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1. Introduction. In [11] Singer showed that a Banach space in which
every basic sequence is boundedly-complete or every basic sequence is
shrinking is reflexive; and in [12] Zippin extended this result by replacing
basic sequence by basis. In this paper I shall obtain extensions of both
Singer’s result and Zippin’s result to cover more general locally convex
spaces (also improving on the result of Retherford [97).

Suppose F is a locally convex space with a Schauder basis (,); then
(f,) will always denote the dual sequence in E'; P, will denote the map

Poo = Y filo)o;

i=1

and P, will be the dual map
’ n
Pof = D' f@)f;
=

in B'. The subspace of B’ consisting of all f such that lim P,f = f in the

700

strong topology will be denoted by H; the topology on H will be assumed
to be the strong topology f(E', E).

The Schauder basis (z,) is said to be shrinking it H = E' (i.e. (f,)
is a Schauder basis for B’ in the strong topology); it is said to be y-complete,

ki3

or boundedly-complete, if whenever (3 a;z;)5., is bounded, then 3} o;;

=1 i=1

converges. It is shown in [13] that ¥ is semi-reflexive if and only if (,)
i§ y-complete and shrinking.

The basis (z,) is regular (see [6]) if there exists a neighbourhood
V of zero such that z,¢V for all #. A bounded regular basis is called
normalised. Finally, (2,) is simple if for all fe B’ (P, )z, is strongly bounded
(see [B]); if (#,) is simple, (Py) is strongly equicontinuous.

In addition I ghall use the following definitions:
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Definition 1.1. (@,) is equi-regular it (f,) is equicontinuous; (a,)
is equi-normalised if it is equi-regular and bounded.

Leyvma 1.2. If (w,) is simple and regular, and B is quasi-barrelled
then (z,) is equi-reqular.

b2

As (P)2.; is equicontinuous, if 4 is bounded in B, then () P,(4)
n=1
is bounded and hence so is {f,(a)2,; acd, n = 1,2, ...}; as (m,) is regular

supsup | f,(a)| < oo,
n aed

ie. (fu) is strongly bounded and hence equicontinuous.

If (2,) is equi-normalised, then (f,) is equi-normalised as & Schauder
basis of H.

2. Sequences of type P and P*. Bages and basic sequences of types
P and P* were introduced and studied by Singer [11]; later the definition
was extended by Dubinsky and Retherford to generally locally convex
-spaces [1]. For convenience I shall extend the definition to biorthogonal
systems; if (w,) is a sequence in B; and (f,) a sequence in B’ with
Jo(@n) = Oy (Kronecker delta), then (%05 f») 18 a biorthogonal system
in E. :

Definition 2.1. (w,; f,) is of type P if there exists a neighbourhood

n

V of zero with ,¢V for all n, and the sequence (Y w5n=1,2,.)
is bounded. =1

Definition 2.2. (,; f,) is of type P* (in E) if (v,) is bounded and
n
(X fis m=1,2,..) is strongly bounded in &'
=1

If @ is a subspace of B with 2, @ for all n, and g, is the restriction
of f, to @, then (w,; g,) forms another biorthogonal system; if (z,; f,)
is of type P, then so is (%, g,), but the converse is not necessarily true.

I (z,) is a Schauder basis of E, then (z,; f,) forms a biorthogonal
system, and so I shall say (z,) is type P or P* according as (w,; f,) is
type P or P*. If (m;) is an increasing sequence of positive integers such
that (3,5 f,) is of type P or P*, then T shall say that (z,) is a type P
-or P* subsequence of (w,); this may not be the same as stating that ()
is & type P or P* basis of the subspace lin(,, )2,

With some restrictions the same duality results as proved by Singer
[11] for the Banach space case hold. The proof of the next result is obvious,

PROPOSITION 2.3. If (,) is o type P* Schauder basis of B, then (f,)
s o type P Schauder basis of H. :

For convenience I ghall call a space E in which every bounded set
is strongly (i.e. 8(H, B')) bounded, & W-space. E is a W-space if and only
if its weak dual {7, o(E', B)} is a W-space; any sequentially complete
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space is & W-space. Thus any semi-reflexive or barrelled space is a W-space.
Any Schauder basis of a W-space is simple.

PROPOSITION 2.4. Let B be a W-space, and let (z,) be @ Schauder basis
of B. If (,) is of type P, then (f,) is a type P* basis of H; if (F,) is a type
P basis of H, then (x,) is of type P*.

(,) is certainly simple, and hence if (f,) is of type P, then by Pro-

position 3.1 of [6], (x,) is bounded and hence of type P*.

If (2,) is of type P, then (w,) is regular; it we<F, then z = ¥ f,(x)a;
i=1
8o that lim fi(z) = 0. Thus (f,) is weakly bounded and hence strongly
00 n
bounded. Let s, = 3 x;; then (s,) is bounded and hence g(E, E') bounded.
i=1

The natural injection B - H’ is continuous for the strong topologies
B(E, E')and f(H', H) so that (s,) is f(H', H) bounded (when F is regarded
as a subspace of H’). Thus (f,) is of type P* for H.

PROPOSITION 2.5. If every strongly bounded sequence in E' is equicon-
tinwous and (&,) s @ simple Schauder basis of B, such that (f,) is a type P*
basis of H, then (x,) is a type P basis of E. : .

7n

Again considering F as a subspace of H', the sequence s, =_2 @;

i=1

is B(H', H) bounded; applying Proposition 5.3 of [5], (s,) iz bounded
in the original topology on E. Also (f,) is strongly bounded and hence
equicontinuous; thus (»,) is regular and so of type P. ) )

The condition that every strongly bounded sequence in B is equi-
continuous appears in several results of Dubinsky and Retherford [1];
this class includes all quasi-barrelled or DF-spaces. However, it is not
quite as wide as it might appear.

PROPOSITION 2.6. Suppose every strongly bounded sequence in B’ is
equicontinuous, and (x,) s a Schauder basis of E; then:

(iy B is quasi-barrelled in its Mackey topology, (B, B').

(i) If B is a sequentially complete DF-space, B is barrelled.

(iii) If (a;,l) is simple, then (w,) 48 a Schauder basis of {¥, (B, E')}.

(i) Suppose A = E' is absolutely convex, strf)ngly bounded'a:nd
weakly closed; then any countable subset of A is weakly relatively
compact. By Theorem 6 of [2], as (E', o(H', E)) may be r?ga.rd'ed a8
a sequence space, A is weakly compact. Thus 4 is Mackey equicontinuous
and so F is quasi-barrelled. v

(ii) A separable DF-space has a Mackey tol?ology (see [33).

(iii) If.(w,) is simple, then a slight modification of Corollary 4 of
Proposition 5.3 of [5] gives the result. -

w
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3. Bases with subsequences of types P and P*. In [11], Singer showed
that from. a2 basic sequence of type P in a Banach space one can obtain
2 basic sequence of type P* and vice versa. Here I shall obtain similar
results for bases of locally convex spaces with subsequences of types
P or P* (see above, section 2). Suppose (#,) is a Schauder basgis of ¥ with
a subsequence (mn],) of type P (where (n;) is an increasing sequence of
positive integers); let (s,) be defined by

@, if k& #m; for all j,

7
S,
=1

THEOREM 3.1. (8,) 98 @ Schauder basis of H; if (m,) is simple, then
(sn,) is a type P* subsequence of (s,).

if & =mn,.

Let

fk it k& 5 Ny,
Uy, =

fnjf—fn],+1 if &k =mn.

Then, if n; < m < 04y,

m m 7
gfk(w)wk— D w (@)= fr (@), 2 (@) 8,
=1 k=1 =1 t=]

= Foys ()8

As (wn],) ig regular, lim fnj 4 (#) = 0; and as (snj) is bounded it follows
J—>00

o= D f@a = Y u(0)s,
k=1 k=1

so that (s.) is a Schauder basis of H (with dual (1))

If (w,) is simple, and 4 = F is bounded, the seb {P (a); med,
n =1,2,..} i3 bounded (see [5]) and so {fn Bpi e d,j =1,2, }
is bounded As (m is regular,

sup m_lplfn,.(a)l < oo,

that

so -that ( f,,ﬂ) is strongly bounded.

However
i
g%n = fnl_fui+15
and 50 (s,,).is a type P* subsequence of (s,). Furthermore, ag lim f,,vj

o
. :f——mzz
weakly, > Uy, converges weakly.

i=1

muous, then (x,)
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Now suppose (s,) is a Schauder basis of B (with dual (,)) and that
(n;) is an increasing sequence of integers. Let

8y i & #ay for all j,

Sy~ Sny_y it k= (letting 8 = 0).

THEOREM 3.2. (i) If (s ) 8 bounded and 2 Uy, COMDETgES weakly, then
(@,) ts & Schauder basis of E = 7
(i) If (s,,) s @ type P* subsequence of (s,) and ( 2’ @0,«,-)?:1 is equiconti-
i=

s a Schouder basis of B with (2, (

&y, —

;) @ subsequemoe of type P

(i) Let
Uy, if kw0
2 Uy, Ik = n;.
. =
Then
% 3 ‘
Zfi(m)wi— 2 Uy (2)8; = f,lﬂl(m) Sngs where n; < k<< nyyy.
=1 i=1

As (s, ) is bounded, a.nd lim fn], (@) =0, (2,) is a Schauder basis of B.
(ii) The sequence {Z’

obviously 'v(s,,%) =1 for all i and v(s;) = 0forall ¥ # n;. Thus v = Z Un,
and, by (1); (=) is a Schauder basis of B with '

:%2%,

k =1,2,...} has a weak cluster point v;

50 that (fnj is eqmcontmuous Therefore (@) is regular and hence of

type P.

THEOREM 3.3. Let E be sequemmlly complete and possess a Schauder
basis.

(i) If every Schauder basic sequence in F is y-complete, then B is semi-
reflexive.

(ii) If every Schauder basic sequence in B is shrinking, then B is semi-
reflemive. ‘

(i) Suppose # is not semi-reflexive and (w,) is a Schauder basis of
E; then by Theorem 3.3 of [5], (#,) is not shrinking. As F is sequentially
complete, (z,) is simple, and so by Theorem 5.4 of [6] there exists a block
Dasic sequence (y,) which is bounded and fe B’ such that f(y,) = 1. ((4,)
is a block basic sequence if it takes the form

nj
2 Ayys

1+l
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where n, = 0 and (n;) i3 an increasing sequence).
Let F = lin(s y;); then F is sequentially complete and (y;) is & simple

Schander basis of F. If ¢ denotes the restriction of f to 7, then ¢ = Z’ 9

weally, where (g;) is dual to (y,) in F'. By Theorem 3. 2, it & = y,— % L
(with g, = 0), then (2;) is a Schaunder basis of F'; hence (z,) is y-complete.

Thus ) #; converges; bub
j=1

f’b(izj) =lim f,(y;) =0 for allm.
k—>00

=1

.

oo oo .
Therefore Y 2 = 0, but f( 3 %) = 1; this is the required contradiction.
j=1 j=1

7
(ii) Again suppose (#,) is @ Schauder basis of B and that ¥ is not semi-
reflexive; then (z,) is not y-complete. There exists a sequence (1,) of
k

scalars such that (3 A;#;)., is bounded but does not converge; as B is
=1

sequentially complete, there exists an increasing sequence of integers
n; with ny, = 0 such that if

f A;,

nj—y+1

then (y,) is a Dblock basic sequence of type P: Since ¥ = hn(yn) is sequen-
tially complete, (y,,) is a simple Schauder basis of ¥, and, by Theorem 3.1,
there exists a Schauder basis of ¥, (z,), of type P*. If (h,) is the dua,l

sequence of (z,) in F’, then, as shown in the proof of Theorem 3.1, 2 hy
=1
converges weakly. Thus ag (z,) is shrinking 2 h; converges strongly, and.

so lim h, = 0 strongly. HOWGVGI', (#,) is bounded and °
n—>00 .
sup ]hn(zm)] =1 for all N,

and. this is again a contradiction.

This theorem is a considerable improvement on the results of Rether-
ford [9], who obtained the same result under the extra conditions that
F is barrelled and every closed subspace of B with 2 Schaucler basis is
barrelled.

4. Semi-shrinking and semi-y-complete bases. In [8], Pelezyriski and
Szlenk introduced semi-ghrinking and semi-boundedly-complete bases of
Banach spaces; these def]:nmons genera.hse naturally to locally convex
spaces, .
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Definition 4.1. A Schauder basis (z,) is semi-shrinking if (x,) is
regular and lim &, = 0 weakly.
N—+00

Definition 4.2. A Schauder basis (z,) is semi-y-complete if (z,) is

bounded. and whenever [E Az )pe, is bounded, then lim 1, = 0.

00

A semi-shrinking ba.ms is normalised, but the same is not true for
a semi-y-complete basis (e.g. the standard basis of 12 in its weak topology).
A normaliged shrinking basis is semi-gshrinking and & normalised y-com-
plete basis is semi-y-complete, but the converses are false (see [8] and
[107).

PROPOSITION 4.3. Let (1,) be a simple Schauder basis of .

() If (m,) is semi-y-complete, then (f,) is a semi-shrinking basis of H.

(ii) If every strongly bounded sequence in B is equicontinuous and
() is semi-shrinking, then (f,) is semi~y-compleie for H.

(i) Since (z,) is bounded, (f,) is regular in the strong topology. Suppose
2<(B, B(E, B))'; for f<F', as (w,) is simple

sup | 1 sl < oo

i=1

Therefore
sup| 312 0d] < oo,

50 (5’ y(f)m;n=1,2,..) is bounded in E; by a.smmpmonhmx(fn
a,nd SO ]Jmf,, =0 in o(#,B').

(ii) By Theorem. 3.4 of [6], (f,) is strongly normalised. Suppose
{2” Afiym=1,2,.. } i strongly bounded ; then this set is weakly compact
af;ii 0 possesses a cluster point f, where f(z;) = 4. Thus

ljm 2, =]j.r£1°f(w“) =0.

In [7], Pelezynski and Singer introduced a very useful method of
obtaining a new basis from a given basis of a Banach space, called the
method of block perturbation. Under certain circumstances this may be

extended to apply to locally convex spaces. Let (,) be a simple regulaxr
Schauder basis of B and let u; be a bounded block basic sequence,

my
2 ;T

mi_i+1
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(where m, = 0 and (m;) is an increasing sequence of integers). Suppose
that there exists a sequence {p,} with my_y < P; < my; such that a, =0
for all j; then the sequence T

00

Yo = wn_i” 2 5%19](,7'4%
k

is a block perturbation of (a,).
LevwmA 4.4. (y,) is a simple reqular Schauder basis of B; if (m,) is
equi-regular, then so is (y,). .

Let g, =fi—f,,, where 4, =g, for m,_,<n<m, Then
90 (Ym) = Opy, and as in [7]

N N
D 00@)Ya— D 1(@)2, = f; (0) (By1t,— Py),

where m,_; < N <m, and By =0 if N < p, and By =1 it ». <N
As (f”n) is simple, the set (Byu,~Pyu,)T_, is bounded, and (a,) is
regular Hm Jp,(®) = 0. Thus
N—sco

D @)y, = o
1=1

~and (y,) is a Schauder basis of E.

N N .
D Ga— DT @), = fByu— Pyu,)j,

n=1 n=1 r

and as (z,) is sirgple and regular, it follows that ( Jy,) 18 strongly bounded;
tyus the set 3 f(y,)9,; N = 1,2, ) is strongly ‘bounded, ie. (y,) is
simple. =1 '

If: (fa) is equicontinuous, then as (@) is bounded (since (,,) is regular
and simple), ¢, = f,~ a.f;, 18 equicontinuous.

TEEOREM 4.5. Let (2,) be a simple regular Schauder basis of H; if
every block perturbation of (m,) is semi-shrinking, then (v,) is shrinking.

By T]‘IGOI'GIII 5.4 of [6], if (»,) is not shrinking, there exists a bounded
block basic sequence (y;) and feB with fly;) =1 for all j.

Let
vl
Y = 2 By

nj_1+1

and leb %, = y,, Wh.en k = mny;_,, and zero otherwise; then zk = T -+uy 18
a block perturbation of (#). By assumption, lim o, = 0 weakly and
) Te—o0
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1im # =0 weakly, so that lim u, — 0 weakly; this is a contradiction.
—-00 k—o0

5. Reflexivity. Most of the results of this section remain valid if
stated with the condition “every strongly bounded sequence in B’ is
equicontinuous” replacing the condition “F is quasi-barrelled” {or, if
B is complete, “barrelled”); however, as shown in section 2, this is only
a very slight difference, and in any case this form of the results can be
deduced from the weaker form. Thus I shall, where applicable, assume
that ¥ is quasi-barrelled or barrelled. It should also be observed that in
[4], it is shown that a sequentially complete barrelled space with a Schauder
basis is complete, and the results are given for complete barrelled spaces,
rather than sequentially complete barrelled spaces.

THEOREM 5.1. Let B be a quasi-barrelled space with a simple normalised
Schauder basis (x,); suppose every simple normalised Schauder basis of -
B is semi-y-complete. Then (f,) is a shrinking basis of H, and if B is sequen-
tially complete (and hence complete), then (z,) 48 y-complete.

As (a,) is sinple, (f,) is an equi-Schauder basis of H, and in par-
ticular is a simple basis of H; by Proposition 4.3, (f,) is semi-shrinking
and so is regular. Let (g,) be any block perturbation of (f,); and let (y,)
be its dual sequence in H'; identifying ¥ as a subspace of H', it is clear
that lin (y,) = lin. (x,), and so, as (g,,) is a simple basis of H, (y,,) is @ Schauder
basis of B in the topology §(H , H). However, by Proposition 5.3 of [5],
this is the original topology. As (,) is simple and regular, (f,) is equi-
continuous (Lemmsa 1.2); as (g,—J,) is strongly bounded, (g,) is equicon-
tinuous and so (y,) is normalised. ’

Suppose that

9 =Jat Zanpkhky
k=1

mr -
where by, = 2 a;fis My_y < P < My and a,, = 0. Suppose, as in Lemma

Mz _1+1 .
44, my_ < N<m, and that fy =0 if N<p, and fy =1 if N >p;
then ‘

N N
D F@dgi— D f(@)fs = F(@y,) (Bhs—PavTis)

for all fe B'. As (z,) is bounded, sup |f ()] < o0; a8 (h,) is strongly bounded
N .

and (Py)%.., is strongly equicontinuous, (85— Pyh,) is strongly bounded.
Tt follows that (y,) is a simple normalised basis of E.

Therefore (y,) is semi-y-complete; by Proposition 4.3, (g,) is semi-
shrinking for H; applying Theorem 4.5, (f,) is a shrinking basis of H.
If E is sequentially complete, then by Corollary 2 of Proposition 5.3 of
[5], (z,) is y-complete.
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Lmvwva 5.2. Let (x,) be an equi-normalised Schauder basis of B which
is not semi-y-complete; then E has a normalised Schauder basis (y,,) which
is not semi-shrinking, .and the dual sequence (g,,) may be extended by one
elemem go to a Schauder basis of H.

. .
Suppose (a) is & Sequence such that a, + 0 buf (Z a@;n=1,2,..)

is bounded. Then there exists an increasing sequence Py and e > 0 such
that ]oz27 | > for all k. Let p, = 0, and
pi—1
Uy = 2 Gy Ry = apjmp7—|-uj,
P+l

n =, for m # p;;

.then (#,) is a block perturbation of the Schauder bagis (¥nt,), where

Vp; = &y a0d-y, =1 if w 5% p;. Therefore (z,) is a simple equi-normalised
basis of E; obviously

Z—Z

=1

is a bounded sequence, and so (z,) is a subsequence of type P. Applyi
. n,
Theorem 3.1, if il ‘ PpLying

n
=Da, wd oy, =z (i%p,),
=1

then (y,) is a normalised Schauder basis of I with (¥p,) a subsequence

of type P*. It (hy,) is the dual sequence of (%), then h, (yﬂ ) =1 forall n

and so (y,) is not semi-shrinking. L ,
If (g,) is the dual sequenee of (y,), then

’ g;gi( Zh (#)z; = P (2) Y

where p, <% < 9y, .. As (#,) is equi-regular, so is (

, Yn®,) and hence (2,);
thus if A is a bounded subset of B, {hy,, (@)Yy,; w:An k=1,2,. }nls
also bounded. Therefore Z’g1 (®)y;; wed, n =1,2,...} is bounded, and
(¥,) is simple.

Thus (g,) is a Schauder basig for lin (9,) in B'; 1et‘umg go = hy,, then

lin (g;4=0,1,2, ) =1lin (b)) = L b =
then (3 ( ll(fq,. If h elln(g“’b 1, 2,...)

Ry, = ng in B(E', B);
=1
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but this is impossible as (g,) is regular; thus H = lin (g,) @ljz(gi; i =1,2,
..) and (g;;4=0,1,2,...) is a Schander basis of H.

THEOREM 5.3. Let E be a complete barrelled space with a normalised
Schauder basis. The following are equivalent:

(i) Hwvery normalised Schauder basis of E is shrinking.

(i) Every normalised Schauder basis of E is semi-shrinking..

(iii) Bvery mormalised Schauder basis of E is y-complete.

(iv) Bvery normalised Schauder basis of B is semi-y-complete.

(v) B is reflexive.

By Theorem 5.1, (iii) and (iv) are equivalent; while by Theorem 4.5,
(i) and (ii) are equivalent. By Lemma 5.2, (ii) implies (iv), and thus (i)
implies (iii); thus by Theorem 3.3 of [5], (i) and (v) are equivalent. The
proof is completed by showing that (iii) implies (ii).

Suppose (,) is a normalised Schauder basis of #; then («,) is y-com-
plete, and by Theorem 6.3 of [5], H is barrelled with H = E. Suppose
(fn) is not semi-y-complete as a basis of H; then H has a normalised
Schauder basis (g,) which is not semi-shrinking, and has a subsequence
(Y, of type P*. The dual sequence (y,,) of (g,) may be extended to a basis
of lin (&) in {E, §(F, H)} (Lemma 5.2); however, (B, H) is the original
topology on B (Proposition 5.3 of [5]), and so (y,) may be extended by
one element y, to a Schauder basis of E. As (g,) is normalised, so is (y,)
(Theorem. 3.4 of [6]), and hence so is its extension by one element. Thus

(y,) is semi-y-complete; however ( Z'yp])n , is bounded, and so this is
a contradiction.

It follows that (f,) is a semi-y-complete basis of H, and so, by Pro-
position 4.3, (»,) is semi-shrinking. Thus (iii) implies (ii), and ail five
conditions are equivalent.

In the case when E is a Banach space, the equivalence of (i), (iii}
and (v) was proved by Zippin [12]. This theorem raises the point of
whether the same result is trune without the restriction of considering
only normalised bases. In particular, one might consider whether (iv)
can be replaced by n

“For every Schauder basis (x,) of B, whenever (3 o;);_, is bounded
then lim a,z, = 0”. =

A—>00
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1. The results discussed in this paper are based on two classical
theorems of functional analysis. The first of these theorems says that
every separable Banach space X is linearly isometrie to a subspace of
0 = 0([0, 1]), the space. of continuous functions. on. the segment.[0,.1]
(see Banach [1], p. 163). The second theorem, stated in a form which is
convenient for .our purposes, is the following:

Suppose that the space € is a closed linear subspace of a Banach
space B. Then there exists & continmous linear operator of extending
continuous linear functionals on € to the functionals on B (see Nachbin [4],
Lindenstrauss [3], 86-89, and also [8], p. 49).

These results have given to A. A. Miliutin and A. Pelezynski (separa-
tely) the idea of trying to establish non-isomorphism of given Banach
spaces X and Y by comparing the positions in which these spaces can
be embedded. into the universal space C. The realisation of this idea has
supplied the proof of non-isomorphism of certain Banach spaces which
could not as yet be distinguished by any other method.

2. Let X be a Banach space and let J: X — C be an operator of an
isomorphic embedding of X into (. Then the conjugate J*:C*—X*
is onto X*. For every subspace M of X*, let y,(}) denote the infimum
of the norms of linear operators §: M — C* having the property that
J*8: M — M is the identity on M.

In 1964 A. A. Miliutin comunicated to the author the following
(unpublished) result:

THEOREM 1. Let I: X — C and J: X — C be two isomorphic embeddings
of the space X into O. Then, for every subspace M — X*, we have

T TN < oy (M) o () < TG )
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