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On osculating spheres to rectifiable curves

by R. KRASNODEBSKI (Wroclaw)

1. Introduction. In this paper we are concerned with k-dimensional
spheres §* which osculate the rectifiable curve in an n-dimensional
Euclidean space E" (k << n). There are two schemes in which the definition
of the osculating sphere may be expressed. In one of them, say I, the
definiens of the definition contains such a notion as order of contact. In
the other, say II, the definiens contains information as to the way in
which the osculating sphere is to be constructed. In the last case the
definition may be called a constructive one.

The existence of the osculating sphere which has been defined
according to scheme I does not depend on the regularity of the rectifiable
curve: it is sufficient to assume that the curve differs sufficiently little
from a spherical curve. A more precise formulation of this statement
is contained in Theorem 1. We assume that the curve under consideration
is rectifiable because this assumption enables us to use the notion of
order of contact in the classical sense.

In considering differentiable curves the following problem arises:
what is the order of contact between the osculating sphere and the curve
at the inflexion points. This problem for ¥ = n—1 has been investigated
by Rachwal in [5],[6] and [7] under the assumption that the curve
is of eclass C,,,.

The most natural constructive definition of the osculating sphere
is the following.

Let P,,» =1,2,..., denote the set of k42 different points p}, ...
ooy P2 on a curve C and let S8* be the sphere (possibly the k-dimensional
hyperplane) through pl, ..., p**?; let lim P, = p mean that for every

j=1,...,k4+21lim p! = p, where p is a point on the curve. The symbol

P, will stand also for the simplex (which may be degenerated) with
vertices p!, ..., p¥*t%. The limit sphere, if it exists, of the sequence {S¥}
of spheres described on simplices P, such that lim P, = p will be denoted

by 8.



202 R. Krasnodegbski

DEFINITION 1. If Sfp, coincide for all sequences {P,} such that
lim P, = p, then the common limit of all sequences {S¥} is said to be

P00 ‘

the osculating sphere S¥ to C at p.

In the case of k¥ =2, n = 3, Schwarz [8] has shown that if (i) the
equation r = r(t) of the curve is of class C;, and (ii) the curvature and
torsipn are different from zero, then there exists an 8} at p. The result
depends on his theorem [8] in Advanced Calculus. By using Schwarz’s
theorem and applying his procedure one can obtain the length of the
radius of the osculating sphere S* to the curve € in E* (k < n) under the
assumption that the radius vector r = r(¢) of C is of class C;,, and that
the curvatures »,, %,,..., #, all exist and are different from zero.

Definition 1 may be modified by refusing, for example, the existence
of the common limit of sequences of spheres {S8¥} for all sequences {P,}
tending to p. Such a modification can be made in many ways and the
respective osculating spheres exist under the respective assumption as to
the regularity of the curve. Definition 4 and Theorem 2 give an answer
to this question. We assume that the equation r = r(s) of the curve
for which the osculating sphere S* (i. e. the sphere according to Definition
4) is constructed at s = 0 has at s = 0 a derivative of (k- 1)-th order
in Denjoy’s [1] sense. The proof of Theorem 2 is based on Lemma 1, which
is a generalization of Schwarz’s theorem. The Example in Section 5,
which may be easily generalized both to arbitrary k¥ and to n (k < n),
illustrates the necessity of the omission of some sequences {P,} to ensure
the existence of the osculating sphere 8% for curves satisfying the assump-
tions of Theorem 2.

One can give another modifications of Definition 1. Let P,,» =1,
2, ..., denote the set of k different points (p!, ..., p¥) on the curve and
let L"!(p) be the (n—1)-dimensional hyperplane, if it exists, through
p which osculates the curve. Lim P, — p is equivalent, as previously,

V=»00

to lim p! = p,j =1, ..., k. The sphere (possibly a k-dimensional hyper-

plane) through p!, ..., p* tangent to L"~*(p) at p will be denoted by S.*.
The common limit sphere of the sequences {S.} for all sequences {P.}
tending to p, as » — oo, is said to be the osculating sphere 8% to the curve
at p. We could require the existence of the common limit sphere for some
sequences {P,}. ) _

Jarnik [4] gave eight definitions of the osculating circle§ to the
plane curve. They are all expressed in the spirit of the above modifications
of the classical definition. For each of his definitions he found necessary
and sufficient conditions determining the regularity of the curve for
which the osculating sphere exists. Fudali [3] generalized some of Jarnik’s
definitions for ¥ and n arbitrary. He sought sufficient conditions for the
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curve for which an osculating sphere S* would exist. In his definitions
points p!, ..., p**? tend to p maintaining a special order. The radius
vector of the curve should have the (k+ 1)-th derivative at p and satisfy
some geometrical conditions which, together with the previous assumptions,
are weaker than the fact that the radius vector under consideration is

of class Cy,,.

2. Scheme I. Let the arc s of the curve C: r =7 (s) belong to an open
interval U containing zero. Choose the origin in E" in such a way that
it coincides with the point on C for which s = 0. Thus we have (0) = 0.
Moreover, suppose that »(s): U—~E" is a 1—1 function. Points of
r = r(s) will be denoted by p(s) except of p(0), which we denote by p.

DEFINITION 2. A k-dimensional sphere §* is said to be the osculating
sphere S¥ at p to the rectifiable curve r = r(s) if: (i) p lies on S* and (ii)
lim% = 0, where d(s) is the distance from p(s) to S*.

By a k-spherical curve we mean a curve which lies entirely on a k-di-
mensional sphere.

THEOREM 1. The osculating sphere S% to the rectifiable curve r = r(s)
at p exists if and only if

(1) r(s) =r*s)+p(s),

where r = r*(s) is a rectifiable k-spherical curve and

@) 1im 2% _o.

k+1
3—>Os+

Proof. Suppose that »(s) may be expressed as in (1) and the curve
r = r*(s) lies on a sphere S*%. The distance d(s) of p(s) to 8* does not
exceed |p(s)|. Hence it follows from (2) that the first part of the theorem
is true, i.e. 8* = §%.

Let us now assume that there is an osculating sphere 8% to r = »(s)
at p. Project the curve perpendicularly on the hyperplane E*!' which
contains S%. We obtain a curve » = r,(s) and we have r(s) = 7r,(8)+p,(s).
Then project the curve » = r,(s) on the sphere S¥ along its radii. We
obtain a k-spherical curve r = r*(s), obviously rectifiable (both projec-
tions are analytical). Therefore we have 7r,(s) = r*(s)4 p.(s) and

r(8) = r*(s)+ p.1(8) + p:2(8),
where
(3) lpL(8)+ p2(s8)] = d(s)
satisfies (ii) in Definition 2 by the existence of the osculating sphere 8%.
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We now verify (3). Denote by p,(s) the projection of p(s) on E*+!;
p;(s) may be defined as a point of contact between E**' and a (n— 1)-di-
mensional sphere 8*7!, with centre p(s). We distinguish two cases:

1° Let p,(s) be different from the centre of S%. If p,(s) lies on 8%,
then we have p,(s) = 0 and obviously |p,(s)| = d(8). If p,(s) does not
lie on 8%, let us enlarge the radius of 8"~', without changing its centre,
till it reaches a point of contact with S%. This point, say p*(s), belongs
to the curve r*(s) defined above. In fact, points p,(s) and p*(s) both
lie on a radius of 8¥. This is because p,(s) is the centre of all k-dimensional
spheres which are sections of E**! and (n— 1)-dimensional spheres 8" !.

From our construction we have: p,(s) = p,(s)p(8), p2(8) = p*(s)p,(s),
p1(8)-p2(s) = 0 and dist (p(s), p*(8)) = d(s). Thus if p,(s) does not lie
on 8% (3) is also valid.

2° When, for some s, p,(s) and the centre of 8% coincide, we take
a sufficiently small interval U’ < U containing zero such that for se U’
dist (p, p(s)) is smaller than the radius of S%; then the construction from
1° is admissible also in this case.

Consequently we define a vector function p(s) as equal to

P1(8)+ pa(8).
And this is the end of the proof.

3. Preparatory lemmas.

LEMMA 1. Let fi(t), ..., fry1(t) be continuous functions in an open
interval U containing zero and such that

t
(i) limﬁtlL-h)- = a,, where |a,| < oo, h =1,...,k+1,1 <], <, <...
0
vor < lyyy; moreover, let
(ii) {t}, ..., t¥*?} be such a sequence of k+2 values of t in U that for
each v =1,2,..., &, ..., t“*% are different;
(iii) lim # = 0 for each j =1,2,...,k+2;

(iv) there ewist mo subsequence {v} of {v} and no pair iy, jo (io % jo)
fto
for which }imé; =1;

(v) at least for one index h,a, = 0;

then

(4) lim ;17" =0,

y—-00 »
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where
1 fl (till) s _fk+1 (tllf)
1 1> 12
PR G R L
1 fif*?) o i (877
and
14 (B)? By
14 () (B3y+?
' 1 fk+e (tk+2)z (t7:+2)k+1

Proof. We consider two cases:
1° # # 0 for any pair j, ». 4, is the sum of the following components:

Freedpdr ffl(,tfl) ---fk+1(tzk+1), & = :tl’

where j,,..., jx,,i8an arbitrary permutation of the fundamental permu-
tation 1,2,..., (k+1). Vandermond’s determinant V, is the product of
(k4+1)(k+2)/2 factors:

A

(5) v,=¢ [J] @—t, e=1+1.

1<h<i<k+2

Having fixed a permutation j,...j,,, we order, for simplicity, the
factors in (5) as follows. Set ¢! —¢* for some &’ as the first factor; then
take (#12—t*")(t)2—1¥") for some R'', b’’’ as the second and third factors;
then set three factors

(e — ") (47 ) (o — 1)

for some RV, bV, V! and so on. Such an arrangement of all the factors in
(5) is obviously possible. In the quotient Ah' |V, we divide both
the numerator and the denominator by

tfl (ti2)2 . (tjk"'l)k“.
Then the denominator is a product of (k+1)(k+2)/2 factors of
the form 1 —¢#/t* and the numerator may be expressed as follows

CAEY LD S

1 (tiz)z (t7'k+1)k+1’

Ik

(6)

e = +41.

From (i) and (v) we conclude that (6) converges to zero as » - oo and
from (iv) and (ii) we see that the absolute value of every factor 1—¢/t*
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in the denominator for every » is greater than a positive number. Thus
in this case (4) holds.

2° ## — 0 for some j and ». If there is a finite number of pairs j, » for
which ¢ = 0, then the reasoning in 1° remains valid. If it is not the case,
denote by {»'} the subsequence of {»} for which # = 0, where j is fixed
and by {A’} and {V}} the corresponding subsequences of {4,} and {V,}.
In virtue of f;(#) = 0,7 =1,...,%k+1, and since for any index »' there
is one and only one upper index in . for which t/. equals to zero, we have

f1(t)) Jen(t)

-------------

HETYY o fun 7Y
HETY o fe (BFY)

HET) o fu (B

and
1t () ()"
7 —1 j—1\a 7 —1\k
R R T P B S 1 ) )
A I (7 R 2o ol
AR Ak (i

By similar arguments to those in 1° one can easily prove that in
this case lim A47./V7. also equals zero. Thus, for all subsequences for which

»'—»00
lim #, = 0, formula (4) is valid.

LeMmA 2. Let {P,} and {P,} be two sequences of m-dimensional simplices
in E*; let 8™ ! and 8™ be the spheres described on P, and P, respectively;
let R, and R, be the radii of 8™ ! and 8™, respectively. If

(i) the edges d,;; of P, and d,;; of P, (i,j =1,..., m+1), joining

two different vertices A;, A, and A;, A; of P, and P,, respectively, tend
to zero as v — oo;

(ii) the edges of P, are related to the edges of P, in such a way that
lim d, ;/d,;; =1;
y—>00

(ili) there exists a limit R of the sequence {R,};
then there exists a limit R’ of the sequence {R,} and R'=R.
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Proof. The radius R, of 87! is a function of m(m+ 1)/2 edges

of P,. By using Theorem II in Dimensional Analysis [2] we may express
R, as

d. .
R, =9 (—"‘ﬁ) d,
dp_lz ,12 9
where ¢ is a positive continuous function of m(m+1)/2—1 arguments
Ay3/yzy Bora| oz -5 Bymms1/d,,2 . From (iii) we see that {R,} has a

limit B as v >oo0 and R is the radius of S™'.
As for B, we may write that

’ d:, 17 ’
(M R, =9 (——’) d,-

7
dﬂ,12

Now multiply every argument d, ;/d, ,, of ¢ in (7) by d,,, d, ;;/d, ., @
and d,,, by d,,,/d,,,. Then we obtain

R: —¢ (d;,ij dv,lz dv,i]') d;,lz d
’ dv,i]' d:',lz dv,12 dv,lz 2

v,1j

Thus it follows from (ii) and (iii) that there exists a limit of {R,}
as » - oo and that lim R, =lim R, = R.

4. Scheme II. The notations from the beginning of Section 2 remain
valid. As in section 1, denote by {P,} the sequence p(sl), ..., p(s¥*?) of
k+2 different points of r(s) (» =1,2,...). The same symbol P, will
denote the simplex (which may be degenerated) with vertices p(s), ...
...y P(8¥7?). In what follows we only consider sequences s’,j = 1,..., k42,
such that lim s/ = 0; thus lim p(s/) = p also always holds.

1—>00

DEFINITION 3. The sequence {P,} is said to be normal if for any subse-
quence {P,} of {P,} and each pair (i, j,) lim sie/sfo -« 1.

DEFINITION 4. If Sfp, coincide for all normal sequences {P,}, then
the common limit sphere of all sequences of spheres {S¥} is said to be the
osculating sphere S¥ to r = r(s) at p.

THEOREM 2. Suppose that the radius vector r(s), where r is the arc of
a rectifiable curve C in E", can be expressed in a neighbourhood of s = 0
wn the form

(8) r(s) = q(s)+p(s),

where

" k41
q(s) =rog+rs+rsit. 8t



208 R. Krasnodebski

71375y ory Ty O independent vectors and Hm% = 0. Then there exists
80

at p, i e. at the point for which s = 0, an osculating sphere 8% and it coincides

with a k-dimensional osculating sphere S'* to the algebraic curve r = q(s)

at p.

Proof. 1° 'Choose in E® an orthonormal coordinate system with
basic vectors e,,e;, ..., e, and origin at p and such that », = aje,,
r, = ale,} aley, ..., 1., = ;. €,+ ... +afTle,,,, where owing to the
independence of r,,7,, ..., 7, we have aj-al-... -aftl 0. Let E**! denote
the space generated by e,,..., €., (or by r,,...,7,,,). The components
x(8), ..., #**1(s) of r(s) in the orthonormal coordinates are equal to

(9) a'(s) = ajs'+e(s), 1=1,...,k+1,
where &(s) = a8 +...4a. 5" +p(s)e, 1 =1,...,k+1, so that

(10) im 2 o, 1—1, . kL

>0 $

2° For any normal sequence {P,} there is a neighbourhood U, of
p on C such that all simplices P, whose vertices belong to U, are non-
degenerate. Indeed, denote by @, the perpendicular projection of P, on
E¥t!, If Q, is not degenerate, neither is P,. The volume of Q,, vol (Q,),
is equal to the determinant ¢|1 #'(s') ... #**1(¢)|,j =1, ..., k+2, where
¢ is a constant different from zero. Using (9) we obtain a determinant
with “double” columns except the first one:

vol (@,)
1 alsi+e(s})  az(s)+ ea(s)) TV + £ (83)
S| 1 st ensl) a3(83)2+ eq(s?) @IS 4 gy (83)
|1 aisit? - ey(sS*?) ag(sht?)14- eq(s)77) AT (85 H)

Thus ¢-! vol (Q,) is the sum of 2**! determinants with single columns:
¢! vol (Q,) = ajai...a;t} V,+A,,+A;,+ ...+ A1, where V, is Van-
dermond’s determinant of s!, s?,..., s¥*? and the remaining determinants
satisfy the assumptions of Lemma 1. Assumptions (ii), (iii) and (iv) are
obviously satistied. For each 4,,, h =2, 3,...,2"", the sequence I,
lyy -oey lpyy defined in (i) of Lemma 1 is the following: 1,2,..., k41;
thus assumption (i) of Lemma 1 is also satisfied. Further, each 4,,,
h=2,3,...,2¥"" contains at least one column like
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&(sh) ]

&(s3)

1=1,2,...,k+1)

& (s5*%)
which is the (I4-1)-th column in 4, ,. Thus again because of (,,l,, ..., l;,,)
=(1,2,...,k+1) in each 4,,, h =2,3,...,2¥", and in virtue of (10)
assumption (v) in Lemma 1 is fulfilled. Therefore, by use of Lemma 1,
we have

A
lim =2 —0, & =2,3,...,2%7,

v00 ¥,

‘Since V, # 0 for any » there exists such an index », that for » >,

vol (@,) > 0.
3° We have
iy _ j
(11)  lim p(s:) P('s’,.)
v [G(S))—q(8))]
T -9(82)—9(.811)_ sf—rs’; o
S R YT R Ly o RS

Let us divide the numerator and the denominator of the second
factor of the second term in (11) by s’ — &’. Then we see that this factor
tends to |r,|-! as » — co. From Lemma 1 in the special case where A,
and V, are two order determinants we deduce that the first factor tends
to zero as v —» oo. Thus

e(s)—e(sh)

12 ’ =
(12) e (5T — g ()
Hence
| r(sh—r(s) q(sH—q(s)  plsh—p(s)
(13)  dim @ | T P e —a) T g — )]

4° Denote by €' the curve r = q(s) and P, the set of points

p'(8Y), ..., p' (s¥1%) of C'. The directions of vectors p(si)p(s) and of vectors

14

P’ (s8)p’ (s7) for normal {P,} and hence for normal {P,} converge to the same
limit as » - oo. In fact, we have from (8), (12) and (13)

3 — Annales Polonici Mathematici XXIII
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a6)—ql) . rE)—rE)—phteld) . r)—r(s)
) I ) — @) 26— a(s) el —a(s)|
r(s)—r(s)  rish)—r(s)

T P E)—7 () 1qGH—q ()]

r(s;)—r(sl)
v—00 |r(.8£)—'r(3£)| ]

5° Through the midpoints of the segments p’ (s})p’(s)), i = 2, ..., k+2,
perpendicularly to p’(s,)p’(s]) draw (n— 1)-dimensional hyperplanes F.,(j).
The point of intersection of these hyperplanes for j =2,...,%k4+2 and
a (k+1)-dimensional hyperplane @, containing P, is the centre of the
sphere S.* described on P). The limit of {S8.*} as » > oo exists for all se-
quences {P)} and all these sequences have the same limit sphere S* with
centre, say o'.

Denote by F,(j),j =2, ..., k+ 2, the (n—1)-dimensional hyperplanes
drawn perpendicularly to p(s!)p(s?) through the midpoints of p(s!)p(s?)
and by G, the (k4 1)-dimensional hyperplanes containing P,. If follows
from (14) that for normal sequences {P,}

(15) lim F,(j) =lim F,(j), j=2,...,k+2,
and
(16) lim @, = lim G, .

The limit hyperplanes F'(j) and E*'! of the sequences {F.,(j)} and
{@,} respectively have two different common points o’ and p. Obviously
there exists one and only one k-dimensional hyperplane E* « E**! tangent
to the curve ¢’ at p. Thus any k vectors among the k- 1 vectors

1 i
m 16)—9() ’
roco |G(8;)— q(83)]

are independent. Therefore any %k hyperplanes among the k41 hyper-
planes F'(j), j = 2,...,k+2, and E**! intersect each other along the
line passing through p and o’. It follows from (15) and (16) that the limit
hyperplanes F(j), j =2,...,k+2, of the sequences {F,(j)} for normal
{P,} intersect each other in E*'! also along po'.

6° From Lemma 2 and (13). we conclude that there exists a limit S%
for every sequence {S¥} of spheres described on P, which are the members
of the normal sequence {P,} and that the radii of 8% and §'* have the
same length. Thus it follows from the arguments in 5° that the centres
of 8% and 8% coincide.

j=2,...,k+2,
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Definitions 1, 2 and 4 yield the same k-dimensional osculating sphere
S'* to the algebraic curve r = g(s) at p. Thus from Theorem 2 we have
the following

COROLLARY. The order of contact of O and S¥ at p is equal to k1.
5. Example (k¥ = 1, n = 3). Consider a segment C’ of the parabola

q(8) = e, s} e,s?

for which s < 5/8. The arc of C’' denote by o¢. Let ¢ = 0 when s = 0 and
6> 0 when s > 0. For different values of o, ¢, will stand for points
of ¢’. Consider two sequences of points on C': ¢y, Qusy --- and q_y,
g_yay --- Then construct isosceles triangles t, = ¢, b,¢;/,4,) and 7_,
=q 10 8-ty ¥ = 2,3, ..., such that

1 (1 1 1 1 )

v r+1 + »3 (»+1)3

(1) Q1/vbv = ql/(w+l)bv =4, = 5

and
Q—llrb-p = q—ll(v+1)b—v = §,;

(i) any quadruple b,, b,.,, b, b3 and any quadruple b_,, b_;. ),
b_(v1+2)p b_(+3p do not lie on the plane E* of C'.

The polygon q_,;,b_5 q_y;3b_3... o ... ba q1;3 b2 q1)2 is the desired curve
C which satisfies the assumptions of Theorem 2. The equation
r(s) = q(s)+e(s)
of C, where s is now the arc of C, determines the vector p(s). We show that

(17) 1im £6) _

8—0 82

0.

Consider the case s > 0 (for s < 0 the proof is identical). The vector
p(8) is determined by the points: p(s)eC and p'(s)eC’,i. e.

o(s) = ' (5)p(5).

The length of the polygon g, ... by ¢y3 bz 4y, is equal to Y 28, = 5/8.

Pam2
-Thus for s = 5/8 we have ¢, = p(5/8). Therefore the points p’(5/8)eC"
and g,,,<C yield the initial vector p(5/8) of the vector function p(s), which
then slides with its origin on C’ and its end on C as s decreases from 5/8 to 0.
Denote by s, the length of the arc of C (of the polygon) from ¢, to
4,5 1t is easy to see that s, = (»24-1)/»® (Fig. 1). Two sequences {1/»}



212 R. Krasnodebski

- and ,, where @, is the abscissa of p(s,) (or of ¢,,), are equivalent. Hence
919(3-) — lim 8,—'1/7
—oo  (8,)7 —oo  (8))?

Thus (17) is true for a special sequence {s,}. To show (17) for all sea
quences {8, } tending to zero, as » —» oo, we distinguish two cases:

(18)

Rommmmm— -
=
Q
a
KR
i

u
—— R
Fig. 1

1° Let 7, for all » lie on E* and let {s,} be such a sequence that
8, < 8,<83,+9, where s, = (v2+1)/+»* Denote by u, the length of the
segment g,,, P (¢,). The abscissas of p'(s,) and p(s,) are equal to s, = s,—u,
and z,— u, |cos a,|, respectively, where a, is the measure of the angle which

——

yields ¢, b, with e,. Further, we have
d, 1

._lfﬁ(s,)'-' o

Hence in view of 0 <'u, < 4,. we obtain

. u, . uv/(sv)2 1
19 lim—= _ —lim <
(19) i ) ey 6 <3z 6> 0,
and
(20) lim Y —o.

'—msp
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Thus
. ep(s) .. ep(s) .. (s,—u)—(x,—u,lc08q,)
Eﬂ (s:)ﬂ —’->°° (8,—%,)’ _’]’-’00 (8,—%, 2

(81_ m,) + uv(l_ lGOS avl) _

0.
(87_ uv)z

= lim

uv(l_ IOOB avl) =0

In fact, by (19) and because of a— 0, lim 2
r—>00 (8,'—16,)

By (17), (20) and in virtue of the equivalence of sequences {z,} and {1/»},
lim =& 0
00 (sv—u-)z B

2° If 5, ,— 0, < 8 < 8,4, 1. e if p(s,)€b,qy411), We proceed as in 1°

e p(s,

and we obtain lim -%g;)— = 0 also in this case.

For any s, |e,p(8)! takes its greatest value when 7z, lies on E2, Hence
or every position of 7, we have

lim e.p(s)

80 s?

=Oo_

The absolute values of the second and third coordinates of p(s) are
smaller than the absolute value of the first, a least starting from an s.
Therefore

e:p(s) _ ;. @P() _

800 s? 8—rco 82

0.

Thus we have shown that (17) is true.

Now define the position of 7, and the sequence {s},s?,s}} in the
following way. Let z,, for » even, be in any admissible position (see (ii)).
Take two points p(s;), p(s}) on ¢, b,, b, Qjr+1) sufficiently near to g,
and ¢y, respectively, i. e. so near that in some position of 7,,, the line
P(s;)p(s}) intersects g/, 10,1, 2t a point p(s,’). Then move s, into a new
position s} near enough to s,® in such a way that the circle S! through
2(8Y), p(s}), p(s}) has a radius greater than 2+ &, ¢ > 0. Such a displace-
ment of s,3 is possible for every ». Thus the limit circle of the sequences
{8}, a8 v — oo, does not exist, or, if it exists, it is different from 2, i. e.
from the radius of the osculating circle 8;. It is clear that the sequence
{P,} = {p(s}), p(s?), p(s})}, where » is even, is not normal, since we have
lim 8}/s2? = 1.
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‘To make our Example more instructive we can take a normal sequence
{PP}, for +' 0dd, and form a new sequence {P%®},»"” =1,2,3,..., which
contains {P®} and the {P,} just defined as its subsequences. {P$¥)} does
not yield, of course, any osculating sphere,.

I am greatly indebted to Professor 8. Golgb for the careful reading
of the manuscript of this paper and for the remarks which enabled to
improve the text.
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