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1. Various reasons impose the necessity of development of analysis
on certain infinite-dimensional structures, in particular, of development
of a theory of differential equations. Those reasons are due to the intrinsic
progress in mathematics as well as to applications in physics. Construetion
of such a theory is certainly impossible without a knowledge of several
methods of integration in infinite-dimensional vector spaces and non-
linear differentiable manifolds. :

The simplest and best known are Gauss measures in a Hilbert space
$ (see, e.g., [1]). One, usually starts with a finitely additive non-negative
set function z defined on the algebra %, of cyllindric sets in § (a weak
distribution). This set function is fully determined by its characteristic
functional

nl@) = [ Y p(@y),
o

. which, in the case of a Gauss measure with mean-value zero, has the
form ‘

14(®) = exp(—}(Bz, ),

where B is a positive operator in § called the correlation operator of the
measure z = ug. As is well known, the nuclearity of B is necessary and
sufficient in order that the weak distribution sz be extendible to a (coun-
tably additive) measure up defined on the o-algebra U of Borel sets in §.
Tn other cases such an extension can De realized only in spaces contain-

ing $.
Consider, for ingtance, the space $_ defined as the completion of
$ in the norm |zl = ||S=|, where § is a positive Hilbert-Schmidt operator.

Any Gauss measure defined in the o-algebra 2_ of Borel subsets of _ is
countably additive, provided its correlation operator B 'is bounded
(e.g. B =1I). :
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It turns out practical to consider also the Hilbert space $.. obtained
by means of the norm ||z]|,. = ||S™'«| defined in the domain Dg-1 of §72.
Extend the operator § by continuity to the whole of $§_ and denote the

resulting operator by §. The formula
<w+7 x_y = (S—lw+ , Sw_) (mi Esi)
realizes the duality between the spaces $. and $_. For any fixed z, %, ,
the funetional {z,,®_) is continuous in §.. The correspondence
[ Koy, &l*ug(ag) = (B, ,2.)
8-

gives a method of a definition of measurable linear functionals <z, z_)
on $_ for all #’s in §. This is done by means of a suitable limit process
in the Hilbert space L*($-_, up)-

2. We consider first the case where § is a finite-dimensional real
vector-space. Let an operator B be given by a matrix B = ||by|. As is
well known, the function

(1) u(@, t) = [flo—y)ug (dy)
k]

is, under suitable assumptions about f(=), a solution of the Cauchy prob-
lem for the diffusion equation

ou 1 v 0%y
@ : =5 D
) o 2 1; * omyimy, 0

with the condition
@) u(@, 0) = f(a).

This result can be generalized to the infinite-dimensional case if
equation (2) is rewritten in the form '
ou
® ST S@E),
Whe,re.u" stands for the second order Fréchet derivative of the function
u(z), i.e. the operator occurring in the Taylor expansion

, 1
w(@+h)—u(e) = (w (z), b)+ 3 (w” (@) by 1)+ o (jh]12).
In the case where the funetion u(w) is defined on §_, the form {By, 8>

may be used in this expansion instead of the scalar product (, y). It then
turns out that «"'(z)eL($_, § +)- The restriction of such an operator
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to $ is nuclear and, consequently, for a bounded operator B the estimate
Sp(Bu'’) < oo holds. In general, it can be shown that equation (4) makes
sense provided the function w(x) has continuous bounded derivatives
up to the second. order (ueC,(H)) in that extension 5:’) of $ where the
measure y is o-additive. Then the formula
1) w(@,t) = [flo—y)uz(dy)
)

gives a solution of the Cauchy problem (4)-(3) for feOz(g)(cf‘ [2]-[47)

Gross [6] has independently considered equation (4) with B = I.
He obtained, for this case, more precise results under weaker assumptions
concerning the smoothness of f(x) and developed the potential theory.
His methods have been recently employed by Piech [6] who has dealt
with a wider class of equations, including certain equations in which the
operator B depends on #: B = B(x).

3. We now pass to the discussion of equations with non-constant
coefficients. The solution of the Cauchy problem can in this case be expres-
sed by a formula of type (1) in which the integration is performed with
respect to a non-Gauss measure. This measure can be constructed with
use of the Ito stochastic integral equations.

In the space $_ there exists a Wiener stochastic process w(f): the
Gauss process with independent increasements w(f)—w(r) whose mean
value is zero and whose correlation operator is I(f— 7).

Now let H be a Hilbert space and let a(f, #), 4 (t, ) be a vector-
valued, resp. an operator-valued function:

a: [y, TIXH —~H, A:[ty, TIx H->L($_, H).

The Ito equation has the form
t i
(8) £@) = £+ [afs, E)ds+ [ Afs, &(s))dw(s).
%o tg

Similar equations have been examined by K. Ito, I. I. Gichman and
A. V. Skorokhod in the finite-dimmensional case (see, e.g., [7]); for the
infinite-dimensional case refer to the papers [2]-[4]. Suppose that the
functions a(s, ) and A(s,x) fulfil the Lipschitz condition with respect
to @ uniformly in [¢,, T]X H. Then equation (5) has a unique (up to
stochastic equivalence) solution £(f) which is a stochastic process with
values in H. Tts transition probabilities ’

peg(M) =P{E@W) e M|é(v) = @}

are o-additive measures on the o-algebra of Borel subsets of H.
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Let feCu(H). It can be shown, under some additional assumptions,
concerning the smoothness of a(s, z) and A(s, #), that the function

(6) u(z,8) = [ fy)ut . (dy)

H
represents the unique in O,(H) solution of the Cauchy problem for the
equation

du 1 '
(0 = =5 S0[4" (5, )" A (x, D)+ alr, @)y ) (o<

YA\

)

with the condition
u(z, @)l = § ().

The solution of this problem, as well as that of equation (5),'may
be ob‘oa,ined by passing to the limit with the solutions of appropriate
finite-dimensional problems resulting under projections. of H onto finite-
dimensional subspaces.

A solution of the Cauchy problem for an equation which differs
from (7) by an additional summand V (v, z)u can be written in the form
of a function-valued integral over the space of trajectories with values

in the space H. This is done by means of the well known method due
to Kae [9].

Equation (7) is just the backward Chapman-Kolmogorov equation
for the process Z(t). The‘rnega,tive sign on its left-hand side occurs in
connection with the fact that the Cauchy problem is. formulated for the
left half-axis. The usual form is regained after an inversion of the direction
of time.

In the finite-dimensional case the foreward Chapman-Kolmogorov
e?uation (the Fokker-Planck equation) for the density of the meagure
Hez with respect to the Lebesgue measure may be considered ‘together
Vﬂ.flth the backward equation. In the infinite-dimensional case such a set-
ting qf the problem has no sense. However, an analogue of the foreward
equation is obtained, following an ides of Fomin [8], by taking into
account equations in which set functions oceur.

4. Let up be a Gauss measure with a bounded correlation opér‘ator,
supported by $_. As is well known, the translated measure ,uB; (30
=pB(w0;|—M) (for ,¢$) is equivalent to HB. e

A similar result is also valid in the more general cage considered
abowj, (ef. [7], [4]). Let u, and W, be measures in the space of H-valued
t‘unetlon,'s; suppose that those measures are generated by the solutions
of a pa.u_- of stochastic equations () with the same diffusion operator
4 and different translation vectors a and b. Suppose that the function
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a(t, ®) = A7*(t, ) [b({, #)—a(t, ©)] has values in § and that the linear
estimate [la] < ¢;+¢s)jall holds. Then the measures x, and u, are equi-
valent and their relative density fulfils the equality

r T
Tog 2 (o()] =+ [ Jafes £(o)Par-+ [ <ale, £@), aw (.
o i i

Hence it follows that the measures obtained as the transition pro-
babilities of the Markov processes in question are equivalent. It would
be of an interest to obtain some conditions for the equivalence of such
transition probabilities, analogous to those concerning Gauss measures,
also in that case when the occurring diffusion operators are different
and the measures u, and u, are not equivalent.

5. Further development of the above results is required by a pro-
ceeding from a linear Hilbert space to a non-linear differentiable Hilbert
manifold. A way to construct the diffusion on a finite-dimensional dif-
ferentiable manifold has been pointed out by Ito [10] and developed
by Gangolli [11]. The results referred to below have been obtained by
Belopolska - (Schneiderman) and the author [12]. Let X be a Hilbert
manifold without boundary, let an affine connection be defined on X,
finally, let @, and A, be a vector- and an operator-field on X such that
SpAd; A4, < oco. An analogue of the Ito equation has the form

(8) @+ dt) = exp g [agydt-+ gy dw(B)].

Let ¢: U~ H, be a coordinate map of a neighborhood U of ¢ in X
into the corresponding Hilbert space H,, let ¢, be the derivative of this
map. - Write

A; = ‘7;::Ax¢~17 dw:oz’ = (pa: d'ww'

L.
Uy = Ppliyy

Let I'y denote the Christofel symbol, i.e. the bilinear operator in
H, which enjoys the transformation property

B T (B0 f, Fipg") =T, o) (73 9°) + Bl (B30 17, Bty 97) s
where F*? = pogp™. Let
SpA”IPA® = Y T%(4%6,, A%4)
k
hold for an orthonormal basis. {63, in H,. Then ¢ carries the process

£(t) into a process qa(f(t)) in H, which satisfies the equation analogous
to (5):

L .
dp(£(t)) = [afy, -y Sp ALy T Afy 1 At + Ay dwy .
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Applying the measure generated by the process £(t) one obtains & solu-
tion of the Cauchy problem for the parabolic differential equation on X,

O HSOP. A, AT Yt (1, ),
where V; is the symbol of covariant differentiation and the operator
Uu) = V. 4,45V u(n) is defined by (I{(w)f, ), = (V; 4, ANV ;) u(z).

A condition for the equivalence of a pair of measures corresponding
to a pair of equations (8) and the formula expressing their relative density
are much similar to those formulated in Section 4.

Let X be the underlying manifold of an infinite-dimensional nuclear

Lie group G. By definition, there exists a subgroup @ of @ for which an
embedding of the tangent space T, into the tangent space 7T, is realized

by a Hilbert-Schmidt operator. The above considerations lead to a con-
struction of a quasi-invariant measure on @, i.e. a measure whose all
translates by element of @ are equivalent. The transition probabilities
of the solutions of equations (8) have similar quasi-invariance proper-
ties, provided the fields a,, 4, and the affine connection are translation-
invariant.

6. We now turn again to equations in a linear space and suppose,
for simplicity, that H =§_, ie. A(z)eL(H_,%H.). Assume, further,
that A(#)eL($,,$H.). There is the differential operator

(9) L) = Sp(A4*u) —2(A*w', A*x)

well defined for functions ueC,($_). This operator is symmetric and
non-positive in the Hilbert space L2($_, u;). Applying the results of
Section 3 concerning parabolic equations one can show that the closure
of this operator is self-adjoint. It would be desirable to develop the
spectral theory of such operators with functional derivatives.

7. As soon as the operator (9) is shown to be self-adjoint we are able

to consider the Schrédinger-type equation with functional derivatives
1 Ou

i 0t

= l(u)+ V(z,t)u.

. One can attempt, much like this has been done with parabolic equa-
tions, to write the solution of the Canchy problem for this equation
a8 an integral of the functional

T

exp f Viw(t),1)at

over the space .of trajectories with values in H-.
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This leads to an integration procedure called the Feynman integral.
Several difficulties arrise here already in the case of a finite-dimensional
phase space $. The point is that the Feynman meagure is complex-
valued and is not o-additive though its finitedimensional projections are
c-additive if dim § < co. Cameron [13] has proved the comvergence of
the Feynman integrals for analytic functionals; his approach is that of
an analytic extension of the Wiener integrals to the complex plane with
respect to the parameter which occurs in the correlation operator - as
a factor. Another approach, employed in [14], involves a multiplication
formula for the perturbated semigroup

(10) exp[t(4+B)] = lim [] exp(di, A)exp (4t B) (;' A, = 1).
k

maxAip—+0

This formula has been obtained independently in several forms by
Trotter [15] and the author [14], [16]. Those ideas have been continued
in the papers by Nelson [17] and Faris [18].

In the case dim § = oo, further difficulties occur in connection
with the fact that even the measures analogous to the transition pro-
babilities are not o-additive and integration on cylindric sets requires
2 specific definition. Those obstacles can be omitted in several
ways, for instanee by means of Cameron’s argument described above
(ef. [13]).

On the other hand, the results of Section 6 give the possibility of
an application of a formula of type (10).
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Perturbation theory and strictly singular operators
in locally convex spaces™
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Introduction. In this paper we present some results on perturbations
of Fredholm operators in locally convex spaces. We are interested in
what happens to the index of such an operator when another operator
is added to it. In particular, we want to establish conditions that guarantee
that the index remains invariant. These problems have been studied
extensively in the case of Fredholm operators acting in Banach spaces.
Since non-normable and even non-metrizable spaces abound in analysis,
it seems worthwhile to investigate what can be done in a more general
context. The natural limit to which we can hope to generalize the theory
is indicated by the fact that the closed graph theorem plays an essential
role in it. Since the work of Ptak [8], however, it has become known
that the validity of this theorem is rather wide. We shall make ample
use of the following generalized closed graph theorem, due to Ptak: any
closed linear operator mapping all of a barreled space into a Ptak (= fully
complete = B-complete) space is continuous.

Of the three chapters in which this paper is divided, Chapter I con-

‘tains the preliminaries. Chapter II and Chapter III can be read indepen-

dently.

In Chapter II we study perturbations of Fredholm operators 7' by
weakly continuous operators B which are small with respect to 7.
In the case where the spaces involved are Banach spaces and B is conti-
nuous, the smallness condition takes the form |B|| < y(T), where y(T)
is some constant depending on 7. In the non-normable case in which we
are interested here, a corresponding condition can be formulated in terms
of seminorms (conditions (P) and (P*)).

Chapter 11T js devoted to strictly singular operators. First we obtain

* This work was supported in part by the Netherlands Organization for the
Advancement of Pure Research (Z2.W.0.).
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