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The following questions may be of a certain interest:
TIs the existence of non-increasing null sequences (a,,) with é,, (K) = 0 (a,)
for all compact sets of an F-space E a topological linear property?
Does this property characterize the space s in a certain class of F-spaces
(of course, such a class should not only contain the B-spaces and the
spaces 8)? Is this property related to conditions listed in section 1 to
characterize the space s?

Concerning the last question it is easy to see that for an F-space E, in
which one sequence of finitely-dimensional subspaces approximates slowly,
there is a non-increasing null sequence of positive numbers 7,, 7, . .. such that

0,(B) = 0(ry)
for each bounded set B < E. In this case either each closed bounded set
is compact (cf. “(FM)-Raume” in [5], p. 372) or the compact sets cannot
be characterized among the closed bounded sets by
limé,(B) = 0.
This characterization is possible e.g. in complete p-normed spaces
{0 < p<1), where the p-norm differs from a usnal norm only by the
property ozl = |a|” ||| instead of = |a| [|#l] (aecC, weH) (cf. [7], p. 131)

“or in the space s. May be these facts give hints for an answer to the ques-

tion at the end of section -1.
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A theorem of Eilenberg-Watts type
for tensor products of Banach spaces

by
Z. SEMADENT and A. WIWEGER {Warszawa)

Introduction. ?By the tensor product of Banach spaces X and ¥ we
shall mean the projective tensor product XQ® ¥ defined as the completion

of the algebraic tensor product X @ ¥ withrespect to the greatest cross
norm

llu] = int {Z el iyl = 20 g‘ﬁﬂ%@%; re X, yieY}.

It is We}l known (cf. Grothendieck [4], Ch. I, §1, no. 2, Proposition '
3 and Théoréme 2, Buchwa.lte}- [1], p. 33) that for each fixed Banach
space A the tensor product 4@ X has the following properties:

{2) I 9: X > ¥ is a bounded linear operator onto a dense subset
of Y, then the induced operator
40X 487

maps A& X onto a dense subset of A& Y.

(B) If Z is a closed subspace of a Banach space X, then there iz a ca-
nonical isomorphism 7 from (4§ X)/N onto 4 & (X/Z), where N is the
closed subspace of A®X generated by the elements of the form a®z
with ¢ in 4 and 2 in Z; moreover, the corresponding diagram

AQX S (AQX)|F
A®w T
\\ |

48(X/7)

is commutative; here #.and o denote the canonical surjections.
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(y) For any set P the space AQ®I(P) is canonically isomorphic to
the space [(P, 4) of all indexed families & = (ay)pp with

lafl = D lapll < oo
peP

here I(P) is I(P, F), where F is the field of scalars (i.e., F. = R or F = C).

The purpose of this paper is to show that, roughly speaking, pro-
perties (x)-(y) characterize the tensor product up to isomorphism. Thig
characterization will be formulated as a natural equivalence of functors.
An analogous theorem for tensor products of modules is known as the
Eilenberg-Watts theorem ([2], [9], [6], p. 1587):

1. We now reformulate properties (o) and (8) in categorical language;
unexplained terminology is from Freyd [3].

Let Ban, denote the category of Banach spaces (over the field F)
and linear contractions (i.e., linear maps ¢: X — ¥ satisfying [l <1).
Throughout Sections 1-3 the term “morphism” will refer to this category.
The get of all morphisms from X to ¥ will be denoted by (X, ¥). A co-
variant functor

@) T : Ban, — Ban,

. will be called linear if for any Banach spaces X and Y and for any linear
maps ¢: X — ¥ and 9: X - Y the conditions [lp]| < 1, lp[|< 1, ety <1
imply :

T(p+vy) = T(p)+T(p) and T(sp) =sT(p)
for s in F such that |s| < 1. It is clear that each of the following conditions
is necessary and sufficient in order that the functor (1) be linear:

(x) B lpll<1Lllpl <1 and |s|4- ] <1, then
T (sp-+ty) = sT(p)+1T (v).

(*+) For each pair (X, ¥) of Banach spaces the restriction of T to

<X, Y) yields a map
Txy: <X, Y5 - (I(X), T'(X)>

which can be extended to a linear contraction from the space L (X, ¥)
of all bounded linear maps X - ¥ to the space L(T(X), T(Y)).

Thus, any linear functor (1) satisfies the condition
() 1T < lell.

Let A be a fixed Banach space. We shall deal with the covariant
funectors

0,: Ban;—>Ban, and X, : Ban, —»Ban,
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Tensor products of Banach spaces 237
(see [7]); we recall that
QA(X) =L(4,X) and X,(X) = AQX;

if : X - Y is a morphism, then © 4 (@) is the corresponding/ map from

Q,4(X) to Q,(Y) defined as Q4 (p) (&) =g@of for £ in ©,(X), and

Z4(p) = A®g. Tt is well known that X, is a left adjoint of Q, ([3], [6]
? 7

[51, [8], p- 296). In fact, the canonical linear isometrical bijection
(Z4X, Ty~ X, 2, x>
is matural in all three variables X, ¥, 4.
If Z is a closed subspace of X, then X/Z will denote the quotient

space with the usual norm ||z Z| = infflizJ- 2! . .
a morphism, then we define: ) ” {H?Tz”. 2elk g X ¥ s

Kerg = {meX: p(z) = 0},
Tmg = clp{p() : X},
Ookergp = Y/Img, Coimgp = X/Kerp;

moreover, kerg: Kerp — X and imp: Imp-—> Y denote the identical
injections, while .

coker g: ¥ — Cokerp and  coim p: X - Coimg

denote canonical sutjections. It is obvious that
(3) ker(cokerg) =imy and coker (kerg) = coimg

{cf. [1], p- 8): If p,: X — ¥, is also a morphism, then @ =, @1 Will mean
that there exists a Ban,-isomorphism (i.e., & linear isometrical bijection)
n: Y—.> Yl.sueh that #p = ¢;. A morphism ¢ will be called a guotient
morphism iff ¢ =, & for some canonical surjection =: X - X 1Z.

Let us consider the following conditions:

(') For every ¢, if ¢ is an epimorphism, then 7'(g) is an epimorphism.

(B') For every =, if  is a quotient morphism, then T'(x) is a quotient
morphism and '
(4) imT (kerw) = kerT(x).

It iy obvious that a morphism ¢: X — ¥ is an epimorphism (in Ban,)
iff p(X) is dense in ¥, i.e., Im ¢ = ¥. Therefore property («) formulated
in the introduction means that the functor T = X, satisfies («'). Moreover,
property (B) means that X, satisfies (p'). )

It is also clear that a morphism é&: ¥ — Z is a coequalizer (= a dif-
ference cokernel, see [3], [6], [8]) of morphisms ¢: X — ¥ and p: X > ¥

V
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if and only if & =, coker(}(p—y)) (the number } guarantees that

Ee—vli <1).
ProPosITION. Let (1) be o linear functor. Then each of the following

conditions is equivalent to the conjumction (o) & (B'):

(i) T s cokernel-preserving, i.e., T (cokerg) =, cokerT(p) for every
morphism ¢, ’ .

(ii) T' is coequalizer-preserving, i.e., if £ is a coequalizer of @ and v,
then T(£) 48 a coequalizer of T(p) and T'(y).

Proof. The equivalence (i) < (ii) follows from the preceding remark.

(i) = («): Let @ be an epimorphism. Then coker ¢ = 0, and hence

coker T'(g) =, T'(cokerp) = T'(0) = 0.

Thus, T'(p) is an epimorphism. ;
(i) = (8): Let = be a quotient morphism ; hence = =, coimz and
T (n) =, T(coim x). Substituting ¢ = ker = in (i) and applying (3) we get

T(n) =, T(coimn) =, cokerT (kerwm).

Consequently, 7'(z) is a quotient morphism (as a cokernel of a mer-
phism). Passing to kernels we get
. ker T'(n) = kercokerT (kern) = im T (kerm).
(") & (B') = (1): Let <p:X—> Y be any morphism. It may be fac-

tored as ¢ = e, where ¢ = ima'and ¢: X > Im ¢ is the induced epimor-
phism. It is clear that

(5) cokeryp = cokere.

Acting with T we get T(p) = T ()T (9). Since ¢ is an epimorphism,
(a") implies that T(#) is an epimorphism. Consequently (cf.[6], p. 15),

(6) cokerT(g) = cokerT'(¢)

as the range of T'(¢) is dense in that of T'(s). Substituting » = cokere -

in (4) and applying (3) we get ¢ = ker & and hence
ker cokerT'(s) = im T (kerw) = kerT (cokere).

Since the quotient morphisms cokerZ(e) and 7' (coker ¢) have the
same kernel, we infer that coker 7'(s) =, T(cokere). Thus, by (5) and (6)

T(cokerp) = T (cokers) =, cokerT (e) = cokerT(p).

Remark. The above proposition may be regarded as a characteriza-
tion of right exactness of the funetor (1).

i
1
¥
/
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2. We shall now deal with condition (y). Given an indexed family
(X:)er of Banach spaces, the l-join X = [[ X, is the space of all functions
zel

# = (#;);r in the product PX; such that )
o] = ZI‘H%H < oo.

) It is well known that X together with the canonical injections o;: X;—>X
I8 a coproduet (= sum) of (X,),, in the category Ban;. We shall say
that funetor (1) is coproduct-preserving iff for any family (X),.; of Banach
spaces t]}e space T'(X) together with morphisms T'(e;): T(X;) - T(X) is
a coproduct of (I'(X,)), i.e., there exists & linear isometrical bijection 7
from T'(X) onto the L-join []T(X,) such that for each jel the morphism
7T'(0;) is the canonical injection of T (X)) into [] T(X)).

The functor X, is coproduct-preserving (as a left adjoint of  ay
cf. [3], p. 81, [6], p. 67). This statement is somewhat stronger than saying
that T' = X, satisfies the condition

(') If X; =F for 4el, then there is & Ban,-isomorphism z making
each diagram P

T([iaX) > [[aT(Xy)
4 A

4
T o
/

T(X;)

commutative (here ¢;: X;~ [[ X; and a;- are canonical injections, jeI).
T ;

The characterization of the tensor product mentioned in the intro-
duction may be formulated as follows:

THEOREM 1. If @ covariant linear funcior (1) s cokernel-preserving and.
voproduct-preserving, then it is naturally equivalent fo some X g

Actually, we shall prove more: - .

TamorEM 1. A linear covariant funcior (1) is naturally equivalent
to some functor X, if and only if it satisfies ('), (3") and (y').

Proof of Theorem 1'. The “only if” part follows from general
theorems on adjoint functors (see [3], p. 81, [6], p. 67).

Now, let (1) be any linear functor. Denote 4 = T'(F). If X is a Banach
space, let B,(s) = sz for » in X with o] <1, s in F; clearly g, is a mor-
phism from F to X and T'(4,) is & morphism from 4 to 7'(X). Moreover,
by (2), IT(B)| < 1Ball = Yoll < 1. Letting "

£(ay @) = s(Thys)(a) for a in 4, o in X, s> |laf,
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we get a bilinear operator £ AxX - T(X) with [ <1, which can be
factored through a unique linear operator

(7) 7yt Z4(X) > T(X)

with [[rg]l < 1. Thus, tx (e ®%) = ST B o it [lgll < 1 for i=1,..,n

A roubine verification shows that (7) yields a natural transformation

{8) r:2,->T,

i.e., for every morphism ¢:X — Y the diagram
(X)) 249, 2,7
Tx Ty

¥
TX) — T(Y)

is commutative. Moreover, t5:2,(F) —>{1 is an isometrical bijection (in
virtue of the canonical isomorphism A& F =~ A and T(slp) = sl,). X
We claim that if T satisfies («'), (8') and (v"), then'(S) is a natgr:l
equivalence, i.e., for every Banach space X the map (7) is an isometric
bijection. o
There exist sets P and @ and morphisms

() 1Q) % UP) S X0

such that = is a quotient morphism and ¢ maps l(_Q) on.to the kernei of
7 {one may say that the sequence (9) is exact). Acting with the functors
X, and T we get the commutative diagram

2,(1(@) 2425 2, UP) 2 £, (X)
Q) UX

T(U(Q)) — TP) —5> T(X)

Typ)

If T satisfies («{’)ﬁ, then 7py and 7q) are isometrical bijections (since
7p has this property). o )
o Finalty, ﬂ fl? sa‘bﬁﬁes (@), (f") and (y'), then 7y is also an 1somet?ma,1
bijection. Indeed, in the above diagram we have two Ban1-1§01x;orp1h1smz
Tyg and 7yp and, by condition (i) of § .1, the set Ker X 4 () is the ; (;ur)
of the range of X, (), the set Ker T'(x) is the .closure of the range o (0);
and both X, () and T (w) are quotient mox'ph1sm§; therefore vx is Bax}—
-isomorphism (note that Tz is the unique morphism from 2, (X) to T (X)
which makes the diagram commutative).
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3. Weshallnow formulatean analogous characterization of a functor Q -
TemorEM 2. Let 8: Ban, - Ban,

: be a linear covariant functor. 8 is
naturally equivalent to some Junctor Q , if and only if it is product-preserving
and kernel-preserving. i

Theorem 2 can be immediately derived from Theorem 1. If § is
product-preserving and keruel‘preserving, then, by the special adjoint
functor theorem of Freyd (13, p- 89, [6], p. 126), 8 is a right adjoint of
some functor 7. The standard argument (cf. [6], p. 120) shows that T
is also linear; moreover 7 is coproduct-preserving and cokernel-preserving.
Hence, by Theorem 1, there exists an A such that T is naturally equi-
valent to X,. This means that § is a right adjoint of X, and, by Kan’s
uniqueness theorem, § is naturally equivalent to Q.

In an analogou$ way Theorem 1 can be derived from Theorem 2.

- 4. We shall now outline another proof of Theorem 2 (and hence,
by the preceding remark, another proof of Theorem 1 as well). The argu-
ment is valid in any autonomous category U (in the sense of Linton B
satistying the following conditions:

(a) If the underlying map of a morphism o in 9 is a bijection, then
a is an isomorphism in 9.

(b) The identity functor % — 9 is strongly representable, i.e., there
is an object ¥ such that Hom (&, 1) is naturally equivalent to the identity.

(e) U satisfies the assumptions of the special adjoint functor theorem
of Freyd.

Under these assumptions we have

WATT’S THEOREM. Hvery covariant left-root-preserving strong functor
S: A —A is naturally equivalent to some Suncior 2, =Hom (4, ).

The argument is as follows: By the special adjoint funetor theorem
8 has a left adjoint 7': A — 9. Since S is strong, by (a), T is also strong
and § is a strong right adjoint of 7. Consequently, by (b),

Hom(T (E), %) ~ Hom(7, 8() =< 8.

Thus, § is naturally equivalent to Lz

The category Ban, becomes an autonomous category if the closed
unit ball is regarded as the underlying set and Hom (X, Y) =L{X, Y);
thus, the underlying set of the object Hom (X, ¥) is the set of all linear
contractions from X to ¥. Conditions (a)-(c) are obviously satisfied:
(a) means that a one-to-one linear operator mapping the unit ball onto
the unit ball is an isometrical bijection; (b) is satisfied if B — F.

Let us note that typical categories of topological vector spaces do
not satisfy (a); moreover, the proof of Theorem 1 presented in §2 has
no obvious extension to thit case. ;
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-Unconditional and normalised bases

by
N. J. KALTON (Cambridge and Lehigh)

1. Introduction. A Schauder basis (z,) of a locally convex space

H is unconditi i 5
ditional if, whenever _); 0;%; converges, the convergence is uncon-

g =
dll’nlonal. ID.. [16], Petezynski and Singer proved that every Banach spac
w;theraIbali;sn Dossesses a conditional (i.e. not unconditional) basis InSIzshi:
ﬁl tll)-odue Sd_ - g[f:zLI;e}I:a,hse this theorem using the concept of normalisation
V{i sequence (&) is regular if there is a neighbourhood V of zero with
%i v for a]l n; a regular bounded sequence is said to be normalised.
IX there exists a scalar sequence (a,) With (a,,) normalised, then (2,)
is said to be normal; otherwise () is a,bnormal.n ’ )
If (wn.) Is a S.chauder basis of B, then (f,) will always denote its dual
sequence in F ;-rﬁ (f,f),'f=1 is equicontinuous, then (z,) is equi-regular, and
hence regular; if E is barrelled, then any regular basis is equi—re,c,",lﬂar.

o

The sequence space of all o such that D a;x; converges will be denoted.

by A;, and u, is the sequence space {{ f(a:n]));;l; feE'}. I E is sequentially
eomp‘le?e, then (@,) is unconditional if and only if 1, is solid (see [4])
1‘3ha,13 ig if ael, and |6,] < 1 for all n, then (6, a,) <i,. If E is also barre]led,
it can be shown that the topology on B may be given by a collection of’
solid semi-norms p such that

-

2(0) = up pﬁ gl,’ 6::(2)@). .

A sequentially (.mmplete barrelled space with a Schaunder basis is
c?mplete (see [10]); in this paper I shall restrict attention almost exclu-
sively to complete barrelled spaces.

2. Reflexivity and unconditional bases. A Schauder basis (z,) is

n
y-complete or boundedly-complete if whenever ( Y ez;n =1, 2...) i8
o ,
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