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1. The theory of countably modulared spaces was started by [1].
Tn that paper the notions of a countably modulared space and of a uniformly
countably modulared. space were defined, and investigated in case of
atomless finite measures amd purely atomic infinite measures. Also the
problem. of equality of these two spaces was solved in the above case.

Next, the theory of countably modulared spaces was developed
in [3] and [4]. There are considered countably modulared spaces and
upiformly countably modulared spaces defined by means of families
of non-negative measures and by means of various sequences of pseudomo-
dulars. The regults of [3] generalize thoge of [1] concerning finite atomless
measures, : i

In thig paper we shall deal with countably modulared spaces and
wniformly countably modulared spaces defined by means of families
of infinite purely atomic measures. The problem of equality of the above
two spaces is investigated.

1.1. Tn the sequel the following notations and terminology will be
used:

Let u real linear space X be given and let o be a functional defined
on. X with values 0 < ¢(@) < co. Thiy functional will be called a modular,
if it satisfies the following conditions: '

Al g(w) =0 if and only if & =0.

A2, p(~—m) = g(a).

A3, o(an-+fy) < o(@)+ o(y) for every a, f>0, atf =1.

If in place of A.l, o satisties only the condition ¢(0) =0, then ¢ is

called & pseudomodular (see [2]). . .
By a g-function we understand a continwous, non-decreasing function

¢(u) defined. for u >0 and such that ¢(0) =0, @(u) >0 for « >0 and
@(u) — oo ag %~ 0o,
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Let p; be g-functions. In the sequel we shall often make use of the

following conditions:
' (@) @;(u) are equicontinuous at u = 0;

() for every index ¢ there exist positive constants 1, By ¥y such
that for every u>d; and %> ¢ the inequality g, (A,u) << B0, (w) holds;

(v) there exist positive constants &, ¢, u, and an index 4, such that
pi(ow) < & gy (u) for w2z uy and i3 4y

(3) for every ¢ >0 there exist numbers v, > 0 and a, > 0, depending
on i, such that ;(ou) < ep;(v) for 0 < a< a,, u > u, (see [1] and [27]).

1.2. The countably modulared space X, and the wuniformly countably
modulared space X, ave defined as follows. Let g ¢ = 1,2,... be
a sequence of psendomodulars in a real linear space X, and let gi(w) =0
for all ¢ imply & = 0. First, we define the modulars

(> 1 ; .
o) = D 5 T2 o) = swem),

d=1
and then we define the spaces

X, ={z: 0(dr) >0 as 10, veX},
X,y = {@: 0o (M) - 0 ag A0, eX}.
In [1] the problem under which conditions the identity X, = X

holds was investigated. Two cases were considered.
In the first case, the psendomodulars are defined ag

(1) e(@) = [oi(le@) du,
B

where 4 i3 a finite atomless meagure on a o-algebra & of subsets of a set
B, and X is the space of ail p-measurable functions defined on 1.
In the second case, the pseudomodulars are of the form

@ (@) = ¥ op(4),
Faa )

where X :i.s the space of all Teal sequences (or real bounded sequences),
and {m;} is a sequence of positive numbers such that lim inf w; >0

. For0
(or lim o,
7—>00 r ‘

=0 and 3w, = oo for a sequence of indices {3.h
r=]

1.3. A psendomodular more general than
[3] namely

(3) oulw) = sup [ ,(|o(t))) du,,
B

(1) was considered in
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where {«,} is & family of non-negative measures on &, and <7, where
g is an abstract set, In this case the following two properties of the family
{u,} are needed in order to investigate the problem of the identity X, =X,:

(wb.) The family of measures {u.} is called uniformly bounded, it
there exists a constant K > 0 such that x4, B < K for all v

(e) The family of measures is called equisplittable, if there exists
n > 0 such that for any sequence of numbers e, 0 for which &, < 5 and
eppafer s d for all k, there exist constants M > 6 >0 and a sequence
of pairwise disjoint sets 4, «d satistying the condition de, < sup p, 4, < Mey,.

The following theorem holds (see [31): 4

If the family of measures {u.} possesses the properties (w.b.) o'md (.e)
and if the p-functions @, savisfy conditions («), (B), and (3), then the identity
X, =X, holds if and only if o, satisfy condition (v).

In case when I =9 u {r,}, where 7,¢7, is a topological space,
a sequence of pseudomodulars {g;} may be defined as follows (see [4]):

(4) eufo) =Tim [ g;(|(1)]) dp.
or, equivalently, T

(4 oi(@) = int sup [ (o)) dp.,
' U U 3

where U runs over the seb of all neighbourhoods of 7, in 7.

In this case, in ovder fo investigate the identity X, = X,, the
family of measures {u,; must possess besides ’.uhe-proll)e.rty (u.b.), the
following property (t.e.) called topological equisplittability: o

(t.e.) The family of measures {u,} it called topologically equisplittable

in 77, if there exigts 1 > 0 such that for any sequence of numbers s 40

satisfying the inequalities e, <19, &pq/er < 3 .for .all I, there exist eonstﬁptﬁ
M=08>0 and a sequence of pairwise disjoint sets Aze & for whic
Ogy, < Th—;l-,urA,c =, May,.

T

The following theorem holds (see [4]): ‘

If the family of measures {u,} possesses the properties (11.10.)h<7m'¢3Z (t;_at.)
and if the p-functions ¢, satisfy aondit'ﬁolﬂs (), (ﬁ,)’_ and (), then the identity
X, = X, holds if and only if ¢ satisfy condition (v). @

Tt is eanily seen that if we take in 7, the coargest 1;0];)010g‘y,d ﬂe;lg
the pseudomodulars (4) ave reduced to the pseudomodulars (3), an
property - (t.0.) iy identical with the property (e). o |

1.4. Now, lel us consider the case of purely atomic ‘flmte Itne.sa.su;ee;
defined in the following manner by means of & non-negative matrix (G
containing no column consisting of zeros only:

(6) Yl = E“W for A = {r}e & p@ =0.
T


GUEST


54 J. Musielak and A. Wagzak

In [3], 5.1, there are given sufficient conditions in order that the
family of measures {u,}, defined by (5), be equisplittable.

Also in [3] and [4] there are given examples of matrices for which
the respective families of measures bossess property (e) or (t.e).

2.1. Now, we shall investigate the case of a family of infinite atomig

measures {u,} defined by means of formula (5). Then the preudomodulary
(3) are of the form

(6) 0(@) = sup > a,p,(1t,)).
N pem]

Here, the following conditions will be of use in place of 1.1 (B) and (v):

(') for every index i there exist positive congtants Aty iy 9y such
that for every w<9; and % >4 the inequality e;(1,u) < Bign () holds;

(') there exist positive congtants ky ¢, wy and an index 4, such that
@;(cu) < ke, (u) for 0 << u << u, and ¢ = 1.

2.2. The following conditions for the identity X, = X, will be

proved now in case of pseudomodulars (6):

TEEOREM 1. Let lim inf Cagy >0 for a fived ny. If the p-functions
s satisfy conditions (a) amd (), then X, = X, -

Proof. From (v) we conclude that there are positive congtants
ky 69, uy and an index %y such that g, (w) < kqaio(cou) for 0 < o << uy, 43 4,.
Let #eX,; then there are 4 >0 such that g,(4,3) < co for all ¢, Hence

lim @i (At,]) = 0 for each %,
V300
and so

lim g, (%;]2,]) = 0.

By continuity of ¢;, 1, > 0 ag » - oo, and 8o {t,} is bounded. Taking

A su@mgntly small, we have |1,| < u, for all ». Hence @ (Af)) < by, (colt,])

for ¢> 4, and all v le. o,(x) < ko, (60 Az) tor i > t. Thuy X, = Xy

Tmoimr 2. Let us suppose that there emists q sequence of indices {v;}

such thatjél‘ Ongyy = 00 for a fized indew n,, and sup @y, << M for all j, where
n

M > 0is a constant. Let the p-functions g, satisfy (B') and (3). If X, = X ’
then @; satisfy (). : ‘ “

Pr.o of. Let Us suppose X,= X,y but for every 1, o, 4, >0 and
every 1, there exist 0 <y g % and ¢ >4, such that wi(cw) = ke, ().
Glzﬁnt;i >0, wechoose ¢ = 2%, Then there exist 4,, ,, . > nand Uy 1 S 01 [m
su at ” o

~k
(7 ‘Pin.m.k(z un,m,k) >2k‘771.(un,m,lc)

icm°®
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for mymy b =1,2,... Now, we define an increasing sequence of indices
my, a8 follows. We choose m, so large that m, > 1/9, and @1 (1/my) < min
(1,1/2M), and we pub u; =w, ,. Let us suppose the numbers
Myy Mgy « oy My.y 46 defined in such a manner that ¢, (1/m,) < 1, m; >1/9,
and @ (1/my) << @y (), where u; = Wimyiy = 2,3, ..., k—1. Then we
take my, so large that @, (1/my) < min (1, 1/2°M), m, > 1/9; and g, (1/m,,)
& Pppey (Up.1)y ADA WO PUL 2y == Wieymyte- T @ (Ure) < g (1f10) < @y ()
for o =2,3,... :

We show now that theve exists a sequence 4., 4,, ...
disjoint sebs of indices such that

of pairwise

1
9k—1

1
(8) i SUD o Ay () <
. -~ n

for all %. Tt is suificient to construct one set 4, = {v;, ¥y, ++-} in such
a manner that v, is arbitrarily large. Let »; be fixed. We shall prove
indirectly that such a set A4, exists. In other case, there are three possibil-
ities:

1° the inequality

m 1
(9) sup Z a/m/r‘Pk () < 57::'

B pml

holds for all sequences {j,} and all m > 1;
2° there is o sequence {j,} and m > 1 such that (9) holds, but

T 1
(10) SEPZ a’m'y-r(Pk(uk) > 2k—1 H

3° (10) holds always. } '
In the case 1°, wo take in (9) j, = j;+(r—1) and m — oo, and the

g ot
asyumption Y Uy, = o0 yields a contradiction.
i1

In the case 2° there exists an index n = n; such that

m 1 me-1 1
%) .t y W) > —mm
Z Uy, o fr(p " (‘rll/k) S -“2"7‘5' and. s a'"w, (pln( Ic) kT
Pasl
P ], .

Hence ayp, i) >1/2%, and so

Ty

1
3170; M%( 1 ) = Moy (u) 2 “”k"m,,.ﬂ”’ﬂ(uk) > 5%
-

my,

a contradiction.
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In the case 3°, the contradiction is obtained as in 2°, taking m+-1 = 1o
Now, we define # = {1,}, where

uy,  for ved,, k=1,2,..,
0 elsewhere.

4

Then
i=1 00
0:(4:%) < sup 2 Ay (A y) -+ sup ZMVL-A/ﬂV'i(}'i’M’]r) .
el L T

But, by (8), the first term at the right-hand side of the above inequality
is less than or equal to

Q: 1) (A u,)

2 - Pre (uk)

o0
and the second one iy less than or equal to /3,57 297H oo, Hence
. (B
0;(A;%) < oo, ,

Let us take in (3), & = ¢/20;(A,), and let A; >0 be 50 small that
A< 2y and Ay < t#, for all %; this is possible because wy, <z Ljmy,. Let
¢ = 0/20,(2;%) > &; then uy > w, and so Au, < w, for all k. Hence, if
0 <1< a.l;, then

00
i) < €'sup Y, Ay (Bifu]) = & 0 (Aa) = }o.
o k=]
Hence zeX,. Now, by (7) and (8),
@ik’mk,k('Z"km) = sup MﬂA‘k(pik,mk’h (@ u) > 2%y () sup e > 1,
n N

and so @ ¢X, . Hence X, s 2 o2 @ confradietion.
Let us remark, that the results of 3.2 and 3.3 in [1] follow from
our theorems 1 and 2 if we put a,, = w, for My =1,2,..;in case of 3.3,
00

00 N
the assumption D o, = oo must be replaced by @y, = oo, where
k=1 Pl

lim @;, = 0, which was not mentioned in [1].
o0

Theorems .1 and 2 imply the following .

TaroREM 3. Let us suppose that there ewisis sequence of indices {v}
such that 7]32 Uy, > 0 for o fimed mdea.s g, aNd SUP Uy, < M for oll §, where
M >0 is o constant, Let the p-functions g, sati:fy conditions (), (B') and
(8). Then X, = X,y if and only if o satisfy (y').

2.3. The results of 2.2 may be proved also if we replace the pseudo-
modulars (6) by means of (4), where the measures are given by (8).
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