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1. Introduction. Let F be a complex Banach space and #(H) be

the locally convex space of all entire complex-valued functions on H.
Given a convolution operator @ in s (FE), that is a continuous linear
mapping of s (H) into itself commuting with translations in 2#(H) by
elements of B, we are interested in proving that every solution f in o (H)
of 6f =0 may be approximated by finite sums of solutions in #(E) of
the same equation which are exponential-polynomials. Technical dif-
ficulties that thus arise on the dual space B’ lead us to introduce the
locally convex space oy (F) of all nuclearly entire functions on . There
are two natural candidates for the definition of #y(E); it is not known
so far whether they do coincide. One of these candidates is a particular
case of #4(U; F) as defined in [5] when U = B, F = C and the holo-
morphy type @ is the nuclear type. The other candidate was introduced
"in [6]. The indicated approximation theorem is known to hold true for
it, as indicated in [67; see also [4] for the so-called nuclearly bounded
case. Known properties and open problems concerning the locally convex
spaces s (F) and #y(F) have been considered and indicated. To treat
them in a unified way, the concept of a holomorphy type @ from E to
another complex Banach space F (which was assumed to be F = C in
the preceding considerations) was introduced. It is a sequence of Banach
spaces Zo(™E; F), each of which is a vector subspace of the Banach
space Z{™E; F) of all continuous m-homogeneous polynomials from ¥
to F, for m =0,1, ..., certain additional technical conditions being
imposed; see § 2 below, as well as [5]. It is then possible to define and
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investigate the locally convex space #4(U; F) of all mappings of @-ho-
lomorphy type from a non-void open subset U of # into F, thus subsuming
the current case s (E) and the nuclear case #y(F) when U = H, F = C
and the holomorphy type © is either the cuwrrent or the nuclear type.
This has been done in the case of one of the candidates for the definition
of oy (EB); we refer to [5] and [1] for details. As to the case of the other
candidate for the definition of #y(F), namely that introduced in [6],
a study of #,(¥; F) has been made in [2] under the restriction that
U = E. The results thus obtained are quite interesting and include a proof
of completeness of #,(E; F), which is different from the one described
below for the current type, when the two candidates for the definition
of #o(E; F) do coincide. We refer to [6] and [2] for details. Reference
is made once for all to [5] for general notation and terminology.

2. Holomorphy types. Let E and F be complex Banach spaces and
Z("H; F) be the Banach space of all continuous m-homogeneous poly-
nomials from # to F, for m = 0,1,... A holomorphy type @ from E to
F is a sequence of Banach spaces Z,(™E;F), for m =0, 1,..., the
norm on each of them being denoted by P 1—||P| e, such that the following
conditions hold true:

(1) Each #,(™E; F) is a vector subspace of #(™E; F).

(2) Zo("B; F) coincides with #(°E; F) as a normed vector space.

(8) There is a real number o> 0 for which the following is true.
Given any k = 0,1,...and m = 0,1, ..., k< m, 2B and PeZ,("E; F),
we have

&P (z)ePo(*E; F),

[

< " [|Pllo- flul™".
2]

The current holomorphy type from E to F is the holomorphy type
O for which (" E; F) = #(™F; F) as normed spaces, for m = 0,1, ...
On the other hand, certain questions in applications, concerning for
instance convolution and partial differential operators, Fourier and
Borel transforms, distributions, ete. in infinite dimensions, lead to im-
portant types of holomorphy, such as the nuclear, the integral, the Hilbert-
Schmidt cases, ete.; see [6], [4], [3]. Let us review briefly the definition
of the nuclear type. If &' indicates the dual Banach space to. Z, we shall
have ¢™-ye 2 (" B; F) for every pe, yeF and m = 0,1, ..., where "y
denotes the mapping s i [p(2)]"y < F. We shall represent by Z,(™E; F)
the vector subspace of #(™E; F) generated by all ¢™-y when ¢ rung
over ' and y varies in P. Tt consists of those elements of Z("E; F)
each of which may be represented as a finite sum (P)™ Yitn o+ (@)™ Y,
where ;¢ and y;eF for j§ =1,...,r. The Banach space Py (™H; F)
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of all nuclear m-homogeneous polynomials from ¥ to F is characterized
by the following requirements: )

(1) #y("H; F) is a vector subspace of Z(™E; F).

(2) 25 (™B; F) is a Banach space with respect to a norm P i~ [|P|y
called the nuclear norm, to be distinguished from the current norm Pi— || P||
on #(™H; F). Moreover, we have |[P| < {|P|y if PeZy(™E; F).

(3) Z;(™HB; F) is contained and dense in Zy("¥; F) with respect
to the nuclear norm. For each PeZ,;(™E; F), its nuclear norm [[P|y is
the infimum of ||p, ™+ [ly.l|+ ...+ g™ |ly,]| for all possible representations
P = (g)" ¥y +...+ (@)™ Yy,, where ;e and y;eF for j =1,...,7.

3. The locally convex space 5#,(U;F). If U is a non-void open
subset of H, we shall denote by s (U ; F) the vector space of all holomorphie
mappings from U to F. Bach fe #(U; F) has its differential d™f(z)e
Z("E;F)at U of order m= 0,1, ... If O is a holomorphy type from ¥F
to ¥, a given fes#(U; F) is said to be of @-holomorphy type on U if,
for every zeU, we have

a*f(@)e Po("H; F) for m =0,1,...-

and. that the sequence

(

is bounded (in which case it results that this sequence is uniformly
bounded for # variable in a sufficiently small neighborhood in U of every
compact subset of U). We shall denote by 5£,(U; F) the veector subspace
of #(U; F) of all such f of O-holomorphy type on U.

A seminorm p on #,(U; F) is said to be O-ported by a compact
subset K of U if the following equivalent conditions hold:

(1) Given any real number ¢ > 0, we can find a real number ¢(e) > 0
such that

1 . 1m
—d" f(z) for m =1,2,...
m! 0

]

p(f) <ol Y emsup

m=0

2 s
m

6]
for every fe o o(U; F).

(2) Given any real number ¢ > 0 and any open subset V of U containing -
K, we can find a real number ¢(¢, V) > 0 such that

00

p(f)<o(s): D) msup

m=o ¥V

(o)
m!

(2]
for every fe #o(U; F).

The natural topology 7, ¢ on #¢(U; F') is defined by the seminorms
on this vector space each of which is @-ported by some compact subset of U.
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4. The locally convex space #°y(K; F). Let now K be a compact
subset of E. If U, and U, are non-void open subséts of E containing K,
we say that fie #(Uy; F) and fye #o(U,; F) are equivalent modulo K
if f, and f, coincide in some open subset of E contained in U, n U,
containing K. This defines an equivalence relation on the wnion of all
#o(U; F) for U a variable non-void open subset of F containing the
fixed compact subset K of H. Each equivalence class is called a germ
from K to F of @-holomorphy type. Let #,(K; F) be the quotient space
of the aforementioned union modulo the indieated equivalence relation.
Then #¢(K; F) is a vector space in a natural way so that each natural
mapping #,(U; F)~ #o(K; F) be linear, where U is a non-void open
subset of Z containing K. Notice that #o(K; F) is the directed union
of the image of #°o(U; F) by #o(U; F) - #(K; F)-for U a variable
non-void open subset of ¥ containing K.

If U is a non-void open subset of E and & > 0, we denote by Ho,.(U;F)
the vector subspace of #°,(U; F) consisting of those f such. that

3

Ifllo,e = > e™sup
xel

m=0

1 Jm
—"f(a)

.

is finite. Then #,,(U; F) is a Banach space with respect to the norm
F = (Iflle,.- Notice that, if K is a compact subset of B, then 5#,(K; F)
is still the directed union of the image of #,,(U; F) by #4(U; F)~
— #(K; F) for U a variable non-void open subset of E containing K
and ¢>0 variable too.

The natural topology 7, ¢ on #,(X; ¥) is obtained by considering
#o(K; IF) as the locally convex inductive limit of the Banach space
#o,(U; F) with respect to the natural linear mapping #, (U; F) —~
~>#o(K; F) as the non-void open subset U of E containing K shrinks
to K and as e > 0 decreases.”We then write '

Ho(K; F) =1lim 5, ,(U; F).
Uik
>0
5. Interplay between #,(U; F) and Ho(H;F). It is also true, for
a fixed compact subset K of , that the topology 7, ¢ On (K ; F)
may also be obtained by considering Ho(K; F) as the locally convex
induetive limit of 5# (U ; F) endowed with its topology 7, o With respect

to the natural linear mapping #,(U; F)— #o(K; F) as the non-void

open subset U of E containing K shrinks to K. We then write

Ho(K; F) = lim #,(T; F).
UsK
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The following question then comes up. We want to know whether
it is true that, given the non-void open subset U of H, the topology 4, o
on #o(U; F) may also be obtained by considering #,(U; F) as the
projective limit of #, (K ; F) endowed with its topology 7, » With respect
to the natural linear mapping &#4(U; F) - 5## (K ; F) as the compact
subget K of B contained in U grows to U. We then write

Ho(U; F) = lim #o(K; F).

<
Kl

A partial answer to this question is known as follows.

If K and U are respectively a compact and a non-void open subset
of B, we say that K is a @-Runge compact subset in U if K is contained
in U and the image of #,(U; F) in (K ; F') under the natural linear
mapping #o(U; F) - #o(K; F) is dense in #,(K; F). Then, if every
compact subset of U is contained in another compact subset of U which
is @-Runge in U, it is true that s#¢(U;F) is the required projective
limit. A simple instance in which every compact subset of U is contained
in another compact subset of U which is @-Runge in U is that when
U is &-equilibrated with respect to some one of its points &, that is
(L—2)é+ e U whenever e U, Ae C and |A] < 1. This is the case when
U = E and, therefore, the preceding considerations apply to +#4(H; F). .
In the finite-dimensional situation, the following facts are pertinent to
complex analysis in several complex variables. If K and U are respectively
a compact and a non-void open subset of C*, then K is said to be a Runge
compact subset in U if the image of # (U; C) in 2# (K ; C) under the natural
linear mapping #(U; C) — #(K; C) is dense in s#(K; C); in this case
we restrict ourselves to the current holomorphy type on C* for C-valued
functions. It is known that every compact subset of U is contained in
some Runge compact subset of U at least in the following noteworthy
cases: either U is &-equilibrated with respect to some one of its points
&, or else U is a domain of holomorphy; neither of these two cases containg
the other one as & particular instance. Apparently, it is a question ag
yet unanswered in the literature whether every compact subset of a non-
void open subset U of C" is contained in some other compact subset
of U which is Runge in U.

The above considerations have an application as follows. It can be
shown that (K ; F) is complete in the sense of Cauchy under &, o;
and that 5#,(U; ¥F) is also complete in the sense of Cauchy under &, o,
in cage it is the required projective limit, this being the case if U satisfies
the indicated condition for compact subsets which are ©-Runge in U.
Completeness of #,(U; F) for an arbitrary open subset U of F remaing
unanswered if F is infinite-dimensional.
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INTRODUCTION

Cet article applique les idées de Vitu¥kin [24], [25] au cas des com-
pacts dans les espaces de Hilbert. On trouve en particulier dans [25]
la définition de la variation, dans [24] et [25] un résultat semblable au
théoréme 2, mais pour la norme du sup; enfin, dans [24] des applications
3 différents compacts dans des espaces ¥[K]:

Par une méthode différente, Warren [26], [27] & obtenu des résultats
de méme nature en norme L? (exposés aussi dans Lorentz [14]) et Lorentz
[14] un résultat moins général mais plus préecis que la proposition 5(*).

Voici 1a nature du probléme étudié. Soit K un sous-ensemble d'un
espace normé H, soit W une variété unicursale de dimension % et de degré
p, i.e, Pimage de R* par une application P/@ ol P et § sont des polyndmes
de degré p & coefficients dans B et R respectivement, soit enfin ¢ > 0.

Supposons que W approche K & & prés, i.e. VoK d(z, W) < & Cette
situation mn’est possible, K et & étant donmnés, que si k ef p sont assez
grands (par exemple si p =1 la (k+1)-8me épaisseur de K, cf infra,
devra &tre inférieure & ). Il 'agit de démontrer des inégalités qui traduisent
ce fait.

Exemple. B = R? norme euclidienne ou norme du sup, K = [0, 1] X
x [0,1], & = 1. I suffit alors que p > 1/s: on pose P,(t) =%, P, est le
polyndme de degré p qui vaut (—1) au point & (0 <j < p). Jignore
si ce résultat est optimal, mais on démontre qu’il existe C >0 tel que
p > Cfe. Cest un cay particulier des résultats de Vitulkin, Lorentz eb

(*) Insistons sur le fait que ni article de Lorentz, ni ceux de Warren, ni le
présent ne retrouvent complétement les résultats de Vituikin comme cas particulier
contrairement 3 ce qu'un examen superficiel peut laisser croire.
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