The following questions may be of a certain interest:

Is the existence of non-increasing null sequences (a_n) with $\delta_n(K) = O(a_n)$ for all compact sets of an F-space E a topological linear property? Does this property characterize the space s in a certain class of F-spaces (of course, such a class should not only contain the B-spaces and the spaces s)? Is this property related to conditions listed in section 1 to characterize the space s?

Concerning the last question it is easy to see that for an F-space E, in which one sequence of finitely-dimensional subspaces approximates slowly, there is a non-increasing null sequence of positive numbers r_0, r_1, \ldots such that

$$\delta_n(B) = O(r_n)$$

for each bounded set $B \subset E$. In this case either each closed bounded set is compact (cf. "(FM)-Räume" in [5], p. 372) or the compact sets cannot be characterized among the closed bounded sets by

$$\lim_{n\to\infty}\delta_n(B)=0.$$

This characterization is possible e.g. in complete p-normed spaces (0 , where the <math>p-norm differs from a usual norm only by the property $||ax|| = |a|^p ||x||$ instead of = |a| ||x|| $(a \in C, x \in E)$ (cf. [7], p. 131) or in the space s. May be these facts give hints for an answer to the question at the end of section 1.

References

- G. Albinus, Eine Bemerkung zur Approximationstheorie in metrisierbaren topologischen Vektorräumen, to appear in Rev. Roum. Math. Pure Appl.
- [2] C. Bessaga, A. Pelczyński and S. Rolewicz, Some properties of the space (s), Coll. Math. 7 (1959), p. 45-51.
- [3] И. Ц. Гохберг и М. Г. Крейн, Основные положения о дефектных числах и индексах линейных операторов, Успехи мат. наук 12 (1957), р. 43-118.
- [4] М. А. Красносельский, М. Г. Крейн и Д. П. Мильман, О дефектных числах линейных операторов в банаховом пространстве и о некоторых геометрических вопросах, Сб. трудов ин-та матем. АН УССР 11 (1948), р. 97-112.
- [5] G. Köthe, Topologische lineare Räume, Berlin Göttingen Heidelberg 1960.
- [6] В. Н. Никольский, Наимучшее приближение и базис в пространстве Фреще, Доклады АН СССР 59 (1948), р. 639-642.
- [7] A. Pietsch, Nukleare lokalkonvexe Räume, Berlin 1965.
- [8] H. S. Shapiro, Some negative theorems of approximation theory, Michigan Math. J. 11 (1964), p. 211-217.
- [9] I. Singer, Cea mai bună approximare in spații vectoriale normate prin elemente din subspații vectoriale, București 1967.
- [10] K. Yosida, Functional analysis, Berlin Göttingen Heidelberg 1965.

STUDIA MATHEMATICA, T. XXXVIII. (1970)

Colloquium on

Nuclear Spaces and Ideals in Operator Algebras

A theorem of Eilenberg-Watts type for tensor products of Banach spaces

b

Z. SEMADENI and A. WIWEGER (Warszawa)

Introduction. By the tensor product of Banach spaces X and Y we shall mean the projective tensor product $X \hat{\otimes} Y$ defined as the completion of the algebraic tensor product $X \otimes Y$ with respect to the greatest cross norm

$$\|u\|=\inf\Bigl\{\sum_{i=1}^n\|x_i\|\,\|y_i\|:u=\sum_{i=1}^n\!x_i\!\otimes\!y_i,\,x_i\!\in\!X,\,y_i\!\in\!Y\Bigr\}.$$

It is well known (cf. Grothendieck [4], Ch. I, § 1, no. 2, Proposition 3 and Théorème 2, Buchwalter [1], p. 33) that for each fixed Banach space A the tensor product $A \hat{\otimes} X$ has the following properties:

(a) If $\varphi \colon X \to Y$ is a bounded linear operator onto a dense subset of Y, then the induced operator

$$A \hat{\otimes} X \stackrel{A \hat{\otimes} \varphi}{\rightarrow} A \hat{\otimes} Y$$

maps $A \hat{\otimes} X$ onto a dense subset of $A \hat{\otimes} Y$.

(β) If Z is a closed subspace of a Banach space X, then there is a canonical isomorphism τ from $(A \, \hat{\otimes} \, X)/N$ onto $A \, \hat{\otimes} \, (X/Z)$, where N is the closed subspace of $A \, \hat{\otimes} \, X$ generated by the elements of the form $a \, \otimes \, z$ with a in A and z in Z; moreover, the corresponding diagram

is commutative; here π and ρ denote the canonical surjections.

(y) For any set P the space $A \otimes l(P)$ is canonically isomorphic to the space l(P, A) of all indexed families $a = (a_p)_{p \in P}$ with

$$\|a\| = \sum_{p \in P} \|a_p\| < \infty;$$

here l(P) is l(P, F), where F is the field of scalars (i.e., F = R or F = C).

The purpose of this paper is to show that, roughly speaking, properties (α) - (γ) characterize the tensor product up to isomorphism. This characterization will be formulated as a natural equivalence of functors. An analogous theorem for tensor products of modules is known as the Eilenberg-Watts theorem ([2], [9], [6], p. 157).

1. We now reformulate properties (α) and (β) in categorical language; unexplained terminology is from Freyd [3].

Let Ban, denote the category of Banach spaces (over the field F) and linear contractions (i.e., linear maps $\varphi: X \to Y$ satisfying $\|\varphi\| \leqslant 1$). Throughout Sections 1-3 the term "morphism" will refer to this category. The set of all morphisms from X to Y will be denoted by $\langle X, Y \rangle$. A covariant functor

$$(1) T: \mathbf{Ban}_1 \to \mathbf{Ban}_1$$

will be called linear if for any Banach spaces X and Y and for any linear maps $\varphi \colon X \to Y$ and $\psi \colon X \to Y$ the conditions $\|\varphi\| \leqslant 1$, $\|\psi\| \leqslant 1$, $\|\varphi + \psi\| \leqslant 1$ imply

$$T(\varphi + \psi) = T(\varphi) + T(\psi)$$
 and $T(s\varphi) = sT(\varphi)$

for s in F such that $|s| \leq 1$. It is clear that each of the following conditions is necessary and sufficient in order that the functor (1) be linear:

(*) If
$$\|\varphi\| \leq 1$$
, $\|\psi\| \leq 1$ and $|s| + |t| \leq 1$, then

$$T(s\varphi + t\psi) = sT(\varphi) + tT(\psi).$$

(**) For each pair (X, Y) of Banach spaces the restriction of T to $\langle X, Y \rangle$ yields a map

$$T_{X,Y}: \langle X, Y \rangle \rightarrow \langle T(X), T(Y) \rangle$$

which can be extended to a linear contraction from the space L(X,Y)of all bounded linear maps $X \to Y$ to the space L(T(X), T(Y)).

Thus, any linear functor (1) satisfies the condition

$$||T(\varphi)|| \leqslant ||\varphi||.$$

Let A be a fixed Banach space. We shall deal with the covariant functors

$$Q_A: \mathbf{Ban}_1 \to \mathbf{Ban}_1 \quad \text{and} \quad \Sigma_A: \mathbf{Ban}_1 \to \mathbf{Ban}_1$$

(see [7]); we recall that

$$\Omega_A(X) = L(A, X)$$
 and $\Sigma_A(X) = A \hat{\otimes} X$;

if $\varphi \colon X \to Y$ is a morphism, then $\Omega_A(\varphi)$ is the corresponding map from $\Omega_{A}(X)$ to $\Omega_{A}(Y)$ defined as $\Omega_{A}(\varphi)(\xi) = \varphi \circ \xi$ for ξ in $\Omega_{A}(X)$, and $\Sigma_A(\varphi) = A \, \hat{\otimes} \, \varphi$. It is well known that Σ_A is a left adjoint of Ω_A ([3], [6], [5], [8], p. 296). In fact, the canonical linear isometrical bijection

$$\langle \Sigma_A X, Y \rangle \rightarrow \langle X, \Omega_A Y \rangle$$

is natural in all three variables X, Y, A.

If Z is a closed subspace of X, then X/Z will denote the quotient space with the usual norm $\|x+Z\|=\inf\{\|x+z\|\colon z\,\epsilon Z\}.$ If $\varphi\colon X\to Y$ is a morphism, then we define:

$$\operatorname{Ker} \varphi = \{x \in X \colon \varphi(x) = 0\},$$
 $\operatorname{Im} \varphi = \operatorname{cl}_Y \{\varphi(x) \colon x \in X\},$
 $\operatorname{Coker} \varphi = Y/\operatorname{Im} \varphi, \quad \operatorname{Coim} \varphi = X/\operatorname{Ker} \varphi;$

moreover, $\ker \varphi : \operatorname{Ker} \varphi \to X$ and $\operatorname{im} \varphi : \operatorname{Im} \varphi \to Y$ denote the identical injections, while

$$\operatorname{coker} \varphi \colon Y \to \operatorname{Coker} \varphi \quad \text{ and } \quad \operatorname{coim} \varphi \colon X \to \operatorname{Coim} \varphi$$

denote canonical surjections. It is obvious that

(3)
$$\ker(\operatorname{coker}\varphi) = \operatorname{im}\varphi$$
 and $\operatorname{coker}(\ker\varphi) = \operatorname{coim}\varphi$

(cf. [1], p. 8). If $\varphi_1 \colon X \to Y_1$ is also a morphism, then $\varphi =_{\mathbf{e}} \varphi_1$ will mean that there exists a Ban,-isomorphism (i.e., a linear isometrical bijection) $\eta\colon Y\to Y_1$ such that $\eta\varphi=\varphi_1$. A morphism φ will be called a quotient morphism iff $\varphi = \pi$ for some canonical surjection $\pi: X \to X/Z$.

Let us consider the following conditions:

- (α') For every φ , if φ is an epimorphism, then $T(\varphi)$ is an epimorphism.
- (β') For every π , if π is a quotient morphism, then $T(\pi)$ is a quotient morphism and

(4)
$$\operatorname{im} T(\ker \pi) = \ker T(\pi).$$

It is obvious that a morphism $\varphi: X \to Y$ is an epimorphism (in **Ban**₁) iff $\varphi(X)$ is dense in Y, i.e., Im $\varphi = Y$. Therefore property (a) formulated in the introduction means that the functor $T = \Sigma_A$ satisfies (α'). Moreover, property (β) means that $\Sigma_{\mathcal{A}}$ satisfies (β').

It is also clear that a morphism $\xi \colon Y \to Z$ is a coequalizer (= a difference cokernel, see [3], [6], [8]) of morphisms $\varphi: X \to Y$ and $\psi: X \to Y$ if and only if $\xi=_{\rm e} {\rm coker} \left(\frac{1}{2}(\varphi-\psi)\right)$ (the number $\frac{1}{2}$ guarantees that $\|\frac{1}{2}(\varphi-\psi)\| \leqslant 1$).

PROPOSITION. Let (1) be a linear functor. Then each of the following conditions is equivalent to the conjunction (α') & (β') :

- (i) T is cohernel-preserving, i.e., $T(\operatorname{coker}\varphi) =_{\operatorname{e}} \operatorname{coker} T(\varphi)$ for every morphism φ ,
- (ii) T is coequalizer-preserving, i.e., if ξ is a coequalizer of φ and ψ , then $T(\xi)$ is a coequalizer of $T(\varphi)$ and $T(\psi)$.

Proof. The equivalence (i) \Leftrightarrow (ii) follows from the preceding remark.

(i) \Rightarrow (α'): Let φ be an epimorphism. Then coker $\varphi = 0$, and hence

$$\operatorname{coker} T(\varphi) =_{\operatorname{e}} T(\operatorname{coker} \varphi) = T(0) = 0.$$

Thus, $T(\varphi)$ is an epimorphism.

(i) \Rightarrow (β'): Let π be a quotient morphism; hence $\pi = 0$ coim π and $T(\pi) = 0$ $T(\cos \pi)$. Substituting $\varphi = \ker \pi$ in (i) and applying (3) we get

$$T(\pi) =_{\mathrm{e}} T(\operatorname{coim} \pi) =_{\mathrm{e}} \operatorname{coker} T(\ker \pi).$$

Consequently, $T(\pi)$ is a quotient morphism (as a cokernel of a morphism). Passing to kernels we get

$$\ker T(\pi) = \ker \operatorname{coker} T(\ker \pi) = \operatorname{im} T(\ker \pi).$$

 (α') & $(\beta') \Rightarrow (i)$: Let $\varphi \colon X \to Y$ be any morphism. It may be factored as $\varphi = \varepsilon \vartheta$, where $\varepsilon = \operatorname{im} \alpha$ and $\vartheta \colon X \to \operatorname{Im} \varphi$ is the induced epimorphism. It is clear that

(5)
$$\operatorname{coker} \varphi = \operatorname{coker} \varepsilon.$$

Acting with T we get $T(\varphi) = T(\varepsilon)T(\vartheta)$. Since ϑ is an epimorphism, (α') implies that $T(\vartheta)$ is an epimorphism. Consequently (cf. [6], p. 15),

(6)
$$\operatorname{coker} T(\varphi) = \operatorname{coker} T(\varepsilon)$$

as the range of $T(\varphi)$ is dense in that of $T(\varepsilon)$. Substituting $\pi=\operatorname{coker} \varepsilon$ in (4) and applying (3) we get $\varepsilon=\ker \pi$ and hence

$$\ker \operatorname{coker} T(\varepsilon) = \operatorname{im} T(\ker \pi) = \ker T(\operatorname{coker} \varepsilon).$$

Since the quotient morphisms coker $T(\varepsilon)$ and $T(\operatorname{coker} \varepsilon)$ have the same kernel, we infer that $\operatorname{coker} T(\varepsilon) =_{\operatorname{e}} T(\operatorname{coker} \varepsilon)$. Thus, by (5) and (6)

$$T(\operatorname{coker}\varphi) = T(\operatorname{coker}\varepsilon) =_{\operatorname{e}} \operatorname{coker} T(\varepsilon) = \operatorname{coker} T(\varphi).$$

Remark. The above proposition may be regarded as a characterization of right exactness of the functor (1).

2. We shall now deal with condition (γ) . Given an indexed family $(X_i)_{i\in I}$ of Banach spaces, the l_1 -join $X=\coprod_{i\in I}X_i$ is the space of all functions $x=(x_i)_{i\in I}$ in the product PX_i such that

$$||x|| = \sum_{i \in I} ||x_i|| < \infty.$$

It is well known that X together with the canonical injections $\sigma_i\colon X_i\to X$ is a coproduct $(=\sup)$ of $(X_i)_{i\in I}$ in the category Ban_1 . We shall say that functor (1) is coproduct-preserving iff for any family $(X_i)_{i\in I}$ of Banach spaces the space T(X) together with morphisms $T(\sigma_i)\colon T(X_i)\to T(X)$ is a coproduct of $(T(X_i))_{i\in I}$, i.e., there exists a linear isometrical bijection η from T(X) onto the l_1 -join $\coprod T(X_i)$ such that for each $i\in I$ the morphism $\eta T(\sigma_i)$ is the canonical injection of $T(X_i)$ into $\coprod T(X_i)$.

The functor \mathcal{L}_A is coproduct-preserving (as a left adjoint of Ω_A , cf. [3], p. 81, [6], p. 67). This statement is somewhat stronger than saying that $T = \mathcal{L}_A$ satisfies the condition

 (γ') If $X_i = F$ for $i \, \epsilon I,$ then there is a $\mathbf{Ban_1}\text{-}\mathrm{isomorphism} \ \eta$ making each diagram

$$T(\coprod_{i \in I} X_i) \stackrel{\eta}{
ightarrow} \coprod_{i \in I} T(X_i)$$
 $T(\sigma_j) \qquad \qquad \sigma'_j \qquad \qquad \qquad T(X_j)$

commutative (here $\sigma_j \colon X_j \to \coprod_{i \in I} X_i$ and σ'_j are canonical injections, $j \in I$).

The characterization of the tensor product mentioned in the introduction may be formulated as follows:

THEOREM 1. If a covariant linear functor (1) is cohernel-preserving and coproduct-preserving, then it is naturally equivalent to some Σ_A .

Actually, we shall prove more:

THEOREM 1'. A linear covariant functor (1) is naturally equivalent to some functor Σ_A if and only if it satisfies (α') , (β') and (γ') .

Proof of Theorem 1'. The "only if" part follows from general theorems on adjoint functors (see [3], p. 81, [6], p. 67).

Now, let (1) be any linear functor. Denote A=T(F). If X is a Banach space, let $\beta_x(s)=sx$ for x in X with $\|x\|\leqslant 1$, s in F; clearly β_x is a morphism from F to X and $T(\beta_x)$ is a morphism from A to T(X). Moreover, by (2), $\|T(\beta_x)\|\leqslant \|\beta_x\|=\|x\|\leqslant 1$. Letting

$$\xi(a,x) = s(T\beta_{x/s})(a)$$
 for a in A , x in X , $s > ||x||$,

we get a bilinear operator $\xi\colon A\times X\to T(X)$ with $\|\xi\|\leqslant 1$, which can be factored through a unique linear operator

(7)
$$\tau_X \colon \varSigma_A(X) \to T(X)$$

with $\|\tau_X\| \leqslant 1$. Thus, $\tau_X(\sum a_i \otimes x_i) = \sum (T\beta_{x_i}) a_i$ if $\|x_i\| \leqslant 1$ for $i=1,\ldots,n$. A routine verification shows that (7) yields a natural transformation

(8)
$$\tau: \Sigma_A \to T,$$

i.e., for every morphism $\varphi: X \to Y$ the diagram

is commutative. Moreover, $\tau_F: \Sigma_A(F) \to A$ is an isometrical bijection (in virtue of the canonical isomorphism $A \, \hat{\otimes} \, F \cong A$ and $T(s1_F) = s1_A$).

We claim that if T satisfies (α') , (β') and (γ') , then (8) is a natural equivalence, i.e., for every Banach space X the map (7) is an isometrical bijection.

There exist sets P and Q and morphisms

$$l(Q) \stackrel{\varrho}{\to} l(P) \stackrel{\pi}{\to} X \to 0$$

such that π is a quotient morphism and ϱ maps l(Q) onto the kernel of π (one may say that the sequence (9) is exact). Acting with the functors Σ_A and T we get the commutative diagram

$$\begin{array}{ccc} \varSigma_{A}(l(Q)) & \xrightarrow{\varSigma_{A}(e)} & \varSigma_{A}(l(P)) & \xrightarrow{\varSigma_{A}(\pi)} & \varSigma_{A}(X) \\ \tau_{l(Q)} & & & & \downarrow \tau_{l(P)} & & \downarrow \tau_{X} \\ T[l(Q)) & \xrightarrow{T(\varrho)} & T[l(P)) & \xrightarrow{T(\pi)} & T(X) \end{array}$$

If T satisfies (γ') , then $\tau_{l(P)}$ and $\tau_{l(Q)}$ are isometrical bijections (since

 τ_F has this property).

Finally, if T satisfies (α') , (β') and (γ') , then τ_X is also an isometrical bijection. Indeed, in the above diagram we have two \mathbf{Ban}_1 -isomorphisms $\tau_{I(Q)}$ and $\tau_{I(P)}$ and, by condition (i) of § 1, the set $\ker \mathcal{L}_A(\pi)$ is the closure of the range of $\mathcal{L}_A(\varrho)$, the set $\ker T(\pi)$ is the closure of the range of $T(\varrho)$, and both $\mathcal{L}_A(\pi)$ and $T(\pi)$ are quotient morphisms; therefore τ_X is a \mathbf{Ban}_1 -isomorphism (note that τ_X is the unique morphism from $\mathcal{L}_A(X)$ to T(X) which makes the diagram commutative).

3. We shall now formulate an analogous characterization of a functor Ω_A . THEOREM 2. Let $S\colon \mathbf{Ban}_1\to \mathbf{Ban}_1$ be a linear covariant functor. S is naturally equivalent to some functor Ω_A if and only if it is product-preserving and kernel-preserving.

Theorem 2 can be immediately derived from Theorem 1. If S is product-preserving and kernel-preserving, then, by the special adjoint functor theorem of Freyd ([3], p. 89, [6], p. 126), S is a right adjoint of some functor T. The standard argument (cf. [6], p. 120) shows that T is also linear; moreover T is coproduct-preserving and cokernel-preserving. Hence, by Theorem 1, there exists an A such that T is naturally equivalent to \mathcal{L}_A . This means that S is a right adjoint of \mathcal{L}_A and, by Kan's uniqueness theorem, S is naturally equivalent to \mathcal{Q}_A .

In an analogous way Theorem 1 can be derived from Theorem 2.

- 4. We shall now outline another proof of Theorem 2 (and hence, by the preceding remark, another proof of Theorem 1 as well). The argument is valid in any autonomous category I (in the sense of Linton [5]) satisfying the following conditions:
- (a) If the underlying map of a morphism α in $\mathfrak A$ is a bijection, then α is an isomorphism in $\mathfrak A$.
- (b) The identity functor $\mathfrak{A} \to \mathfrak{A}$ is strongly representable, i.e., there is an object E such that \mathbf{Hom} $(E,\,?)$ is naturally equivalent to the identity.
- (c) ${\mathfrak A}$ satisfies the assumptions of the special adjoint functor theorem of Freyd.

Under these assumptions we have

Watt's theorem. Every covariant left-root-preserving strong functor $S\colon \mathfrak{A}\to \mathfrak{A}$ is naturally equivalent to some functor $\Omega_A=\operatorname{Hom}(A,\,?).$

The argument is as follows: By the special adjoint functor theorem S has a left adjoint $T: \mathfrak{A} \to \mathfrak{A}$. Since S is strong, by (a), T is also strong and S is a strong right adjoint of T. Consequently, by (b),

$$\operatorname{Hom}(T(E), ?) \cong \operatorname{Hom}(E, S(?)) \cong S.$$

Thus, S is naturally equivalent to $\Omega_{T(E)}$.

The category \mathbf{Ban}_1 becomes an autonomous category if the closed unit ball is regarded as the underlying set and $\mathbf{Hom}(X,Y) = L(X,Y)$; thus, the underlying set of the object $\mathbf{Hom}(X,Y)$ is the set of all linear contractions from X to Y. Conditions (a)-(c) are obviously satisfied: (a) means that a one-to-one linear operator mapping the unit ball onto the unit ball is an isometrical bijection; (b) is satisfied if $E = \mathbf{F}$.

Let us note that typical categories of topological vector spaces do not satisfy (a); moreover, the proof of Theorem 1 presented in § 2 has no obvious extension to that case.

References

[1] H. Buchwalter, Espaces de Banach et dualité, Publ. Dép. Math. (Lyon) 3 (1966), fasc. 2, p. 2-61.

[2] S. Eilenberg, Abstract description of some basic functors, J. Indian Math. Soc. 24 (1960), p. 221-234.

[3] P. Freyd, Abelian categories, New York 1964.

 [4] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).

[5] F. E. J. Linton, Autonomous categories and duality of functors, J. Algebra 2 (1965), p. 315-349.

[6] B. Mitchell, Theory of categories, New York 1965.

[7] B. S. Mitiagin and A. S. Švare, Functors in categories of Banach spaces (in Russian), Uspehi Mat. Nauk 19 (1964), p. 65-130.

[8] Z. Semadeni, Categorical methods in convexity, Proc. Colloq. on Convexity, Copenhagen 1965 (1967), p. 281-307.

 [9] C. Watts, Intrinsic characterizations of some additive functors, Proc. Amer. Math. Soc. 11 (1960), p. 5-8.

INSTITUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

STUDIA MATHEMATICA, T. XXXVIII. (1970)

Colloquium on

Nuclear Spaces and Ideals in Operator Algebras

Unconditional and normalised bases

by

N. J. KALTON (Cambridge and Lehigh)

1. Introduction. A Schauder basis (x_n) of a locally convex space E is unconditional if, whenever $\sum_{i=1}^{\infty} a_i x_i$ converges, the convergence is unconditional. In [16], Pełczyński and Singer proved that every Banach space with a basis possesses a conditional (i.e. not unconditional) basis. In this paper I shall generalise this theorem using the concept of normalisation introduced in [12].

A sequence (x_n) is regular if there is a neighbourhood V of zero with $x_n \notin V$ for all n; a regular bounded sequence is said to be normalised. If there exists a scalar sequence (a_n) with $(a_n x_n)$ normalised, then (x_n) is said to be normal; otherwise (x_n) is abnormal.

If (x_n) is a Schauder basis of E, then (f_n) will always denote its dual sequence in E'; if $(f_n)_{n=1}^{\infty}$ is equicontinuous, then (x_n) is equi-regular, and hence regular; if E is barrelled, then any regular basis is equi-regular.

The sequence space of all a such that $\sum_{i=1}^{\infty} a_i x_i$ converges will be denoted by λ_x , and μ_x is the sequence space $\{(f(x_n))_{n=1}^{\infty}; f \in E'\}$. If E is sequentially complete, then (x_n) is unconditional if and only if λ_x is solid (see [4]), that is if $a \in \lambda_x$ and $|\theta_n| \leq 1$ for all n, then $(\theta_n a_n) \in \lambda_x$. If E is also barrelled, it can be shown that the topology on E may be given by a collection of solid semi-norms p such that

$$p(x) = \sup_{|\theta_i| \leqslant 1} p(\sum_{i=1}^{\infty} \theta_i f_i(x) x_i).$$

A sequentially complete barrelled space with a Schauder basis is complete (see [10]); in this paper I shall restrict attention almost exclusively to complete barrelled spaces.

2. Reflexivity and unconditional bases. A Schauder basis (x_n) is γ -complete or boundedly-complete if whenever $(\sum_{i=1}^n a_i x_i; n = 1, 2...)$ is