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Foftu.na.tely, in the n-dimensional case, the theorem of F. and
M. Riesz could be replaced by the following result [12]:

THROREM 6. Leét u be an A-measure on %,. Then every measure
v which is absolutely continuous with respect to u, is an A-measure.

In paper [13], Theorem 6 is generalized to the case of an arbitrary
strictly pseudo-convex domain in #". This generalization has been used.
to obtain an essential strengthening of Theorem 5 (see [13], Theorem 1.6).

Concluding this paper the author would like to say, that his interest
in the topics diseussed above is due to the fact that they combine general
ideas and metods of the theory of Banach spaces with interesting and
quite difficult analytical problems concerning concrete funetional spaces.

I want to express my gratitude to Professor B. 8. Mitjagin, who
kindly presented, on my behalf, this paper during the Colloquium in
‘Warsaw.
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A characterization of immer product spaces
using absolutely 2-summing operators

by
JOEL 8. COHEN (Denver)

Introduction. Pietsch [4] has recently introduced the notion of an
absolutely p-summing operator between normed linear spaces. A linear
operatior T mapping a normed space E into a normed space F is absolutely
p-summing if there exists a constant ¢ > 0, such that for all finite sets
By, ..., @, in E, the inequality

n n N
(2 172iP)” < 0 sup (3 i<, >
=1 Iel<t I3
is satisfied. The smallest constant C such that the above inequality is
satisfied is called the absolutely p-summing norm of T and is denoted
by I1,(T). The normed space of absolutely p-summing operators from:
E into F is denoted by IL,(E,F).

The absolutely p-summing operators are not closed under conjugation.
For example, Pietsch ([4], p. 338) has shown that the identity operator
I from I, into I, is absolutely 2-summing, but the conjugate operator
I’ mapping 1, into 7, is not absolutely 2-summing. In this note we discuss
a relationship between the structure of the domain space F and the
conjugation of absolutely 2-summing operators (Theorem 1.1). In Section 2,
we present a reformulation of this result using the tensor norms introduced
by P. Saphar ([6], p. 125).

1. Characterization of inner product spaces. In this section we present
a characterization of inner product spaces using the absolutely 2-summing
operators and their conjugates. A normed linear space E is an inner
product space if there is an inner product defined in E such that |jz|* = (2,2).

THEOREM 1.1. Let E be a normed linear space. Then, B is an inner
product space if and only if for all Banach spaces F and for all absolutel‘y
2-summing operators T mapping E into F, the conjugate operator T’ is
absolutely 2-summing and II,(T') < II,(T). :
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Proof. Let B be an inner product space, F a Banach Space and
T an absolufely 2-summing operator mapping F into F. Since T is
absolutely 2-summing there exists a compact Hausdorff space K and
a positive Radon measure u on K, with |u| =1, such that T can be
factored

P I
B~ 0(K) > Ly(K, »)

T

\Q
N

F

{[4], p. 345). In the above diagram || P|| = 1, 1@l = II,(T), and. the formal

" identity map C(K) Y Ly(K, p) is absolutely 2-summing with IT,(I) = 1

{[4], Satz 6 and Satz 15). Let & be the normed space completion of ¥
and let P be the canonical extension of P to F. Since I is absolutely
2-summing, the operator IP is an absolutely 2-summing operator between
the Hilbert Spaces 7 and Ly(K, p) ([4], Satz 4). However, for Hilbert
Spaces, the class of absolutely 2-summing operators coincides with the
clags of Hilbert-Schmidt operators ([4], p. 339). Therefore, IP is
2 Hilbert-Schmidt operator and the Hilbert-Schmidt norm 6(113) is
given by .
o(IP) = IT,(IP).

Furthermore, since the Hilbert-Schmidt operators are closed under

conjugation ([2], p. 37), it follows that (Ils)’ is absolutely 2-summing
with

I,((IPY) = o{(IB)) = o(IP) = I7,(1P).
Since 7" = (If’)’Q’, it follows that 7" is absolutely 2-summing and
I,(T) = I,((IPy'Q) < I,((1BY)|' |
= IL(IP) QI < I1,(1)1B|Q|
= QI = IT,(1).

To prqve the converse we shall show &' is a Hilbert space by showing
the norm in B’ satisfies the parallelogram law ([1], p. 115). Let i be
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a 2-dimensional inner product space and let {é1, €s} be an orthonormal
basis for 7. Consider the operator T mapping ¥ into & defined by

T(2) = 2 (v)e;+ a4 () es.
Since T has finite-dimensional range, it is absolutely 2-summing and
(1) I,(T) < (] llg]|®) ™ sup(|(a- e0) (24 [(a- €0) )2
HETS!
< (ol [l )2y

([8], p. 242). Furthermore, by our assumption, 7" is absolutely 2-summing
and IT,(T') < II,(T). Therefore

(1T e+ 1T %) < Hz(T')!Smlxlslﬁl(l(a'el)lLi" (- ea)| < 3
S IL(T") < IIL(T).
However, since T"¢; = x;, ¢ = 1,2, we have
(1.2) (gl Nz 12 < T, ().

Combining equations (1.1) and (1.2) we obtain

(1.3) IIy(T) = (o =+ ldfie).
Now let
L dta s
1 H 2 = — ?
V2 V2
_ btes 616
fl - ]/5 H f2 - ]/5
Proceeding as in the first part of the proof we obtain
(1.4) ITo(T) = (ljwy=+ Jlwg2)*
o+ 2l17\ | [l — s\
- (B

Combining equations (1.3) and (1.4) we obtain
2 loyli=+2 g2 = fla{+ a1, — allt,

which proves B’ is a Hilbert space. It follows immediately that E is an
inner product space.
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2. Tensor Product Formulation. Theorem (1.1) can be easily refor-
mulated in the language of tensor products. In [6], P. Saphar has intro-
duced the norms g, and d, in the tensor product FQF. For 4 in EQF
we have

n

f2(u) = inf {(2” o) sup () 1<war w1},
i=1 bl

IR S

dy (w) = inf { sup

It

Z 1/2 < 1/
’ 2
(3 1y S 3 )™}
i=1 i=1
([6], p. 125). In each case the infimum is taken over all Tepresentations of

n

U = Zmi@)%'

=1

in EQF.

The tensor product with the norm g2 (u) (resp. dy(w)) is denoted by
E@,,F (resp. E®d2F).

Recall that a linear operator T: B — F' can be congidered as a linear
form on F®F according to the formula

7| g ,®y,) = gj Ty,

Similarly, an operator T: F"' — B’ defines a linear form on BEQF
according to the formula

(2.1) T( 3 "”i@?/i) = j <@y Ty
=1 =

We shall use the following proposition ([6], Theorem 2) to reformulate
Theorem (1.1) in the framework of tengor products:

PROPOSITION 2.1. The space (E®g, F)' (resp. (B®,, F)) can be iden-
tified with IT,(B, T') (resp. II,(F, E")).
In a similar way one can prove

PROPOSITION 2.2. Let AL (F", B’y denote the subspace of II,(F", B')

consisting of those operators which are conjugates of operators which map
B into F'. Then,

defined by equation (2.1) has norm equal to 1.

THEOREM 2.4. Let B be o normed linoar space. The following statements
are equivalent:

(1) B is_an inner product space.

(2) For all Banach spaces F, the camonical injection of B ®g, F into
E®d2 F has norm <1.

(8) The camonical injection of BE®,,L nto E®dzl§ has norm < 1.

the canonical injection of A(F", B’y into (BE®qg, F)

icm°®
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Proof (1) = (2). It is sufficient to show the camomical injection

of (B®yF) into (E®,,F) has norm< 1. If T belongs to (E®a,F),

then by Proposition 2.1, T is an absolutely 2-summing operator from

F into F' with IT,(T) = [Tl - (The symbol ITh, (resp. HTHg’) denotes
2 2 2

the norm of T' in (E®g, F)’ (resp. (E®q,F)').) Furthermore, since ¥ is an
inner product space, it follows from Theorem 1.1 tha# the conjugate
operator T*: F" — E' is absolutely 2-summing with I7,(T") < ITs(T).
Using Proposition 2.2 and the fact that T and T are identified with
the same linear from on E®F, it follows that T belongs to (B®,,F)
and
I, < IL(T") < Iy (T) < I

This inequality shows the canonical injection of (B®,F) into
(B®,,F)" has norm < 1 which proves the result.

(2) = (3). This assertion is obvious.

(3) = (1). We shall prove every absolutely 2-summing operator from
E into I} has a conjugate which is absolutely 2-summing with I7,(T")
< II,(T). The result will follow from the proof of Theorem 1.1. Tf T belongs
to II,(¥,1;), then, by Proposition 2.1, T belongs to (B®4,k) with
ITL,(T) = HTlld,. Furthermore, since canonieal injection .

2

E®,L -+ EQyL
has norm < 1, it follows that the canonical injection
(B®y,B) > (B@q,B)’
also has norm < 1. Using the above remarks and Proposition 2.1, it

follows that 7 is absolutely 2-summing and I7,(T") < I7,(T). The result
will now follow from. the proof of Theorem 1.1.

3. Normed linear spaces equivalent to inner product spaces. At the
recent conference on nuclear spaces held in Warsaw, Poland, the author
conjectured there should be a characterization of normed linear spaces
equivalent to inner product spaces which is similar to Theorem (1.1).
The following result has been proved by S. Kwapied [3]:

THEOREM 3.1. Let B be a normed linear space. Then B is equivalent
to an inner product space if and only if for all Banach spaces F' amd for all
absolutely 2-summing operaiors T mapping E into F, the conjugate operator
T’ is also absolutely 2-summing.
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A result due to J. S. Cohen in [1] suggests the following

THEOREM. Let B be a Banach space; then the following conditions are
equivalent:

(i) B is dsomorphic (= linearly homeomorphic) to an inner product
space,

(ii) of uelly(E,1,), then u*ell,(l,, B*).

Notation. B(X, Y) denotes the space of bounded linear operators
from a Banach space X into a Banach space Y. The class I,(X, Y)
of absolutely 2-summing operators from X into Y .is defined by

IL(X, ¥)
for #;eX (1 =1,2,..

= {ueB(X, X): 3 [jua; |* < C(u)

) with (3 o*(@) 2 < flar] for w*eX*}.
X+ denotes the dual of X and u* denotes the adjoint operator of u.
By 1.(4) we denote the space of bounded scalar-valued functions on

a set 4. We admit
Il = Sup |f(a)]

for f in 1, (4). Finally, weB(X, ¥) is called hilberfian if there are a Hil-
bert space H and operators veB(X, H), weB(H, ¥) such that v = wo.

Proof of the Theorem. (i) = (ii). This follows from the fact
that if ¥ is (isomofphjc to) a Hilbert space; then the class [1,(H, I,)
coincides with the class of Hilbert-Schmidt operators ({(cf. [3],
Theorem 6.3)

(ii) = (i). Let we B(H, l,(4)) be an isometrically isomorphic embedding
(Take A the unit ball of B* and put ue{e*) = e*(¢) for ¢<¥ and e*eA).
Since B(lwo(A4), ) = Myl (4), L) (¢f. [2] and [3], Theorem 4.3), we


GUEST




