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infer that vuwell,(H,1;) for each veB(lo(4),1). Thus (i) implies that

1 urv*elly(ly, B¥)  for every veB(l,(4),1y).
Now pick for ¢ =1,2, ..., 2} {lo(4))* s0 that I [w**(z,*)[2 < [la*|2

for every a** in the second dual (I,(4))*. Define veB(l,(4), L) by.

of = (o} (f)) for fel,,(4) and denote by & the i-th coordinate funectional
in 1,. Clearly, Z[d;‘ (d)|2 = ||d||? for every del, = (I)**. Thus (1) implies
that

Slw*v*df(|2 < O(u*v¥),

Hence ZXlu*a}|® < O(u*v*), because v*d; =a; for ¢ =1, 2, ...
Therefore u* elT5{(1, (4))*, B *) Hence, by the Pietsch Factorization Theorem
(ef., [3], p. 285), u* is a hilbertian operator. Thus, by [3], Proposition
5.1, » is hilbertian. Since u is an isometrically isomorphic embedding of
F apd w is hilbertian, B is isomorphic to an inner product space (because
the Banach space u(E) is the range of a bounded linear operator from
a Hilbert space). This completes the proof.
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On a class of operators in Hilbert space*
by
BERNARD R. GELBAUM (Irvine)

0. Introduction. One version of the speectral theorem for Hermitian
and normal operators in Hilbert space is a consequence of the Gelfand
representation of the uniform closure R, of the algebra generated by
the normal operator T, its adjoint and the identity. The essential fact
is that Ry, is eommutative and isometrically *-isomorphic to the algebra
C(X) of all complex-valued continuous functions on a compact Haus-
dorff space ([4]-[6]).

On the other hand, If T is any operator on any Hilbert space H,
then Ry is isometrically *-isomorphic to some algebra -C(X, 4) of all
continuous A-valued functions on X, where X is a compact Hausdorif
space and A is a C*-algebra. Indeed, we may use for A the algebra Eg
and for X any one-point space {w}. Clearly, what is desirable for any
extension of spectral theory is the choice of a ecanonical or minimal
algebra A and of a usefully simple topological space X so that the isometric
*-isomorphism. Ry £ C(X, A) permits some analysis of T.

To pursue these ideas the author has discussed various aspects of

" a natural and fruitful generalization of the notion of commutative Banach

algebra ([4]-[6]). Indeed, since a commutative Banach algebra 4 is one
such that all its quotients by regular maximal ideals are isomorphic
(to C, the field of complex numbers), the generalization in question is
a so-called Q-uniform Banach algebra defined as follows:

An algebra A is a Q-uniform algebra if:

& @ is a simple Banach algebra with identity;

b. A is & Q-bimodule such that for a,, a.e4, dy; (<@,

(QI“I) 4z = Ql(“l.‘lz)y (41”’1}‘12 = 91("'1“2): (“1%’ @ = “1(“2!11)’
(!lﬂlz) ay = 41(4241), “1(21@12) = (“1(11)92: LA AR AR AR AR
and where the left and right actions of @ on A are unitary;

* Thig research was supporfed in part by NSF Grant GP-13288 for which the
author is grateful.
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¢. The quotient of A by any regular maximal ideal is isomorphic
to @Q.

AC+-algebra A is *Q-uniform if it is Q-uniform, where @ is a O*-algebra
and if:

¢’. The quotient of A by any regular maximal ideal iy *-isomorphic
to Q.

QOne aspect of a Q-uniform algebra A is that it is canonically at least
homomorphic and sometimes isomorphic to a subset of C(Epig(4, Q), 9),
where Epig(4, @) is the set of continuouns C-epimorphisms 7: A —@ [3].
(When we speak of *@Q-uniform algebras we use Epig(4,Q), the set of
continuous C-*-epimorphisms n: 4 — Q.) The circumstances in which the
canonical homomorphism 4 — C(Epic (4,9, Q) is an isomorphism or an
isometric isomorphism or an isometric *-isomorphism require detailed
study. Alternatively one can seek a topological space X such that 4 and
Cy(X, @) are isometrically *-isomorphic.

For any simple Banach algebra @ and any compact Hausdorff space
X the algebra O(X, @) is @-uniform [3]. If @ is a C*-algebra then .C(X, Q)
is #-@-uniform. With this in mind we consider as the natural generali-
zation of a mormal operator in a Hilbert space an operator 7' such that
Ry is *-Q-uniform for some simple C*-algebra @ and more particularly
is isometrically *-isomorphic to C,(X, @), with a suita.ble involution
* and where X is a compact Hausdorff space If Ry & Cy(X, A), where
X iy completely regular and @ is a simple C*-algebra with identity, then
the following facts concerning X and @ are easily verified:
_ (i) X is separable and in C,(X, @) there is a separating function
yp that is never zero and such that 0,(X, Q) = Ryz,. (For any C*-algebra.
A and element a of 4, R, denotes the closed ring generated in the uniform

topology by the 1dent1ty, a and a*. We say that 4 is smgly generated.

if for some a, 4 = R,.)

(ii) @ is a separable singly generated C*-algebra.

A kind of converse situation obtains in that if there are given a to-
pological space X and a simple C*-algebra, then for some suitably chosen
Hilbert space H and, some suitably chosen operator 7' in L (H) the relation-
ship Ry &0, (X, Q) obtains. Furthermore, it can be established rather
easily that when Ry, & 0(X, Q) and X is compact Hausdorff, the operator
T determines the algebra @ uniquely. Thus, the study of operators T’
of the kind described is intimately related to the study of algebras @ as
described. in (ii) above.

Simple examples of algebras @ satisfying (ii) above are the algebras
Endg(C") consisting of all linear endomorphisms of complex n-dimensional
space.  In this case C(X, @), as P. Halmos has remarked, is an instance
of what might be termed an n-normal ring of Arlen Brown [1].
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1. Singly. generated C*-algebras. Let 4 be a Q-uniform algebra with
continuous involution * and let M be a regular maximal ideal of 4. Then
( Y M* is a regular mazimal ideal.

Proof. M* is certainly a regular ideal. Tf M* is not maximal, let
M* S N, a maximal ideal. Then M** < N*, a contradiction.

If A is *-Q-uniform, then M — ,

Proof. Let M = ker (3), 77eEpic*(4, Q). Then ze M iff 5(z) = 0,
itf g(@)* =q(a%) =0 iff o*e M iff e M*.

(b) @ has a continuous involution.

Proof. Let 5<Epic(4,@). For geQ, let 5(a) = g, ker(y) = M. Fix
97 so that ker(n*) = M™ and let g* = n*(a*). Then if n(a,) = ¢, s, —ae M,
ay—a* < M* and n*(a}) = n*(a*), whence ¢* is uniquely defined. For
fixed 5 and 7%, let g, - ¢. By the open mapping theorem there is a sequence
a, — &, where 7(a,) = ¢,, 7(a) = g. Then g, - a* and thus n*(a}) =¢*
— q* = n*(a*). Thus * as defined for @ is continuous.

(c) Let A be singly generated, i.e., A = R, for some a. Then Q is singly
generated.

Proof. Let n(a) = ¢q and let g, Q. Let polynomials p, (e, a, a*) - a,,
where 7(a;) = ¢,. Then p, (e, q, ¢*) — ¢,, a8 the following shows. The map
0: p,(e, a, a*) = p, (e, 4, ¢*) is well-defined on the dense subset consisting
of polynomials. If |n|, ln*| < K, then |6 < K;, where K, = max(K, 1).
Thus ¢ is uniformly continunous and uniquely extendable to all 4 as
a continuous homomorphism.

If for some Hilbert space H and T'<L(H) and some Banach algebra
A’ with identity there obtains the formula R, £ G,(X, 4), where X is
a completely regular topological space, then

(d) X and A are separable.

Proof. Since Ry is separable, so is Op(X, 4), which contains the
subset consisting of constant functions, a subset isometrically *-isomorphic
to A. Thus A is separable. If {U,} is a countable base for C and if {f,}
is a countable dense subset of the subset G, (X, 4), then {W,, , =" (Un)}
is a countable base for X. Indeed, if V is open in X, let zeV, f(z) =1,
f =0 off V,feC, (x), and leb |f—7F, | < 3. Let Un2f, (#), diam T, <j-
Then for f, (¥)eUsny i.e., ye Wyy,q, We find

1f)—1] = Ify)—f@)
= | () —Fuy O+ g (0) — Fng (@) | fry () — F ()]
<iHH =1

Thus f(y) #0,yeV and Wy, n <= V. .

(e) Cy (X, A) contains a separating function y that is never 0 and
0y(X, 4) = R,.
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Proof. Let T ype0y(X, A4). Then if yp(2,) = i
. yr (%), we find that
since R, & Gy(X, 4), for all feCy (X, A), flz,) = f(2y), whereas 0y (X) is
a separa,t.mg family in C,(X, 4). Thus y; is separating in C,(X, 4) and
sinee yp is bounded, for some geq, ¢o6+-yr is never 0 and separating
Clearly, Cy(X, A) = B, ’

(f) 4 is a C*-algebra.

Proof. A may be regarded as isometricall i i

y and *-isomorphic

embedded as the set of constant functions in C,(X, 4). ThusrpA 1i];y
be regarded as a closed *-subalgebra of (X, A), hence as a closed *-subaly
gebra, of Ry, hence as a (*-algebra. )

(g) If X s eo:npact Hausdorff and if Q is simple, then @ is unigue.

- Proof. I Ry & C(Xy, Q) & 0(X,,Q,), where X, and X, are compact
Hausdorff and @, and @, are simple, then R, is *-Quniform, ¢ = 1,2
whence @, and @, are *-isomorphic. ’ Y
R *Note that in consequence of (g) the study of operators T for which
OfT =( (Xl; 1, Q)(,d;X con;.pact, @ simple may be implemented by the study
separable, singly generated, (e) C*-algebras. This situation is di

cusecs, fonthoer in (31 , {€) lgebras. This situation is dis-

2. 0,(X, 4) £ Ry. Let X be a to i

. pological space. On X define dis-
«Ierete measure u by u(8) = card(8) if the § is finite; otherwise u(98) = olj
etAG',, (X, 4) E.B be*the set of bounded continuous A4-valued functioné
on 4, where A is a C"-algebra over a Hilbert space H,. Then H, allows

the construction of a new Hilbert space X, H A,,#) =H ‘
@ {a) H is a B-module (via multiplication) as follows: if feH, yeB
en (y-f)(z) = y(#)f(¢) = T,f. The map y—=1T, i85 a *-homomorl;hism7
(b) Clearly, |T,| < [y|. In fact, |T,| = |y|. ‘
Proof. I |T,] < |y| for some y, let |y (2,)| > (1— )|y}, 0 £ f= 4, o
Lo ’

where ¢ i3 such that |y (s, —
0< e d<1. Then (el > (L= Oyl ol and IT,] < (1= e)lyl, where

IZ,f1 = |y (@) el > (1—8)y| lgl,
AT fl = IT,0 lol < @~e)ly| |ol.
Thus (1—e)ly| ol > (1—6)ly| lp| or e < 5.

o (iu;e; Ia ~_> 0 is arbitrary and & >0 is given, we have a contradiction,
y| = |y| and so the map y — T, is an isometric *-isomorphism.

1 *
(e) B'is a (*-algebra: |yy*| = sup Iy (@) y* (@)] = sup [y(@)]* = [y|.
(d) If there is a funeti ‘ =
O A) 2 Ry, on yeCy(X, A) such that C,(X, 4) = R,, then
In  summary:

If X is a i ; i
f a topological space and if A is a C*-algebra such that for some

icm
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y €0y (X, A) = B there'obiains B = R,, then there is a Hilbert space H and
an operator T, such that Cy(X, Ay & By .
14

3. Examples and problems. It is of interest to exemplify situations
described. in the summary of the preceding section.

If X is a topological space admitting a real continuous function p(x)
guch that ¢,(X) is singly generated by p(«) and if M, is the ¢™-algebra
Endg(C") of C-endomorphisms of C", then G, (X, M,) is singly generated
by yp defined as follows:

0 p@ 0 ... 0

00 p@.. 0
ppl®) =
(@)

\o 0 .. 0

Indeed, let T, = (t;), where #;, =@ (1 =1,2, Lo,m—1), 1y =0
otherwise. Then TETL* = (rih), where ., = B =1,2, ..., n—M),
7% =0 otherwise it ¥ =I+m and. = (=1, 2, .., n—m),
7% = 0 otherwise if I = k+m. Similarly, T T% — (s%), where sfis, 1x
=" (i =1,2,..., min(n—kn —1)), sij =0 otherwise. Thus for any
set § = R for which the Miintz theorem applies, e.g., 8 compact, we can
by use of linear combinations, adjoints and uniform ajpproximation techni-
ques’ conclude that Ry =C (8, M,). In consequence, Cy(X, M,) = E, .

A corollary to the results above is that any C(X) may be viewed

a8 a family of commuting normal operators on some Hilbert space H.
of n-normal operators

Thus any C(X, M,) may be viewed as an algebra
on some Hilbert space H [1]. I C(X) is singly generated, then, as shown
above, C(X, M,) is also singly generated. Thus if for some operator T'
on a Hilbert space H the ring Ep is jsometrically #-isomorphic to some
O(X, M,), T may be regarded as an n-normal operator. i
The author is not aware of any singly generated simple C*-algebras
other than M, for all n. If in fact, there are no others then the only ope-
vators T such that Ry <& O(X, Q) for some simple C*-algebra @ are the
n-normal operators.

The theory is at present incompl
are summarized in the following questions:

1. If X is completely regular and if Q is a simple Banach algebra is
Cy(X, Q) Q-uniform? (If X is compact, the answer is affirmative [3].)

9. In what circumstances is Q-uniform Banach algebra A of the
form (X, Q)% Clearly, some restrictions are needed, e.g., when ¢ =.C.
If Ry is Q-uniform, where 7T is an operator on some Hilbert space, is

ete for a number of reasons. These
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(a) 9 a C*-algebra; (b) the map Ry —O(Epic(Ryp, @), Q) one-to-one;
(e) By = 0,(X, 4) for some (compact) topological space X ?
3. If @ is a simple singly-generated O*-algebra, is there an
that @ = M,? 7 " ek
4. If Q is a C(*-algebra and C(X,, Q) £ 0(X,, Q), where X, and X,
are compact Hausdorif, are X; and X, homeomorphic?
5. Ale C’b.(X, A) and C(8(X), A) isomorphic? (Here £(X) is the Cech
compactification of the completely regular space X.)
‘ 'If the answers to 2 and 3 are affirmative, then the suggested general-
ization of a normal operator may be studied in the context of [1].
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Nukleare Funktionenriume
und singuliive elliptische Differentialoperatoren

von

HANS TRIEBEL (Jena)

Grothendieck hat die Frage aufgeworfen, ob jeder nukleare (#)-Raum
eine Basis begitzt [6]. Dieses Problem ist zur Zeit ungelost. Damit ist
es von Interesse, fiir spezielle nukleare (F)-Riume die Existenz einer
Bagis nachzuweisen. Wie Mitjagin zeigen konnte [13], ist jede Basis
eines nuklearen (F)-Raumes abgolut. Neben der Frage nach der Existenz
absoluter Bagen in nuklearen (F)-Riumen ist die Isomorphie spezieller
nuklearer (F)-Réume untereinander von Interesse. Wie T. und Y. Komura
beweisen konnten [11] ist jeder nukleare Raum isomorph zu einem
Teilrawm des Tychonovproduktes (s)4. Dabei ist A eine passende Index-
menge. s ist der Raum der schnell fallenden Folgen, also

s={E="{(5) 120 & koxnplex,jsu})2 |g)]j* < oo fir & =0,1,2,...}
mit der iblichen Topologie. Ist der nukleare Raum ein (F)-Raum, so
kann man 4 = {1,2,3,...} setzen. Das folgt unmittelbar aus den Be-
weisen der Arbeit von T. und Y. Komura [11]. Fiir konkrete Riume dieser
Art ist somit die explizite Bestimmung eines isomorphen Teilraumes von
(s)* von Interesse. Samtliche in dieser Arbeit untersuchten Réume sind
isomorph zu s. Damit ist zugleich die Frage nach der Existenz absoluter
Basen in den hier betrachteten Réumen positiv beantwortet.

Im Mittelpunkt der Arbeit stehen nukleare Funktionenrdume und
ihre Beziehungen. zu singuliren elliptischen Differentialoperatoren in Hil-
bertrinmen. Die Verwendung von Hilbertriumen scheint zumindest
plausibel zu sein, wenn man beriicksichtigt, daB die Topologie eines
nuklearen Raumes durch Hilberthalbnormen erzeugt werden kann [18],
8. 71. Die Benutzung eines selbstadjungierten Operators A in einem
Hilbertraum zur Konstruktion des lokalkonvexen Raumes

D(4%) = () D(4")

n =1
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