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1. Introduction. The principal purpose of this paper is to develop
a multiplicity theory for normal operators acting on a separable Hilbert
space (i.e. a theory of unitary equivalence for normal operators) and
to compare the theory we develop with some of the theory already in the
literature. :

The basic tool we use is what is called a canonical decomposition
system for certain types of von Neumann algebras. The theory of such
systems was introduced and developed in [3] and is & powerful tool in
the study of operator algebras. In paragraph two of this paper we summarize
parts of the - decomposition theory needed for our multiplicity theory.
In paragraph three we introduce the notion of spectral classes for a normal

, operator and a multiplicity function and show that such a function com-
pletely characterizes the operator. The domain of the function is the
spectral classes and the range of the function is the eardinal numbers.
A spectral class is 2 collection of Borel subsets of the complex numbers
and membership in a given class is determined by an equivalence relation
induced by the structure of the von Neumann algebra generated by the
normal operator.

In paragraph four we present a second form of the theory using the
weakly continuous positive linear functionals (on the von Neumann
algebra generated by the operator) as the domain of the multiplicity
function. This somewhat serves to emphasize the basic algebraic nature
of the problem we are treating and, also, makes it easier to compare our
theory with some of the theory in the literature. This comparison is made
in paragraph five.
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2. Notation and preliminaries. We shall use the terminology employed
in [2]. H shall always denote a complex Hilbert space and B(H) the ring
of bounded linear operators on H to H; if K < B(H) and AeH, then KA
shall denote the closure of the linear span of {4i|deK}. If Ki = H,
then 1 is called cyclic for K. & shall always denote a weakly closed,
commutative and symmetric subring of B(H) and M the maximal ideal
space of B, for AeH, A"(m) denotes the Gelfand transform of 4. B shall
denote the commutant of E; hence, if H is separable, then B’ has a cyclic
veetor (cf. [5]). The techniques of measure and integration play an
important role in multiplicity theory, so we shall adopt the usual notations
of measure theory. If X is a compact Hausdorff space and u is a regular
and positive Borel measure on X, then we may consider I, (X, u) as a ring
of operators acting on the Hilbert space IL,(X, u) as follows; for each
aely, (X, u) we define 4,¢B(L,) by A,f = af for every f in L,. We shall

use this convention throughout this paper and note that L (X, u) is
a symmetric, weakly closed, and a maximal commutative subring of
B(L,) with a cyclic vector (f = 1).

The following theorem summarizes certain properties of rings of
operators that we shall need:

THEEOREM 2. 1. Suppose B is a weakly closed, symmetric, and commutative
subring of B(H) and M the manimal ideal space of B. Then

1. B has a unit and, therefore, M is compact;

2. M is extremely disconnected i.e. the closure of an open set is open
(the open-closed sets are called clopen and form a basis for the topology of M);

3. if PeE, then P is a projection operator if and only if P (m) is the
characteristic function of a clopen set;

4. if AeH, then there ewists uniquely a regular and positive Borel measure
v on M such that

(42,2) = [ANm)dw(m) for AcE;
M

moreover, if 8 is a v-measurable subset of M, then there exists a clopen set
Ve M such that »(84V) = 0, where sAV denotes the symmetric difference
(§N\V) U (V\A).

We shall now assume the additional hypothesis that ', the commutant

of B, has a cyclic vector &, and. that in accordance with (4) above u denotes
the Borel measure associated with &;

5. the support of u is M;

6. each equivalent class of u measurable sets contains exactly one clopen
set (cf. (4) above); )

7. if feLoo(M, p), then there ewists A <X such that flm) = AN(m) a.e.;
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8. if feL, (M, u),p = 1,2, then f is equal a.e. to a continuous funciion
from M to the estended number system,

9. there is a one-to-one correspondence between the clopen subsets of
M and subspaces of H that are invariant for B' given by V< Py H, where
v denotes @ clopen subset of M and Py eE such thath{},(m) is the charac-
teristic function of V5 moreover, the, sets {A'Py|A <H'} are exactly the
wealkly closed two sided ideals of H;

10. By, the set of ultrastrongly continuous linear functiq?mls on E 8
the same as the set of weakly, uliraweakly, and strongly continuous linear
functions on E, and

11. if TeBy and T3>0 (i.e. T(A"4) >0 for A<E), then there ewists
uniquely el (M, u) such that ¢ is continuous (¢f. (8) above) and T'(4)
= [ANm)g(m) dp(m) for AeH; also, there ewists neH such that T(4)

M
= (4 or Aek.

( Pn;(,)? lff With the exception of the last part o.f (9) the prpofs all the
above statements can be found in [3]. An mqicat}on of the proofs of 10
and 11 is also in [4]. We shall show now tl,mt if T is & weakly closed tv;;—
sided ideal in B, then I = {4'Py|A4’<F'} for some clopen get ¥V < .
Note that I is a von Neumann algebra contained in B(H ) 80 t]}at QcInI,
where @ -is the principal identity of I. Hence, QH is an mvamanttsussp:ﬁg
for B (in fact, B'QH = (F'Q)QH < IQH = QIH = QH so tha;{,, Iy ne
tirst part of 9, @ =Py for some V. Since A'w=0 for A'el &

L ve A" = A'Py. o .
wE(QIl?is’ uvg:fu]iato observe tha‘jo 9 is valid even if B fé'nls tq have a Gz,%m
vector. The importance of 9 is that it a:llow.vvs us to identify the we: * ug
closed two-sided ideal of B with its inv.a,rla,nt s?bspaces. ) Mar;z uskl
facts follow from this; one, for example, is tha,?: ) ] has a mmm; weakly
closed two sided ideal if and only if M contains isolated poin s£ pem

Returning to 11 above, suppose reH fmd T(A) = (A?., A) 01:3 OHZS-
(hence, by 10, T<Ey), then there is a conbinuous Ll-functgm %1 erefore,
ponding' to 2. We shall denote the closure of {mlmgm)} by. a.ﬁhr § hom’;
SJ is a clopen set and Pg, H = F' ). We shall use this notation iy 0 ]fame_
the remainder of this paper; also, we shall use #(S;) to denote the ¢
teristic function of S;. . . o

Definition 2.1. Suppose E, B and & _satlsfy the? hy-_p;;hemi}o
Theorem. 2.1. A ¢anonical decomposition system 18 & co]leefsonZL {(K P jﬂE ael’
such that n.eEK, c H and (1) I is a well ordered set; ( )(1 (Z)—a 20{;
H = 0K, and K, L K, for a = 85 (8)g,, = n(8,,) an
lmphg]s:teggs s(_;rsig;x'ls always exist and their  essential properties can be
expressed in terms of 2 dimension . function.
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Definition 2.2. The dimension of H relative to B, which we denote
by dimgH, is defined to be the smallest cardinal number ¢ such that
H=25,,0H, where each H, is a non-trivial cyclic subspace for B
and card 4 = ¢. For each clopen set V <= M, we set E, = {AP,|AdE},
and for me M, d(m) = int{dimg P, H|meV = M}.

4

d(m) is called the local dimension fumetion and it has extensive
applications (ef. [3]). One such application is:

TuroREM 2.2. Suppose B, E, &, {8, . satisfy the conditions of
Definition 2.1, H is separable, n a positive integer and me M. Then mes,
if and only if d(m) = n. "

For a proof of Theorem 2.2, see [3]. The importance of Theorem

2.2 is that it shows that the {8, Jeer depend only on ¥ and not on the.

choice of 7, or &. It is this uniqueness of the Sﬂa that leads to a useful
definition of spectral classes for normal operators.

3. Multiplicity theory 1. In order to motivate our development of

multiplicity theory we shall present an example of two hermitian operators
that are not unitarily equivalent. Let L, [0, 1] denote the usual Lebesque
space of square summaple functions on [0, 1] and. L,[0,1] the essentially
bounded and measurable functions on [0,1]. Recall that if feL,[0,1]
and is continuous on [0, 1], then the spectrum of 4, is just the range
of f; if, in addition, f iy strietly increasing on [0,1], B, = {z|f(x) < 4},
91(®) = #(B,) () (the characteristic function of EB,), and: P (1) the spectral
resolution of A4, then P(1) = 4,. -
. Example 3.1. Lebt ¢(a) be the Cantor funetion on [0,1], i.e. e(x)
Is a continuous non-decreasing function on [0,1] such that e¢(1)—e¢(0)
=¢(1) =1 and ¢'(m,) = 0 for @, not in the Cantor set where by Cantor
set we mean the one obtained from the usual middle third construetion
on [0,1]. Let f(x) =2+o(x) and g() = 2a. Then, again considering
Ly [0,1] = B(L,[0,1]), 4; and 4, belong to L,[0, 1], have the same
spectrum, and generate the same subring of B(L,[0,1]) in both the
norm and weak operator topologies (C,[0,1] and L [0, 1] respectively
and, in fact, it is important to note that the latter ring is its own commu-
tant). However, 4, and A, are not unitarily equivalent. To see this, let
§ denote the Cantor set, D, = £(8), and P(4) and Q () the spectral resolu-
tions of A, and A, respectively. Then P (D) is multiplication by zero
and @(D,) multiplication by the characteristic function of a set which
has Lebesque measure one half.

The basic difference between A; and 4, is that f takes a zero set
01.1’50 a set of positive measure whereas g does not. The following theorem
gives further insight into situation. In what follows N i (0 =1, 2) denotes
3 normal operator in B(H), B the weakly closed-symmetric ring generated
in B(H) by N, and N}, and M; the maximal ideal space of E'. If D is

©
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a Borel subset of the complex numbers, then N/ % (D) = {m|me M; and
N{(m)eD} -

TarorEM 3.1. Suppose each of N, B and M, (¢ = 1, 2) has the meaning
cited in the previous paragraph and U is a umitary operator n B(HA)_fuoh
that UN, = N, U. If D is a Borel subset of the complen plcm('a, then N} (D)
has void interior if and only if N}Y(D) has void interior.

Proof. A UATU™! defines a homeomorphism ¢: M, — M, such
that is # is a complex number, then N} (m) = zif and only if ¥. Mo (m) =2

Remark 3.1. In Example 3.1, M, =1,2) iﬁf, theAﬁga,ximal 1d9a.1
space of L, [0,1] and ANY(D,) has void interior while A}7H(D,) contains
an open set. Note that the maxirrtzl ild]ea,l space of the normed closed ring

G f A, and 4, is [0,1].
gene?sgieegigcgedin% toa c(fnverée form of Theo?em 3.1, we shall develop
a lemma which is technical in nature but quite important.

Tmwma 8.1. Suppose N is a mormal operator in B*(H), B the weflklyl
closed symmetric ring generated in B(H) by N and N°y M theb mta,m'n;,;
ideal space of B, &y @ unit eyclic vector for B, and V a c}open subset of t c
Then there eists a Borel subset D of comples numbers such that the symmelry

itference VANM1(D) has void interior.
d?ffaPro of. In acc(orzmnce with 4 and B of Theorem 2.1, let u be t.he
measure on M corresponding to the cyclif: vector &. We shall now ;)];.-
troduce an important equivalence relation among .’che K:D(l}eisuﬁeg,z
gubsets of M. If each of F' and G i; ]sluch a,v:leti;l :;S-i ;;nte F~@to
at - ic difference FAG bhas vol .

e Iihzls};m?f?%, ihen D, is a compact subset of the complfin;]:\;xbziz
If {V,), is a tower of clopen sets such that VeV, CWN . al(m;XimaJ1
W, = JV,, then.V = W, < N/~ (D,) and we can assume Wo is

ect to the inclusion relations. Hence, Wo=N ""I(Dtl).
ince N and N* generatie F in the weak operator
ik in ¥ and N* such thab

clopen set with. resp
We shall denote Wob : e
topology, there exist polynomials Py, 7 =1,2, ...

1
(3.1a) [ 19 (m)— Py )] dpu(m) < 50
M

TFor each n let .
8, = {me Wilpa(m) <1 and T, = {me W||p} (m)| >4}

— Wand 8, N T, =@ Weset e, = w(W), & = u(V)

Hence, &, & then W =~ V). For meS, YV,

and we assume that & > er (if & =2n
[p} (m)—Pp(m)| > ¥ and (see (3.1a))

1 :
R / Ip2 (m)— P (m)| du(m) = 5 #(8y O V).
2n " ginv ,


GUEST


396 R. R. Butts and P. Porcelli
Hence,
u(S, V) <—}——~ d . 1
n = an u(T, NV)>¢e— et

For meT,, 0 (W\V), |pp(m)—Ph(m)| >4 and

1
s Afamy— DA , 1
2 Tnn(ﬂf’\V) [2a () =Py m)] I (m) > 3 MIw 0 (NT)).
Hence
1
WT, 0 (WNT ‘ T
( ( ) < 5T and 18y 0 (WN\TV)) > eg—ey— znl—l :

Let
E=U[N8] and L= ulNz).

n=1 i=n n=1 1
=1 i=n

K and L are measurable subsets of W and it can be eagily verified

that bhey are dls'olnt. We ghall ShOW that the ymnam. tiri diffe ce l‘ L
‘ 8 etric Ten! a4

#M N 1) = w(U 7N2) = (O 17 0 8,])
N n=N "

A
§°1 oo

< - 1 1

\7&‘:_1\,7/‘( N8, < ZEKY<§T—?'

n=N

Henece, u(V\L) = 0. Also,
AN 2
< ,QN T \V]e I,\V « T, n [W\V].

But
T i(fg’na;\d[T;V’\VV%; <S 1 /?”“1, therefore, 4(L\V) = 0. Consequently,
50 that W\V zK——We' ::m%a'ﬂy] (BT i e 23 0’
T WY mEL. 17hense D= N(D). HA’WLEK, then |p) (m)] < for
il b XA y /J\pn (m)] > % for large n. Hence, if m,cK and
el fhen (my) # N%(m,). Therefore N'\“(D) nK — @ and V
= NAlx(;l) )osrdiIl.l to see the last assertion note that V U [W\V]
A VAON b ?P(g)th;r VN\N"~Y(D) or NA~Y(D)\V must contain
sonbadicts T ee ¥ i) coifr Aritii(;g;a,ve void interior. The first case
N WAV ~ N"(D) N K (since W\V o~
contradicts N*\~1(D) nK = @. o

In the second case, N*~1(D)
K) contains an open set which

We
06 Tater Sgla:lf:ﬁw present a converse form of Theorem 3.1. As we shall
fnctin e theogiftg:l:ore};l corresponds to case where the multiplicity
value of one. Also, lat 11 Te
eneral . ; ater we shall
fha,t th:?f;ﬁ;:gze;aﬂl case qf @yltlphcity onej and it is in 1:111'3I ﬁﬁtﬁ
e multiplicity function becomes more transparant

* ©
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TEnoREM 3.2. Suppose H is a separable Hilbert space, N; (i =1, 2)
a normal operator in B(H), T the weakly closed symmetric ring generated
by N, and N¥, & o unit cyclic vector for B, M, the mawimal ideal space
of B, amd w, the regular Borel measure corresponding to &;. Suppose further
that for each Borel subset D of the complex numbers, N{ YD) has void
interior if and only if NMYD) has-void interior. Then N, is unitarily
equivalent to N.

Proof. Suppose that each of D, and D, is a Borel subset of the
complex numbers such that N)HD,) =~ NP7H(Dy). Then N{YDy)
~ N}H(D;) and (NP H(DY) = pa(N]7(Dy)). Therefore, we define
2 measure o on M, in the following manner; for each clopen subset W
of M, there exists a Borel subset D of complex numbers such that N AHD)
~ W (cf. Lemma 3.1). We set a(W) = (N9 7H(D)) T K s a pg-measurable
subset of M,, then there exists a unique clopen. set V (cf. 6 of Theorem
2.1) such that K ~ V. We set a(K) = a(V). It is easy to show that a is
a positive measure on M,,a(M,) =1, and ¢ is absolutely continuous
with respect to ua- Consequently (cf. 11 and 8 of Theorem 2.1), there
exists @ continuous L, function ¢ such that ¢(m)>0 and

[ A myda(m) = [ A" (m)g(m)dps(m)-
1, 1,

for A eF*. Again, from 11 of Theorem 2.1, there exists a vector E;eH
such that

-

[ A (m)p(m)dpa(m) = (A8, &)
My

for A <. Since a(My) =1, (I&, gy = &) = 1. Also, g, is eyclic ‘for
P since, in the contrary case, it would follow from 11 and 8 of Theorem
2.1 that M 2\85'2 would contain a clopen set W and «(W) = 0. Hence,
it D is o subset of the complex plane such that N} (D)= W, then
N}-(D) has non-void interior and 0 < p(NP7H(D)) = (W) = 0 which
is absurd. .

We now define a mapping 0: O (M)~ C(M,) as follows: it Vv,
i=1,...,n,is & pairwise digjoint covering of M, with clopen sets, then
there exist n Borel subsets of the complex numbers D;, §=1,...,n and
n clopen subsets of Ma, Wiy 6 =1y00y M such that N{‘"('Di). =~ 1‘7“

MUD) = Wy @ =1y .y Our hypothesis (¥{ (D) has void interior
it and only if NJ~*(D) has void interior) guarantees Wi, 4 =1,%.., % 18

a covering of M, with pairwise digjoint clopen sets. j i

n

f(m) = 2 “i?’(Vi(’m))’

=1
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then we set
0(f) (m) = > am(W,(m)).
=1

Again, our hypothesis guarantees that ¢ is well defined; moreover,
6 is an isometric mapping from a dense subset of L, (M, u,) to a dense
- subset of L. (A,, o). Hence, 6 can be extended to an isometry from
Lo (M 1y pr) onto L (M,, a) or, equivalenty, C(M,) onto C(M,) and,
hence, from E' onto B* If P;(D) denotes the spectral function for X,
(¢ =1, 2), then it easily follows that B(PI(D)) = P,(D). Hence, 6(N,) = N,
and 6(N7) = N, so that 6 is a symmetric isomorphism. Also, 6(AB)
= 0(4)6(B) whenever A”(m) and B”(m) are clopen step functions on
M, or when A and B are polynomials in N, and N7. Either fact together

with the continuity of 6 in the operator norm implies 8(4B) = §(A4)8(B)
for all 4, BeE". Also '

[A"N @) duy(m) = [ 0(4)" (m)da(m)
My My

whenever A”(m) is the characteristic function of a clopen set and,
therefore, because of the dominance of. the L_-norm for all A e<E.
We now define an operator U by UAdE, = 6(4)&,. Hence,

ITA& =(0(4)&, 6(4) &) = [ 6(4* 4)" (m)da(m)

My
= [ (4" A)(m) dpy (m) = A& )

Since £ and & are cyclic for E' and B respectively, U can be
extended to a unitary operator.

For AcF, UN, A& = 9(N A)E = O(N)0(A) &, = N,UAE,. Hence

UN, = N,U on a dense subset of H so that UN, = ¥, U on all of H.

This completes the proof of Theorem 3.2.

Before extending Theorem 3.2 to the case where cyclic vectors. do

not exist, we shall look at an example. Let f(x) =a%, g(z) = a?(p, q
=1,2,.%) and 4; and 4, the corresponding multiplication operators
acting on L,[0,1]. If the hypothesis of Theorem 3.2 are not satisfy,
P(2) the spectral function for 4,, and @ (1) the spectral function for 4,
then there exists a Borel subset D of the complex numbers such that
either P(D) = 0 and Q(D) %0 or P(D) # 0 and Q(D) = 0. However,
it is easy to see that no such set D exists.

In the first paragraph of the proof of Lemma 3.1 we introduced an
equivalence relations among subsets of a maximal ideal space M. We
shall now, in a similar manner, introduce an equivalence relation among
Borel subsets of complex numbers with respect to a given normal operator

* ©
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acting on a separable Hilbert space and use this relation to define a multi-
plicity function. We shall do this in two steps. ‘

Detinition 3.1. Suppose N is a normal operator ‘a,em.ng on a sep-
arable Hilbert space H, B the weakly closed symmet'mc ring ge.nera.ted
by N and ¥ *, M the maximal ideal space of E. We deﬁne.a,n equwalex.lce
relation among the Borel subsets of the complex numbers in the following
manner: if each of Dy and D, is a Borel subliiet of the compl.ex n.umbers,
then D, is equivalent to D, if a,nd: onl'y if thg syn-lmetrlc d.liferen.;zz
NA-Y(D,) AN""1(D,) has void interior in M ) In this casehwe Wrt;a’l
D, = D,; the induced equivalence classes will be called the spec
classfet?fui\rx.'ecall that if B is a symmetric and corpmutative'ring acting
on a separable Hilbert space H, then ¥, the commutant of F, always
has a cyclic vector. . o

DZfinition 3.2. Suppose that N, H, B, and M are as in Deﬁmti}é);
3.1 and, in accordance with Definition 2.1, {(K,, .n,,)}“p is a iznooin
decomposition system for B a;ndf tl];a.t, fiorDa eé“, %1« nlsi:}:; :ulp;gst pogifin;e;

i al class o an ef.
?;Eggfefcﬁ :h?c;p;\? f‘r‘l(D) N 8 has void interior, fuhep we sago 1?h;m]tl;
Q hasg mdltipwoity n; if N A'l(D)ln ;Sf,,@ tﬂ has non-void interior
o say £ has infinite multiplicity.
" thlziza,rky&& We recall, in view of Theo;'emf 2.2, thaﬂf tl%: ;S’,g 311?;13‘
uniquely determined by the ring E. Heﬁfg, }’z};zze (113 eirilﬁegmr};ﬁqlzilpi (n,:;ty u
initi multiplicity. Also, we cO . iplict
g:rﬁnrll;tt)%nﬂfef local d?emension function ‘d(m). T/\]Et is, the Igult;picgyhz:
0O is the least positive integer 7 such.tha,t NATY D) {ﬁ}h (frlr:J kit
void, interior. Finally, we should mentlfm that the 1_'016 of 1 eTh R
is to reduce to general case to the special case considered in e(;j;1 ) m
This is apparent in the proof of the sufficiency part of next theorem.

: ose H is a separable Hilbert space, l‘Vi (t=1,2)
a nofﬁomfw;fofgfﬂ the weqkly closed and symmc;me tmsntghgeifrg::zzz
by N, and N (i =1,2), and IeE (4 =1,2), w?w‘re I eal'»og the ddentit
/ BiH)‘ Th;'n, N, is umitarily equivalent to Ny zf and only "bj: N, 2
;ZJ;’UG the 'same spectral classeé with the same respective multiplicities. -
Proof. We ghall prove the sufficiency ﬁrslt. Let {(K;, 7)) zﬁi l{( 5 b : r)
be canonical decomposition systems for E and J;I; ;ip;e;d B{j.) I-BK;
and B?|; are maximal commutative subrings of '( i B ze e
ively” Our hypothesis (same spectral -classes with same D chive
Ixjc?sféi‘;)e]liities) tells ug that it D is a Borel subsetb ]Ef ti};e I(;(;\r_nalle)z)( rr:u;n x]alra ;
;D) . void interior if and only i N, s
1’!]1(?2 iNtlerio(f )Irz;égrgﬁ};]?sas 8,,(8y,) is the ma..xima,l ideal spao(:] E;\Kk (.ESII_%)
szl h:ve bs‘r Theorem - 3.9, that there exists U, such that U;H;
t
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and U;N; =N,U;. It U = }'U,, then U is a unitary operator and
UN, =N,U. ¢

We shall now prove the necessity. Suppose UN, = N, U, where U
is unitary. We first show that the mapping 4 — UAU™' takes (BY
onto (E'). For Ae(E') and BeE, (U'BU)A = A(U'BU), so that
upon multiplying the last equation on the left by U and the right by U,
we get B(BAU™') = (UAU™Y)B, so that U(E) U < (8. Similarly,
U7(B U < (B); hence U(HY) U™ = (B?. Also, it & is cyelic for
(BY', then H = (B &, = U(BY) &, = UE) U1 UE, = (B U&,, so that
U§&, is cyclic for (BY'. '

Suppose now that {(X;, Uy,)} is a canonical decomposition system for
B and L; = B Uz;. We shall show that {(L;, Uz,)} is a canonical decom-
position system for . Inasmuch as H = Y QUE U1 Uy, = QB Uy,

i

we need to show that P, = 7(Syy,,) (cf. Definition 2.1). To this end,
if 4eF?, then
(AUn;, Ung) = (U AUnyy ) = f (U AT)M (m) duy (m)
S’h‘.

= (Ps, U AUn;, 1) = ((UPT 14Ty, Uyy).
On the other hand, ‘
(AT, Un) = [ AN (m) g, (m),
My

$0 that we need to show UP,S,W_U“1 = Pg,, or, which is the same,
UPs, =Ps;, U. - "

Let o = X,4®,¢H, where Psniml =g, and Psﬂi% = 0. Then
UPS,,i” = Ux,. Also,

PSUnim = _PSUﬂiml—}—PsUﬂiwz. v

Suppose Be(E*). Then U™ BU (') and (BUn,;, Us,) = (U*BUy,,
@;) = 0 inasmuch as K, =PgﬂiH is an invariant subspace for (B')
(cf. 9, Theorem 2.1). Hence, PSUW Uz, = 0. Since 7; is eyclic for F* on
K, there exists 4,¢B', n =1,2,..., such that Aun;— @, a8 n— oo,
Hence, UA, U™ Un;— Usy, as n-> oo and, therefore, PSUW Upy, = Uz,
since (U4, U™")eB* < (B*) and (U4, U™ Uy, ePSUniH . Hence, PSU% U
=PSUﬂiUw1 = Uz, = UPSﬂiw for all weH, so that PsU,, U= UPS%.

Hence, we have shown that the mapping 4 —~ UAU™, A <B*, takes
canonical decomposition systems onto canonical decomposition systems.
Also, this mapping induces in a natural Way & homeomorphism &: M, ~> M,,
via AM(m) = (UA U )" (@(m)), of M, onto M, such that

{®(m)[meNI (D) 0 8,} = Nf(D) 8y,
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Consequently, ¥, and N, have the same spectral classes with the
same respective multiplicities.

This completes the proof of Theorem 3.3.

Remark 3.3. Our assumption that each of F' and F* contain the
identity of B(H) is not a serious restriction. In fact, suppose P; is the
principal identity of E* (cf. 1, Theorem 2.1), then our theorem tells us
when N, |[p,g) is unitarily equivalent to N, lp,)- Inasmuch as N,z = 0
if and only if P, =0 (¢ =1,2); we see that if Nylpym is unitarily
equivalent t0 Ny |p,q), then N, is unitarily equivalent to X, provided

-their respective null spaces have the same dimension.

Remark 3.4. It may aid our intuition if we look into the relationship
between the spectral classes and eigenvalues of a normal operator and
the corresponding multiplicities of each. Hence, suppose that N, E and
M have the properties listed in Definition 3.1 and that the Borel set
consisting of the complex number {4,} is not equivalent to the empty
set (in the sense of the equivalent relation defined in Definition 3.1).
This can occur if and only if there exists an isolated point mye M such
that N/ (m,) = 9. In this case 1, is an eigenvalue of N, the multiplicity
of its spectral class is the same as its multiplicity as an eigenvalue which
is d(my), i.e. the local dimension at m,. Finally, we note that if me M 5
then the functionalf,,(4)= A" (m), A <E,is a norm continuous functional,
and is weakly continuous if and only if m is an isolated point of M.

4. Multiplicity and positive functionals. We shall now show that
it iy possible to derive a multiplicity theory using the weakly continuous
positive functionals on E. One of the basic tools in this approach is the
Dixmier-Sakai Theorem that asserts that a C* algebra has a representation
a8 a von Neumann algebra if and only if it has a pre-dual as a Banach
space.

TeEoREM 4.1. Suppose H, N, E'), M%, &, and w (i =1,2) satisfy
the hypothesis of Theorem 3.2. Then the following two statemenis are equivalent:

(1) Ny is unitarily equivalent to N,;

(2) there exists an isometric isomorphism @: Bk — Fi such that Of > 0
if and only if f= 0 and (Of)(N,) = f(N,) for oll feBL.

Proof. The proof that (1) implies (2) is left to the reader. Suppose,
therefore, (2) holds. In view of the Dixmier-Sakai Theorem, we may regard
F', as a Banach space, to be (Bi)*; hence, the mapping & induces an
adjoint mapping, say 0, defined by [8(4)1(f) = A(B(f)) for all feB}
and A4 B Also,

10(A) = sup{|[6(A)I(N; Ifll = 1}
= sup {4 (D(A)}; If] = 1} = sup{l4(g)]; lgl =1} |4
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so that 0; B* — E* and, in fact, is an isometry. Also, [0(N,)1(f)= N,(D(f))
= O(f) (_N = f(N,) = N(f) so that 6(N,) = N,. Finally, if fe B}, then
f>=0if and only if F(4A) = (4dx, z) for some zeH (cf. [4]); hence, 6(4)> 0
it and only if 4 >0.

The positivity of ¢ allows us to establish that 6 is an algebrmc iso-
morphism. We shall do this in several steps. We first show § preserves
order. Suppose A>0 and B>0. Then 4 A B< 4, 0(4 A B)< 6(4),
and, also, 6(4 A B)< 0(B). Consequently, 6(4 A B)<< (4) A 6(B).

Inasmuch as E* is a weakly closed subring of B(H), a typical Zorn’s .

Lemma argument shows that there exists CeE* such that € =0 and
8(C) = 0(4) A 6(B). But 6(0) < 6(4) implies ¢ < 4 and, similarly, C < B
80 that C < A A Band 6(0) = 0(4) A 6(A A B). Thus, 6(4 A B) = 6(4)
A06(B). Note that if 4 and B are projections in B then A A B = AR
and 6(4 A B) = 6(4B).

Algo note that 6(I) = I.

Inasmuch as 6 is an isometry, we see that if A and B are projections
such that AB £ 0, then ||6(4B)"(m)], =1 and this together with
0(A) A 6(B) = 0(AB) = 6(4 A B) implies that supports of 6(4)* and
6(B)" intersect. Hence, there exists my M, such 6(4)"(m,) =1 = 6(B)"(m,).
Therefore, ||[6(4)8(B)]" (M) = 1. Also, from 0 < 6(4)"(m) <1 and
0< 0(B)"(m) <1 we see that 6(A)8(B)< 6(4) and 6(4)0(B) < (B) or,
‘what is the same, 0(4)6(B) < §(4) A 6(B) = 6(4B). Hence,if B =I— A4,
then 6(A4)—[0(A)P< (A (I—4)), so that 6(4) is a projection. It
follows now that if A and B are projections, that 6(A)6(B) =0(4) A 0(AB)
so that ¢ is multiplicative on projections and, by linearity, on clopen
step functions. Sinece § is an isometry in the L -norm, 6(4B) = 6(4)6(B)
for all 4 and B in B®. Also, it is easy to verify that 6(4*) = 6(4)" for
A B2

‘We now define a measure ¢ on M, in the following manner. If V is
a clopen subset of M,, set

a(V) = [ 6(Py)* (m)dp,(m). .
My

If K is a Borel subset of M,, then there exists a clopen set ¥ such
that V'~ K (recall 7V ~means VAK has void interior) and we set
a(K) = a(V). The positivity of § implies a >0, 0(I) = I and u(M,) =1
implies « is supported on M, and a(M,) =1, and u,(K) = 0 implies
K has void interior (therefore, K ~0) and a(K)=0. Hence, a is absolutely
continuous with respect to u, and there exist &(m)eL,(M,, u,) and &eH
(cf. 11 and 8 of Th. 2.1) such that, for 4 <F?

[Arm)da(m) = [ 4% (m)&(m) duy(m) = (45, &).
My My .
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a(M,) = I implies ||&;] =1. Note that if &, were not cyelic for
F?, then 8, would miss a clopen set and a(M,) <1 which would be
a contradiction.

We now define an operator U by U8(4)é& = A¢, for A Hence

!

ITO(A) &P = &P = [ (4% 4)" (m)da(m)

M,

[0 )" (m)duy (m) = (6(4)* 6(4)¢,, &) =116(4) &7

My

[

Hence, U can be extended to an unitary operator and for A F?
UN,6(A) & = UG(N)0(A)E, = UGN, A) & = N, AE, = N, UO(A)E,.
Hence UN; = UN, on a dense subset of H and, therefore, N, is unitarily
equivalent to N,. Note that U™AT = 6(4).

This completes the proof of Theorem 4.1.

We shall now consider the case where %' and F* are not maximal
commutative, i.e. do not have cyclic vectors. Again we introduce a multi-
plicity function in order to reduce this more general case to the special
case considered in the previous Theorem. First of all we note that in
Theorem 4.1 we could achieved the same result by assuming ¢ wag an
isometric isomorphism from the cone of positive functionals in FL to
the cone of positive functionals in B3, for such a map could be extended
to an isometric isomorphism of Fi to Ei. We shall denote the cone of
positive functionals of Ei by (BL)* (4 =1, 2). _

Definition 4.1. Suppose (1) F is a commutative, symmetric and
weakly closed ring acting on a separable Hilbert space H and containing
the identity of B(H); (2) B has a cyclic vector £ and u is the Borel measure
on the maximal ideal space M of B such that u corresponds to & (cf. 4
and 5 of Theorem 2.1); (3) {(K, 7;)} & cannonical decomposition. system
for E; and (4) T a posmve function on ¥ and geL,(M, u), where T and
¢ satisfy 11 of Theorem 2.1. The multiplicity of 7 is the least positive
integer n such that {m|p(m) >0} n §, ni1 18 empty provided such an
n exists. If no such n exists, we say T has infinite multiplicity.

THEOREM 4.2. Suppose H, N;, B, and M, (i = 1,2) satisfy the hypo-
thesis of Theorem 3.3. Then N, is unitarily equivalent N, if and only if there
ewists an isometric isomorphism @: (BY)* — (BL)* such that O (f) (N,) = f(N,),
and the multiplicity of @(f) equals the multiplicity of f for all fe(EL)*

Proof. If UN, = N,U, U unitary, then the map @ defined by
D(f)(4) =f(UAU), for all A<E", satisties the requirements.

Conversely, suppose such a map & exists, {(X;, )} is a canonical
decomposition system for B' and {(I;, £)} a canonical decomposition
system for E’. The maximal ideal space of B lx; (respectively, B®|z)
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is 8, (respectively, ‘95) The positive functionals on E' Ix; (B* [L) arise
from non-negative funetion in Ly (Myy py) (Li( My, ps)) whose support is
contained in S, (8) (cf. [4]), where g has the usual meaning. Our
condition 1mp].1es that there exists a restriction @; of @ such that &, is
an isometric isomorphism from ((E'|g)«)" to ((B’[g)s)t satistying
@;(N1lg;) = Nalr,. From Theorem 4.1, there exists partial isometry from
K, onto I; such that V,N; = N,V,. It easily follows that if U = Z@Vu
then U is unitary and UN, = N, U.

This concludes the proof of Theorem 4.2. Also, we note again that
the assumption that Ie<B* is not a serious restriction.

5. Conclusion. We shall conclude this paper by comparing our results
with those presented in [1] and [6]. In our presentation the essential
restriction of the normal operators is that they operate on a separable
Hilbert space. This is done in order to insure that the commutant of
a normal operator has & cyelic vector. In both of [1] and [6] there is no
separability requirement on the underlying Hilbert space.

We shall first compare our theory with that in [1] under the assump-
tion that the underlying Hilbert space is separable. Both theories associate
with a normal operator a multiplicity function whieh-completely charac-
terizes the operator, however, the domains of definition of the two fune-
tions are different. We have assigned a multiplicity to each weakly con-
tinuous linear functional on the weakly closed ring, say &, generated

by N and N*. In [1] the multiplicity is defined for each norm continuous-

linear function on F which is a much more extensive class of linear
funetions.

In order to make a sharper comparison let us set the theory in [1]
into our context. Hence, B, M and {(K;, 7;)} have our usual meaning.
In [1], a multiplicity h(-) is assigned to each projection PeE as follows.
If P =0, then h(P)=0. If P=Py for some clopen set U, then h(Py) is
the largest integer n such that U n S =U; £ Unf, =U for all
n, the h(P,) = co. Actually, in [1] the mult1p1101t1es is defmed for meagures
on the spectrum of N. Suppose weH and a,(D) = (P(D)w, 4), where
{P(D)} denotes the spectral decomposition of N. If ¢ is a measure on the
spectrum of N, then {#|a, <o} is an invariant subspace of B (the
commutant of E) and, therefore, the projection on this subspace is given
by some PyeE, U clopen; we define (o) = h(Py). It ¢ = a, for some
X, then the corresponding U is S,.

Hence, we can compare the two multiplicity functions by A(-) and
I(+) (we use I(-) to denote the function developed in this paper) by their
action on clopen sets or, what is the same, projections in E. One essential
difference between % and 1 is that if P;eE (4 =1, 2) and P, < P,, then

~R(Ps) < h(Py) and I(Py) < U(Py).
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In [6] it is shown that N, is equivalent to N, if and only if there
exists a star-isomorphism g of (Z') onto (E?)' such that B(N) = N,.
One interpretation of our Theorem 4.2, is that we ean restrict § to B' = (B*)
under the assumption that H is separable. From this point of view,
Example 3.1, has additional interest.
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