

STUDIA MATHEMATICA, T. XXXVIII. (1970)

Colloquium on

Nuclear Spaces and Ideals in Operator Algebras

Über analytische Operatorfunktionen und Indexberechnung

von

BERNHARD GRAMSCH (Mainz)

Sei $\mathscr{Z}(X,Y)$ die Menge der stetigen linearen Abbildungen des Banachraumes X in den Banachraum Y. Für eine Abbildung $T \in \mathscr{Z}(X,Y)$ bezeichnen wir mit N(T) den Nullraum und mit R(T) den Bildraum. T heißt Fredholmoperator, wenn dim $N(T) < \infty$ und codim $R(T) < \infty$. $\varphi(X,Y)$ sei die Menge der Fredholmoperatoren aus $\mathscr{Z}(X,Y)$.

1. Theorem. Sei T(z) eine analytische Operatorfunktion auf dem Gebiet $G \subset C^N$ mit Werten in der Menge der Fredholmoperatoren $\varphi(X,Y)$. Ferner sei T(z) an einer Stelle $z' \in G$ invertierbar. Dann ist $T^{-1}(z)$ eine auf G meromorphe Funktion $(T(z) T^{-1}(z) = I_Y, T^{-1}(z) T(z) = I_X)$. Im Falle einer komplexen Variablen hat $T^{-1}(z)$ als Hauptteile Operatoren von endlichem-Rang; d. h. für jedes $z_0 \in G$ existiert eine Laurententwicklung

$$T^{-1}(z) = \sum_{k>k_0(z_0)>-\infty} T_k(z-z_0)^k,$$

wobei dim $R(T_k) < \infty$ für k < 0.

Die ersten Untersuchungen in dieser Richtung gehen auf Tamarkin [10] für den Fall von Integralgleichungen zurück. Daran schließen sich Arbeiten von Atkinson [1] Gohberg und Sz. Nagy und P. H. Müller an (vgl. [6] und [8]). Der klassische Satz von F. Riesz, daß $(I-zK)^{-1}$ für einen kompakten Operator K eine auf der komplexen Ebene im obigen Sinne meromorphe Funktion ist, wurde in einer Reihe von Arbeiten von Ruston, Pietsch und Taylor bei linearer Abhängigkeit $(T(z) = I - zA \epsilon \varphi(X, X))$ auf einem Gebiet G0 verallgemeinert. Im letzten Jahr wurden von Haf, Steinberg, Ribaric und Vidav [8] und dem Verfasser [4] weitere Fortschritte erzielt. Mit den Methoden von [4] und einer Idee in [8] gelang es dann Theorem 1 zu beweisen (vgl. [5]).

Theorem 1 läßt sich auf analytische Familien vom Typ A (Kato [7], ch. 7, p. 379) anwenden. Dies sind abgeschlossene Operatoren, die

analytisch von einem Parameter abhängen und einen gemeinsamen Definitionsbereich haben. Insbesondere bezieht sich Theorem 1 auf elliptische Differentialoperatoren, die analytisch von Parametern abhängen, denn bei geeigneter Randbedingung handelt es sich dabei um Fredholmoperatoren.

Wir sagen ein Operator $A \in \mathscr{Z}(X) = \mathscr{Z}(X,X)$ erfüllt beide Kettenbedingungen, wenn sowohl die Nullraumkette $N(A^j)$ als auch die Bildraumkette $R(A^j)$ stabil werden. Mit φ^R (Fredholm-Riesz) bezeichnen wir die Menge der Fredholmoperatoren aus $\mathscr{Z}(X)$ mit beiden Kettenbedingungen.

2. THEOREM. Sei T(z) eine kommutative $(T(z_1)T(z_2) = T(z_2)T(z_2))$ analytische Operatorfunktion auf dem Gebiet $G \subset \mathbb{C}^N$, die Werte in der Menge $\varphi(X)$ der Fredholmoperatoren von $\mathscr{Z}(X)$ habe; ferner existiere $T^{-1}(z')$ für ein $z' \in G$. Dann gilt $T(z) \in \varphi^R$ für alle $z \in G$.

Es ist sehr einfach, die Meromorphie von $T^{-1}(z)$ aus Theorem 2 herzuleiten. Ohne die Annahme der Kommutativität ist Theorem 2 im allgemeinen falsch.

Um Theorem 2 zu beweisen, benützt man die Tatsache, daß ein Operator $T \in \mathcal{Z}(X)$ genau dann in φ^R -liegt, wenn ein $A \in \mathcal{Z}(X)$ existiert mit AT = TA = I - K, wobei K ein kompakter Operator ist. Daraus folgt unmittelbar

3. LEMMA. Sei \mathscr{M} eine maximale kommutative Teilalgebra der Banachalgebra $\mathscr{Z}(X)$ und \mathscr{K} das abgeschlossene zweiseitige Ideal der kompakten Operatoren; ferner sei $q_{\mathscr{M}} \colon \mathscr{M} \to \mathscr{M} | \mathscr{M} \cap \mathscr{K}$ der kanonische Homomorphismus. Dann gilt

$$\varphi^R \cap \mathcal{M} = q_{\mathscr{M}}^{-1}(\mathscr{G}(\mathscr{M}/\mathscr{M} \cap \mathscr{K})),$$

wenn $\mathscr{G}(\mathcal{M}|\mathcal{M}\cap\mathcal{K})$ die Gruppe der invertierbaren Elemente der Banachalgebra $\mathcal{M}|\mathcal{M}\cap\mathcal{K}$ ist.

Dies entspricht der Charakterisierung von Atkinson für Fredholm-operatoren. Daraus gewinnt man sofort einen Spektralabbildungssatz. Für $\sigma_R(T) = \{\lambda \epsilon \sigma(T) \colon \lambda I - T \not\in \varphi^R\}$ $(\sigma(T)$ sei das Spektrum von T gilt $\sigma_R(f(T)) = f(\sigma_R(T))$, wenn f eine auf dem Spektrum von T lokalholomorphe Funktion ist. Eine entsprechende Aussage gewinnt man ebenso für lokalholomorphe Funktionen f auf dem gemeinsamen Spektrum $\sigma(T_1, \ldots, T_n)$ kommutierender Operatoren $T_j \colon f(T_1, \ldots, T_n)$ ist genau dann ein Element von φ^R , wenn f auf $\sigma(q_{\mathscr{M}}(T), \ldots, q_{\mathscr{M}}(T))$ keine Nullstelle hat (vgl. [2] und [3]).

4. Bemerkung. Die Menge $\mathcal{M}(G, \varphi)$ der auf einem Gebiet $G \subset C$ meromorphen Funktionen mit Werten in $\varphi(x)$, die jeweils an einer Stelle von G invertierbar sind und lokale Laurententwicklungen wie in Theorem 1

haben ($T_0 \epsilon \varphi$), bilden eine multiplikative Gruppe, d. h. die Inversenbildung führt aus dieser Klasse nicht heraus.

Wir gehen nun zur Berechnung des Index von Fredholmoperatoren über: ind $T=\dim N(T)-\operatorname{codim}\,R(T).$

5. Bemerkung. Für Fredholmoperatoren auf Hilberträumen gilt

$$\begin{split} &\inf T \ = \operatorname{Spur} \left[\lim_{\lambda \to 0} \lambda \big((\lambda I - T^*T)^{-1} - (\lambda I - TT^*)^{-1} \big) \right] \\ &= \operatorname{Spur} \left[\frac{1}{2\pi i} \int_{\gamma} \big((\lambda I - T^*T)^{-1} - (\lambda I - TT^*)^{-1} \big) \, d\lambda \right], \end{split}$$

wobei der Grenzwert $\lambda \to 0$ in der Normtopologie von $\mathcal{Z}(H)$ existiert und γ ein genügend kleiner Kreis um den Nullpunkt ist.

(Die Spur eines Operators A der Spurklasse ist $\sum\limits_k (Ae_k,e_k)$ für ein vollständiges Orthonormalsystem $\{e_k\}$ des Hibertraumes H.)

Wir untersuchen nun den Index von Fredholmoperatoren in Verbindung mit einem Funktionalkalkül ψ , das heißt ψ sei ein Homomorphismus einer Funktionenalgebra $\mathscr{F}(\varOmega)$ in $\mathscr{Z}(X)$ bzw. in eine Banachalgebra \mathscr{Z} mit $\psi(1)=I$. Man betrachte z.B. den analytischen Funktionalkalkül von Gelfand und Dunford oder den Kalkül von Schilow-Arens-Waelbroeck (vgl. [2]). Der Index von Fredholmoperatoren ist invariant modulo dem Ideal \mathscr{K} der kompakten Operatoren von $\mathscr{Z}(X)$; nach der Charakterisierung von Atkinson kann man ihn deshalb über die Gruppe \varGamma der invertierbaren Elemente von \mathscr{Z}/\mathscr{K} faktorisieren: ind $=q\cdot\hat{i}$, dabei ist $q:\mathscr{Z}\to\mathscr{Z}/\mathscr{K}$ der kanonische Homomorphismus und $\hat{i}:\varGamma\to 3$ der vom Index induzierte Homomorphismus in die ganzen Zahlen.

6. Bemerkung. Sei i: $\Gamma \to \Im$ ein Homomorphismus der Gruppe Γ der invertierbaren Elemente einer Banachalgebra $\mathscr B$ in (auf) eine Gruppe \Im , wobei für kein vom Einselement in \Im verschiedenes Element a zu jeder natürlichen Zahl n eine n-te Wurzel a existiert, d.h. $a_n^n=a$ bzw. für eine abelsche Gruppe \Im na =a (freie abelsche Gruppen haben diese Eigenschaft). Dann ist der Homomorphismus i auf jeder Zusammenhangskomponente von Γ konstant.

Beweis. Es genügt zu zeigen, daß $\mathfrak{i}(x)$ auf einer Umgebung des Einselementes von Γ gleich dem Einselement von \mathfrak{J} ist. Für ||x-e||<1 existiert ein $y\in \mathscr{B}$ mit $x=\exp y$, folglich wäre $(\mathfrak{i}(\exp(y/n))^n=\mathfrak{i}(x)$ für jede natürliche Zahl n, womit sich ergibt, daß $\mathfrak{i}(x)$ das Einselement von \mathfrak{J} sein muß.

Da man den üblichen Index für Fredholmoperatoren über die Gruppe Γ der Restklassenalgebra $3/\mathscr{K}$ faktorisieren kann, setzen wir im folgenden voraus, daß $\mathfrak t$ ein lokalkonstanter Homomophismus der Gruppe Γ der

invertierbaren Elemente einer Banachalgebra @ mit Einselement e in (auf) eine Gruppe 3 ist. Ferner sei $\mathscr{F}(\Omega)$ eine Banachalgebra stetiger Funktionen auf dem kompakten Raum Q (nicht notwendig Sup-Norm-Algebra) und $\psi: \mathcal{F}(\Omega) \to \mathcal{B}$ ein stetiger Homomorphismus mit $\psi(1) = e$: außerdem sei $\mathscr{G}(\mathscr{F})$ die Gruppe der invertierbaren Elemente von $\mathscr{F}(\Omega)$ Wir erhalten dann eine Folge von Homomorphismen ($\hat{i} = \hat{i} \cdot \pi$)

$$\mathscr{G}(\mathscr{F}) \stackrel{\psi}{\to} \Gamma \stackrel{\pi}{\to} \pi_0(\Gamma) \stackrel{\hat{\mathfrak{i}}}{\to} 3,$$

wobei $\pi_0(\Gamma)$ die Gruppe der Zusammenhangskomponenten von Γ ist. Mit Hilfe eines tiefliegenden Ergebnisses von Arens und Royden ([9], S. 290-295) ergibt sich eine Möglichkeit, den Index $i(\psi(f))$ für $f \in \mathcal{G}(\mathcal{F})$ zu berechnen.

7. Lemma. Ist $f \in \mathcal{G}(\mathcal{F})$ und $\log f \in \mathcal{F}(\Omega)$ (d.h. insbesondere eindeutig). dann gilt $i(\psi(f)) = e_{\Re}(=0 \text{ falls } \Im \text{ eine additive Gruppe}).$

Die Idee des folgenden Ergebnisses geht auf eine einfache Formel zur Indexberechnung in [2], §8, zurück.

8. Theorem. Für den Raum Λ der maximalen Ideale von $\mathscr{F}(\Omega)$ gelte $\Lambda = \Omega$. Ferner seien a_1, \ldots, a_n kommutierende Elemente der Banachalgebra \mathcal{B} mit dem gemeinsamen Spektrum $\sigma(a_1,\ldots,a_n)$, das in der rational konvexen Menge $\Omega \subset C^n$ (vgl. [2], S. 336) enthalten sei. Wenn $\psi: \mathcal{F}(\Omega) \to \mathcal{B}$ eine Fortsetzung des Kalküls von Waelbroeck (vgl. [2]) ist, d.h. für die Koordinatenfunktionen z_i gilt $\psi(z_i)=a_i$, dann gibt es zu jeder Funktion $f\in\mathscr{G}(\mathscr{F})$ endlich viele Primpolynome p_k und ganze Zahlen a_k , so da β

$$\mathfrak{i}\big(\psi(f)\big)=\prod_k\mathfrak{i}\big(p_k(a_1,\,\ldots,\,a_n)\big)^{a_k}$$

erfüllt ist; bzw.

$$i(\psi(f)) = \sum_k a_k i(p_k(a_1, \ldots, a_n))$$

falls 3 eine additive Gruppe ist.

Durch eine geeignete Anwendung des Satzes von Arens und Royden [2], S. 290-295, ergibt sich, daß in jeder Zusammenhangskomponente von $\mathscr{G}(\mathscr{F})$ wenigstens eine rationale Funktion liegt, auf die man dann Primfaktorzerlegung anwenden kann.

Da jede kompakte Teilmenge der komplexen Ebene rational konvex ist und für n=1 die Primpolynome über C die Gestalt (z-c) haben, läßt sich in diesem Fall eine sehr einfache Formel angeben. Mit $\varrho(a)$ bezeichnen wir das Komplement des Spektrums $\sigma(a)$. Sei

$$\varrho_h(a) = \{\lambda \epsilon \varrho(a) \colon i(\lambda e - a) = h \epsilon \Im\}$$

dann gilt für eine rationale Funktion $r \in \mathcal{G}(\mathcal{F})$

$$i(\psi(r)) = \prod h^{a_h} \left(= \sum a_h h \right)$$

wenn a_h die Anzahl der Nullstellen bzw. Pole von r in $\varrho_h(a)$ ist. Dies folgt unmittelbar aus

$$r=rac{\prod (z-u_i)^{eta_j}}{\prod (z-v_k)^{\gamma_k}}$$

wenn man bei Anwendung von ψ die Variable z durch a ersetzt (vgl. [2], §8).

Literaturnachweis

- [1] F. V. Atkinson, A spectral problem for completely continuous operators, Acta Math. Hung. 3 (1952), S. 53-60.
- [2] B. Gramsch, Funktionalkalkül mehrerer Veränderlichen in lokalbeschränkten Algebren, Math. Ann. 174 (1967), S. 311-344.
- [3] Spektraleigenschaften analytischer Operatorfunktionen, Math. Zeitschrift 101 (1967), S. 165-181.
- [4] Über analytische Störungen und den Index von Fredholmoperatoren auf Banachräumen, Dept. Math., Univ. of Maryland TR 69/105 (1969), S. 1-55.
- [5] Meromorphie in der Theorie der Fredholmoperatoren mit Anwendungen auf elliptische Differentialoperatoren Math. Annalen 188 (1970), S. 97-112.
- S. Hildebrandt, Über die Lösung nichtlinearer Eigenwertaufgaben mit dem Galerkinverfahren, Math. Zeitschrift 101 (1967), S. 255-264.
- [7] T. Kato, Perturbation theory for linear operators, Heidelberg 1966.
- [8] M. Ribaric, I. Vidav, Analytic properties of the inverse $A^{-1}(z)$ of an analytic operator-valued function A(z), Arch. Rat. Mech. Analysis 32 (1969), S. 298-310. [9] H. L. Royden, Function algebras, Bull. Am. Math. Soc. 69 (1963), S. 281-298.
- [10] J. D. Tamarkin, On Fredholm's integral equations, whose kernels are analytic
- in a parameter, Annals of Math. 28 (1927), S. 127-152.