, F).

The proof of 1° is identical with the proof of Theorem 1, a. of [4],
and 2° follows from Theorem 5, 2° applied to I and then to the subspace
Fof L,.

‘We do not know whether for each two Banach spaces H,F and
0<p<g<l,m,(B F) =n,(B,F). For the spaces L, we have the
following result:

THEOREM 6. Let 1 <r<oco and le¢ B be a Banach space; then
7, (Lyy B) = my(Ly, B).

Proof. If r <2, then the proof results from Theorem. 5.

1° Let » >2 and let ue =,(L,, B). Without loss of generality we
may assume that ¥ is separable. Let v be an isometric embedding o? B
into L. It is enough to prove that vue (L., Ly). Since L, is reﬂez'zulve,
ow is nuclear (cf. [2]). Hence vu may be factorized as follows: vu: L, — I
%, L, where we m,(L,, I,) and 2: I, L is a continuous linear operator.
Now if we apply Theorem 4 to w' and then to w, we infer that we m, (Lyy Ly)
and thus vu = 2weny(L,, Ly). This completes the proof.

The following theorem is an answer to Problem 8. of [6]:

THEOREM 7. Let 2 < p < co. Then

1° B(Lw, L) = my(L , Ly) if 4>05 ,

2° B(Ly, L) # 7tp(Lios Lp)e -

B(E,F) denotes the class of all linear comtinuous operators from B
into F. A

Proof. Let N,(E,F) denote the class of all r—nuclei.r operi,tor ‘:l‘;rom
E into F (u is r-nuclear if it admits & factorization u: B — L, = I, = F,
where A is a diagonal operator, cf. [9]). According to the results of Persson
and Pietseh (Satz 5.2 and Satz 5.3 of [9]) and Saphar [11], = (E, L,)
is the dual of the space N, (L, B) (n(H, F) = B(B, F)). Hence, for
any ¢, B(Lus Lp) = 74 Loy Lyp) if and only i Ny(Ly, L) = N3 (Lps Lu;).
The Jast equality is equivalent o the following: each operator u: Lp—->
1., 5 1, is 1-absolutely summing (because an operator wem(Ly, B) if
and only if, for each weB(H, L), wieN,(Ly, LO:)). ) . ’

1° Let ¢ > p and consider an operator u: L, —~ 'l,&, —>_lq: - Ly, Awhilre
9, 4 are as before and 2 is an igomorphic em_};eddmg. % is q;a,bsolu;sm g
summing. Hence, by Theorem 4 applied to #' and then to %, we
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that @ is 1-absolutely summing and so w: L, - ks 4 Iy is also 1-absolutely
summing.

2° By the preceding it is enotuigh to point out an operator u: L, e
I, > I which is not 1-absolutely summing or, as we know by Theorem
4, which is not 0-absolutely summing. In [14] L. Schwartz has proved
that & diagonal operator A:1, 1, is radonifying or, which is the same,
is 0-absolutely summing if and only if 4 is given by a sequence (4,) such
that .

;w‘ Bl (1+

Thus there exists a %: I, 31, 4 1, which is not 0-absolutely summing.
Since I, is & complemented subspace of L,, there exists a w: Ly, B, 5 by
which is not 1-absolutely summing. This completes the proof.

log 1 )<
og—- oo,
2]

Remark 4. The assertions of Theorems 4-7 of the present paper
remain valid if we replace the spaces L, by the %, in the sense of [6]
(To this end combine Theorem 7.1 of [6] in the case 1 < P < oo and the
results of [7] in the case p =1, oo).

The author wishes to thank Professor A. Pelezyriski for many
valuable discussions.
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