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On the partial sums of certain analytic functions
in the unit dise
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The problem of determining to what extent a given property of
a power series is carried over to its partial sums has interested several
authors. G. Szego [5] has shown that all the partial sums of a function
regular and univalent in the unit disc are themselves univalent in |2] < 1/4
and the partial sums of a funection regular and starlike (convex) in 2] < 1
are starlike (convex) for 2| < 1/4. The object of this paper is to investigate
the partial sums of 2-valently starlike and 2-valently close-to-convex
analytic functions in the unit disc. Goodman [2] calls a function F(z)
=2+ ) a,2";1< q< p;p,q being positive integers, p-valently starlike

n=q+1

in 2] < lq, it F(2) is regular in the unit disc, satisfying for all » in a certain
interval p < r < 1 the conditions

H(r, 0) = Re{re" F' (ré*)[F (reé?®)} >0, 0<0<2x,
b 114

f H(r, 0)do = 2np.
0

Goodman [2] has also introduced a p-valently convex funection.

A function ¢(z) =2+ ) a,2";1< ¢<p;p,q being positive integers,
n=g+1
is called p-valently convex for [2| < 1 if ¢(2) is regular for [2| < 1 and if

there exists a ¢, 0 < p <1, such that for o <r<1, G(r,0) =1+
2m .

+Re{re?e” (re”) ¢’ (ré®)} > 0,0 < 0 < 2x and [G(r, 6)d0 = 2mp. Good-
0

man has further proved that if ¢(z) is p-valently convex in |2| <1,
F(z) = cz¢'(2), where ¢ # 0 is any constant, is p-valently starlike for
|2] < 1 and conversely. Umezawa [6] introduced the concept of p-valently
close to convex function as follows. A function f(z) = 27+ )'b,2" 1< ¢
< p, i8 called p-valently close-to-convex in |2| < 1 if there exists a p-valently
convex function ¢(z) in the unit disc such that Re{f'(z)/¢'(2)} > 0 in
|2| < 1 or alternately, if there exists a p-valently starlike function F(2)
in the unit disc such that Re{zf'(2)/F(2)} >0 in |[2] <1. In view of
Goodman’s result mentioned earlier, the two definitions are equivalent.
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In this paper we confine ourselves to the 2-valent case and prove that
the partial sums of a 2-valently starlike function of the form 22+ } a, 2"
are also 2-valently starlike for |2| < 1/6 and use this to prove that a similar
result is true of the partial sums of a two-valently close to convex function
of the same form. Our results are best possible.

We prove the following

THEOREM 1. Let F(z) = zz-}—g"Anzﬂ be a 2-valently starlike function
for \z] < 1. Then any partial sum 8,(2) = 22+ A32° 4 ...+ A,2" is 2-valently
starlike for |2| < 1/6 and the result is sharp.

Proof. Writing R,(2) = 4,,,2""'+4,,,7""*+... we have F(2)
= 8,(2) +R,(2),

(1) RelsS,()/8, () = Re{

#F'(z) 2R, (2)—zR, (2) F' (2) /F(z)}

F) F(2)—R,(2)
> Re{ﬂz_)} (1B () + | B (2)] LF (2) [ F (2)])

If we set 2F'(2)/F(2) = H(z), we observe that H(z) is regular in
2] <1,H(0) =2 and ReH(?) >0 for |2| < 1. Hence we have

(2) 2(1— [2])/(1+ |2]) < Re{eF"(2)/F(2)} < 2(1+ [2])/(1— [2]).

We have also the following estimate

(3) |IF(2) <r?/Q+7), r=[s]<L1.
By a lemma of Robertson ([4], Lemma 2) we further have
(4) 4, < (n+1)!((n—2)!3Y), n>2.
Therefore
(5) an(z” < IA'n+llrn+l+ |An+2|7n+2+ [
g (n+2) rn+1+ (n+3) ¢n+2+ .
3 3
= E,(r),

where E,(r) = r? {(1—r)“—1—4r—...~ (n;—l) r""}.

Again we have

(6) IR, (2)| < (R+1) A, 7"+ (n42) | Ay ol 7T .

< (n+1)(”§2) "t (n+2) (”?{3) R

< E,(r),
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where
E,(r) = 4r“{(1—r)‘5—1——5r-— pp— (ni—l) r”-ﬁ}_;_
+2r{(1—r)'4—1—4r—...—(n_gl) r”‘z}.
Also
(M) \F(2)| — |Bo(2)] = /(141 — By (r) = By(r), say.

It is easily verified that E,(r) >0 for »r =1/6,n>3 by actual
computation. Hence it follows from Rouche’s theorem that 8,(2), n > 3,
has the same number of zeros in |2] < 1/6 as F(z). Thus §,(z) does not
vanish in [2] < 1/6 except at 2 = 0, where it has a double zero.

Using the above estimates in (1) we obtain

A=r rB(+2EMA+n/A—r)
1+r) E,(r) 0,

for r = 1/6 and n > 5 by actual verification.

Since Re{28,,(2)/8,(2)} is a harmonic function for » > 5 in |z| < 1/6,
it assumes its minimum value on the boundary and hence Re {28, (2)/8, (2)}
> 0 for [2] < 1/6. Thus 8, (2) is starlike for » > 5 in |2| < 1/6. To show that
§,(2) is 2-valent in |2| < 1/6, we proceed as follows. As already shown,
8, (2) has just two zeros in |2| < 1/6, none.on [z| = 1/6 and Re{zS,(2)/
/8,(2)} >0 on |z| = 1/6. Hence according to a theorem of Ozaki [3],
8,(2) is 2-valent in the disc |2] < 1/6. The theorem is, therefore, proved
for n > 5. We now proceed to consider the cases n — 3,4. For n = 3
we have

(8) Re{z8,(2)/8,(2)} >

Re{28,(2)/83(2)} = Re{(2+34,2)/(1+4,2)}
= 2— {|4;32]/|(1+442)|}
> 2—{42|/(1—42))}.

Thus Re{28;(2)/8;(2)} > 0 for |2| < 1/6. If we choose any r < 1/6,
we have Re{z8,(2)/8;(z)} > 0 for |2| = r. Further for |2| < r, |1+4,2|
> 1—|Aq2| > 1—412| >1/3, since r < 1/6. Thus (1+A4;2) does not
vanish in |2| < r and so 84(2) = 22(1+4,2) has exactly two zeros for
|2| < r. Hence, from Ozaki’s theorem mentioned earlier, we conclude that
83(2) is 2-valent and starlike in |2| < r for any r < 1/6. Next we take
up the case n = 4. 8,(z) = 2*(1+A452+4,2%) and 8,(z) vanishes only
at 2 = 0 in |2| < 1/6, where it has a double zero. Indeed, |1+ 442+ 4,27
> 1—|4,|/6—|Al,/36 for |2| < 1/6. Since |4, < 4 and |4,] <10, it follows
that 14+ A,2+4,2* does not vanish for |2| < 1/6. Hence zSQ(z)/&(z)
is regular in |2| < 1/6 and so '

(9)  Re{s8,(2)/84(2)} = Re{(24+34a2+44,2%)/(14+ 442+ 4,2)}
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is harmonic in |2| < 1/6. We shall now proceed to show that the above
expression is positive for |2] = 1/6 from which would follow that it is
positive for |z| < 1/6 also, by the minimum principle for harmonic
functions. Again it is sufficient to prove that expression (9) is positive
for z = 1/6, for we can consider £2F(e2) instead of F(z), with a suitable
¢ such that |¢| = 1. Thus, we need only show that

(10) Re{(2+A45/2+4,/9)/(1+4,/6+4,/36)} > 0.
We have
(11) 2F' (2)|F(2) = (243432+ 44,224 ...)/(1+ 432+ 4,22 4...)
= 2+B,2+B,2?+..., say.
Since F(2) is starlike for 2| < 1, we have
Re{l+(B,/2)2+B,2%/2+...} >0 for |2| < 1.

Hence, by Carathéodory-Toeplitz’s theorem, we conclude (see, for
example, [1])

(12) |B;—B}/4| < 4—|B,|/4.
From (11) we obtain
B1+ 2A3 - 3.A.3,
B2+.443B1+2A4 == 4A4-
Hence B, = A; and B, = 24,—A;. So (12) takes the form |24,—
—bA%[4] < 4— |A,/2/4. We can, therefore, write
(13) 24,—5A34 = e(4—|442]4),
where |e] < 1. Using (13) in (10), it remains to prove that
Re { 2+ As/2+(5A3+ (16 — |Ag]2)) /72 }
1+4,/6-+(0A3+ (16 — | 4,]%) /288

This fraction, regarded as a function of ¢ is analytic for [¢| <1
because

2 _ 2 2 - 3
Ag | 54, n (16— |44]%) < |4, 4 5| A4+ 16— |4,
6 288 288 6 288
since |44] < 4. Thus the proof of (14) is reduced to that of the following
inequality for |¢] = 1, namely,
(15) Re|(u+ (16 — | 4,4]2)/72)(5+¢(16 — | 44/?)/288)} >0,
where we have set

(14)

<1,

w = 2+4,/2+543/12,
v =14 4,/6+5A2/288,
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Then the left-hand member of (15) \beconies
Re(u?)+ (16 — | A4[2)2 /14424 (16 — | A;5|?) Re {(u -+ 4v)e} /288
> Re(ut)+ ((16 — |4;2)/144)2— (16 — | 44|%)|u + 40| /288
= (|u+49|2— |u— 49|2) /16 + ((16 — | A4]2)/144)>— (16 — | 44|%) ju 1 40| /288
=T,T,,

where
T, = (lu44v|+ [u—4v])[4— (16 — | A4|?) /144,

T, = (Ju+4v]|— |lu—4v]) /4 — (16 — | 4,4|%)/144.
Noting that T, > T, we have only to show that 7, > 0. Now
lut+4v| = |6-+T4,/6-+54%/36],
|lu—40v] = |2+4,4/6].
Inequality (15) follows as soon as we show that
(16) |64 TA4/6+5A2/36]— |2+ Ag/6] — (16 — | A4]2)/36 > 0.

Putting 2+ 4,/6 = re”, we have 4/3 < r < 8/3 since |4,| < 4. Also,
for an arbitrary fixed » in the interval 4/3 <r < 8/3, v satisfies the
inequality
(17) vl < wo(r),

where y, () is determined by the equation |—2 4 re®¥| = 2/3, 0 <'1p < m/2,
that is, .
(18) cosyo(r) = (9724 32)/(367).

We can rewrite (16) substituting for A; as follows:
6 +7 (re®— 2) 4 5 (re®* — 2)2| — r— 1/9+ (r2— drcosp+4)/4 >0,
that is, -
36|12 — 137¢*¥ 4 5r2e*¥| 4+ 324 9r2— 36r(1 4 cosy) > 0.
Putting @ = — 9724 36r(1 -+ cosy), we have to show
36|12 —137re™ 4 5r2e*¥| > Q—32.
Also, since cosy > cosyy(r), we have
Q> —9r2+36r+ 972+ 32 = 360+ 32.
Let us set
@(r, Q) = (36|12 —137e™ | 5r2e*™|)?— (Q — 32)2
= 36%(25r¢+ 4972 144 4 240r% cos®yp — 267 cos p (12 + 5’r=))— (Q—32)2
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Remembering that = — 9?4 367(14-cosy), we can express ¢(r, Q)
in terms of r and @ alone by substituting for cosy and compute dp/3Q,
0*¢[0Q? as follows.

0p/0Q = 480(Q - 9r*— 36r)— 936 (124 5r%)— 2(Q — 32),
P2p[0Qt = 478 > 0.

Hence dp/dQ is an increasing function of Q. Also the value of dgp/dQ
for @ = 36r+32 is found to be —36072—72r+4+4128 >0 for 4/3 < r
< 8/3. '

This shows that ¢(r, Q) is a monotone increasing function of ¢ for
a fixed 7 in the interval 4/3 < r < 8/3 and so attains its minimum for
Q = 36r— 32. The condition ¢ = 36r+ 32, however, implies

cosy = (9724 32)/36r = cosy,(r)

in virtue of (18). In other Word_s, p(r, Q) attains its minimum when
|44 = 4. Hence putting 4, = 4¢, we have to show that

16 4 14¢™/3 4 20€**/9| — 12 4+ 2¢*/3] > 0,

which would imply (16).
Equivalently we have to prove that

(19) 127+ 216°+ 10 e*®|2— 9|3+ ¢¥|2 > 0.
The left-hand side of (19) is, on simplification, found to be

(37 cos 6+ 21)2 4289 sin2 06— 9(10+ 6 cos 6)
= 20(54cos? 4 75cos 0+ 32)
= 1080 (cos #+ 75/108)2+ 20 (32 — 752/216) > 0.

Thus inequality (19) holds and we have, therefore, proved that
Re{z8,(2)/8:(2)} > 0 for |2| <1/6. Also S,(2) has precisely two zeros
in |2| < 1/6 and none on |2| = 1/6. Hence S,(z) is two-valent in |2] < 1/6
by Ozaki'’s theorem. The theorem is, therefore, proved for n = 4 also.
To see that our result is sharp, we consider the function F(2) = 22/(1—z)
which satisfies the hypothesis of the theorem. The third partial sum
S4(2) satisfies 28;(2)/83(2) = 0 for 2 = —1/6. Thus, for the function
of our choice, S;(2) is not starlike in any dise |2| < r for » exceeding 1/6.
The proof of the theorem is complete.

THEOREM 2. Let f(2) = 22+ ay2®+... be 2-valently close-to-convex
relation to the function F(z) in |z| <1, where F(2) = 22+ A42°+... 18
2-valently starlike in the unit disc. Then any partial sum s,(2) = 2*+ agz2®+
+...4a,2" is 2-valently close-to-convex relative to the corresponding partial
sum 8,(2) =22+A32°+...+4,2" in |2/ <1/6 and the bound is sharp.
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Proof. By hypothesis, we have for || <1
(20) Re{f" (2)/F(2)} > 0.

Write f(2) = 8,(2)+7,(2) and F(2) = 8,(2)+R,(2). By Theorem 1,
we see that §,(z) is 2-valently starlike in |2| < 1/6, n > 3. Also, since
8S,.(z) has a double zero at z = 0, it does not vanish elsewhere in |2| < 1/6.
Therefore, for n > 3, Re{zs,(2)/8,(2)} is harmonic in |2| < 1/6,

#,(2) _ 2f'(2) Zf'(Z)/F(Z)Rn(Z)—ZT;(z).

(21) S.2) _ F(2) F(2)— R, (2)

If we write zf; (2)/F(2) = 2H (#), H(2) is regular in |2| < 1 and satisfies
ReH(2) >0 for |2| <1, H(0) =1. Hence we have

(22) Re{zf'(2)/F(2)} > 2(1—1)/(1+71),
Rf ()[F(2)l <2(1+7)[/(1—r), 7 =le] <1.

The estimates for |R,(2)| and for |F(2)|— |, (2)] given by (5) and (7)
hold. Also ([6], Theorem 2, Corollary 1)

la,| < (n+1)Cy, n =3,4,...,
and

(@) < (1) 1 |77 (mt2) @yl

Hence estimate (6) for |R, (2)| also holds for |, (z){. Using the above
estimates in

l&] 7o ()1 + [of' (2) [ F (2)] |1 R, (2)]

Re {25, (2)/8,(2)} = Re{zf’ (2)/F (2)} — |F(2)| — | R, (2)]

obtained from (21), and proceeding as in Theorem 1, we get
(23) Re{zs,(2)/8,(2)} >0, n>=5

for |2| = r = 1/6. This, of course, implies that inequality (23) holds also
for |2| < 1/6. The theorem is, therefore, proved for n > 5. Let us now
write

2+ 3agz+4a,224...

14+ A2+ A4,2214...

= 2+c¢,2+¢,224..., say.

#f'(2)[F(2) =

Then we have
c1+24, = 3a;,

(24)
c;+ Agc,+24, = 4a, etc.
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Again, since Re{zf'(2)/F(2)} > 0, for 2| < 1, we have, by Carathéodory’s
theorem (Bieberbach [1])
(25) lde,— | < 16— g2, el <4, n=1,2,...
We can also express

2+4+3A432+44,22+...
1+ Agz+A,224...

=2+4d,2+d,2%+..., say.

¢F' (2)|F (2) =

Then we get
Ay =d
(26) P
24, = dy+A,d, = d,+ d%-

Again, since Re {2F" (z)/F(z)} > 0 for |2] < 1, we get by an application
of Carathéodory-Toeplitz’s theorem referred to earlier

(27) [4d,— d;| < 16— |d,|?,
4| <4, n=1,2,...
This enables us to write:
(28) dd,—d} = £(16—|d,|%),
where |¢| < 1. Using (26) in (28), we can rewrite the latter as
(29) 84, = BAj+ (16— |4,4)%), el < 1.

We can now proceed to prove the case n = 4 of the theorem. Since
Re{#8,(2)/84(2)} is harmonic for |2| < 1/6, we have only to prove that
for 2| =1/6

(30) Refzs,(2)/8,(2)} = Re{(2+3ayz+4a,2%)/(1+Ag2+A4,2%)} > 0.

By considering ¢? f(e2) in place of f(z), with a suitable ¢ |¢] =1,
the proof of (30) can be reduced to that of the same with 2 = 1/6. Thus
we have only to prove that
(31) Re{(2+ a;/2+ 0,/9)/(1+4,/6 +4,/36)} > 0.

Using (24) and (29) in the left-hand side of (31), the proof of (31)
is reduced to that of the following

32) Re { 24 (e, + 2A,)/6+(02+A,20,+5A§/4+ e(16 — lAal’)/4)/36= -0,
14 A4,/6-+(5A3+ (16 — | 44])/288

where |¢| < 1.
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The denominator of the above fraction does not vanish for |¢| < 1
as we have seen in proving Theorem 1. Hence, the fraction on the left-
hand side of (32), regarded as a function of ¢, is analytic for |¢ < 1.
Thus the left-hand side of (32) is a harmonic function of ¢ in [¢| < 1 and
it suffices to prove (32) for |¢|] = 1. Putting

U = 2+4(c;+2A4,) /64 (ea+Agc, 1+ 5A3/4)[36,
v =14 A4,/6+5A42/288,

and proceeding as in the proof of Theorem 1, we find that the required
inequality holds, provided we show that

(33) |4 20| — |lu— 20| — (16 — | 4,4]%)/72 > 0.
Now we have, since [¢,| < 4, || < 4,
[+20] > (44 24,5/3+5A2/72|— (e, 6+ Ag|— c,])/36
> |4+ 24,[3+5A42/72|— |6+ 44]/9—1/9.

Also, |u—2v| < |6+44|/94+1/9.
So we have only to prove that

(34)  |4-+24,4/3+5A%/72|—2(6+4,)/9—2/9— (16— A4)[72 > 0.

Here again, arguing as in the proof of Theorem 1, we observe that
it is sufficient to prove inequality (34) when |44 = 4. In other words,
we have to prove that

|44+ 86/34106*°/9| —2(6+4¢®|/9—2/9 > 0,
that is,
|18 4 12¢* + 5e*®| — |6 + 46| —1 > 0.

The above inequality is implied by
(35) 186+ 124 5e?|2— (14 |6 + 4€()2 > 0.
The left-hand side of (35) is
(2308 0+ 12)%+ 1698in?0— (53 -+ 48 cos 6+ 4V (13 + 12 cos 6))
= 4(65+ 90c0s? 0+ 126 cos 6— V(13 + 12 cos 6)).

Now 65+ 90 cos?0 4 126 cos @ = 90(cos 0 + 7/10)2+ 20-90 > 20 - 90,
while V(13-+12cos 0) < 5. Hence inequality (35) holds and the proof
of the theorem for the case n = 4 is complete. Then we consider the case
n = 3. Using relations (24), we get

Re{28;(2)/85(2)} = Re{(2+ 3ay)/(1+4s)}
= Re{(2+ (24;5+ ¢;)2) /(1 +442)}
= 24 Re{c,2/(1+A442)}
= 2—{le,| /(6 — | 44])}
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for {2| < 1/6. Since |¢,| < 4, |44| < 4 this implies that Re{zs, (z)/Sa(z)} >0
for |z| < 1/6. This proves the theorem for n = 3. To see that our result
is sharp, we consider

f(2) = 28(1—2)4 =22+4224+1024+..., [7|<1.

f(2) is 2-valently starlike and hence 2-valently close-to-convex

relative to itself in |z| < 1. For this function 2s;(2)/sy(2) = 0 forz = —1/6.
Hence $4(2) is not close-to-convex in any dise |2| < R if B exceeds 1/6.
The proof of the theorem is complete.
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