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On integro-differential equations
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Krzyzangki ([5], [6]) considered linear integro-differential equations
of parabolic type and showed that the weak maximum principle known
for a linear parabolic partial differential equation can be extended to
the integro-differential equation. As a consequence he obtained a unique-
ness theorem for solutions of the first Fourier problem for the integro-
differential equation in an unbounded region. Some more general theorems
concerning a system of non-linear integro-differential inequalities of
parabolic type were proved by Lojezyk-Krolikiewicz and Szarski ([8], [9]).
Similar results for parabolic differential inequalities containing funectionals
can be found in reference [10].

In this paper we are dealing with the existence of solutions of the
first initial-boundary value problem for the following system of parabolic
integro-differential equations:
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We take advantage of well-known theorems on existence and Schauder
estimates of solutions of a single linear parabolic equation.

At first we consider a system more general than (0.1) containing
some operators B*u on the right-hand side. For bounded regions we
formulate two existence theorems. The proof of Theorem 1 is based on
Schauder’s fixed point theorem and is patterned on the proof given by
A. Friedman for a single semilinear parabolic partial differential equation
([4], p. 204). Theorem 2 is proved by means of the successive approxima-
tions method, making use of the Banach fixed point theorem. The latter
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256 H. Ugowski

method, ensuring uniqueness as well, is also employed to solve the Cauchy
problem for the system in question. The theorems mentioned above
involve as a particular case system (0.1).

Some of the results obtained for parabolic equations are carried
over to elliptic equations in section 6.

I wish to express my best thanks to P. Besala for suggesting the
problem and giving me valuable hints.

1. Preliminary lemmas for the parabolic case in bounded
domains. Let G be a bounded open domain of the Euclidean space E,,,
of the variables (z, t) = (2, ..., Zn, t), enclosed by two domains R, and Ry
lying on the planes { =0 and ¢{= T = const > 0 respectively, and by
a manifold § situated in the strip 0 < ¢ < T. The parabolic distance of
points P(z,1), P'(2',t') € E,,, is defined as .

n
AP, P') = (lo—a' P+ {t—t|)*,  where lo—a'| = | Y (w—ai2]”.
i=1

We shall make use of the definition of Holder continuity with ex-
ponent a, 0 < a <1, included in [4].
Let us introduce the following norms:

?

¢ ¢ ¢ 1 (P) —u(P")|
- P, el = y
lulo' = sup (PN, juls = lulo+ sup =T

n
(£ « «
e = [l + D) luadl?
i=1

n n
a G . [ G G .
lra = 1S+ D) Tualé + D) ol + 1wl (0 < a<1).
i=1

t,i=1

Denote by Ciiol@) (k= 0,1, 2) the set of all functions » for which
|4|#+a < oo. The following norms will also be needed:

e e [u(P)—u(P) v e N\, @
wlito = lulé + sup A= i = luh-o+; o

The set of all funetions » for which |u|§_o < oo (k=1,2) will be
denoted by Ci_of@). )

Suppose that for every point P of the closure S there exists an
(n-+1)-dimensional neighbourhood V such that V ~ S can be represented,
for some ¢ (1 <4< n), by an equation of the form

vy = h(a;l, vy i1y Lig1y veey Uny t) .
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If the functions » belong to C, (w =a, 1+a, 2+a, 1—-0, 2—0),
then we say that S is of class C,. If S € Cz4, and the derivatives hs, exist
and are continuous, then we say that 8 is of class Cayo; if, moreover, ks
exist and are continuous, then S is said to belong to class Czy,. For the
manifold S of class C, there exist a finite number of balls V* covering §
such that 8¥ = 8 ~ V¥ can be represented by the equation

(1.1) Ty, = h"(wl, vory Lig—1y Lipi1y voey Tny t)
where A* e C,.
Let v(x,t) be a function defined on the manifold 8 of class C.,.

Using (1.1) we can write the function v(x, t) on S* as a function of variables
(1) oy Bip—1y Bizt1y -rey Tny 1) in & certain region S¢. We then define

&
1]5 = max |v]5°
k

and we say that v e Cu(8) if [v]5 < oo.

A function ¢(x,t?) defined on the parabolic boundary XY= R,u §
is said to be of class Czi (@) if there exists a function @ e C;(,(G) such
that @ = ¢ on 2. We then define |p|gie = igf |®|Ssa. If 8 € Czpa, then for

any extension & of ¢, the derivatives @, Pz, D¢ are uniquely defined
(by continuity) on the boundary oR, of domain E,, and the definition
is independent of @. We denote these derivatives (on éR,) by ¢z, ¢z @1 (1)-

Let us consider the first initial-boundary value problem for the linear
parabolic equation:

(12)  Lu= D aii(®, tag+ D bil@, ug+o(@, )u—u = f(a,1),
i=1

1,7=1 —
(z,1) e G\,
(1.3) u(w,t) =@, ), (@,t)e.
By a solution of equation (1.2) we shall always understand a regular

solution, i.e. continuous in the domain @ and possessing in G\ X continuous
derivatives appearing in Lu.

The following assumptions will be needed:
(A) For any (#,1) ¢ G and & ¢ B, we have a(x,t) = aji(x, t),

D i@, Euk; > Kol§f  (Ko> 0).

Hi=1
(B) The coefficients of L and the function f(x,t?) are uniformly
Holder continuous (exponent a) in G.

(*) All the definitions stated above are taken from [4] (pp. 61-65, 180).
18*



2568 H. Ugowski

Then there exists a constant K; > 0 such that

(1.4) lagle ,  bald,  ldd < K,.

(C) The coefficients a;; are uniformly Hélder continuous (exponent a)

in G and belong to C;_o(8); b: and ¢ are continuous in G.
Thus for some constants K,, K; > 0

"
(1.5) 2 @il +2 |bilo -+ |G|o < K,, 2 |aijllls—o <K
: i,7=1

Now we state two lemmas included in [4].

LEMMA 1 ([4], p. 65). Let assumptions (A) and (B) hold true. If
@ € Coray 8 € Caro and Ly = f on 0R,, then there exisls a unique solution u
of problem (1.2), (1.3), and furthermore u € Coro(G). Moreover, there exists
a constant K depending only on K,, K,, a and domain G such that

|wlsa < K (IplsiatIfle) -
LemMmA 2 ([4)], p. 191). Assume that S € Corqu ~ Cay and that (A),

(C) hold true. Let f(xz,t) be a continuous function in G vanishing on ¢R,
and let w(x,t) be a solution of the problem

Lu=f(z,t) m \Z, u=0 on 2.

Then for any B, 0 < B <1, there exrists a constant K' depending only
on B8, Ky, K,, K; and G such that

|’“|1+ﬁ Kl|f|o .

Remark. From the proof of this lemma follows the existence of
a constant K depending on the same parameters as K' and such that

ul& < KPR where F =G~ {(z,t): 1<}, 0<t<T.
Tﬁ

Now we shall prove some lemmas on functions defined by an integral.
Put G, = {: (#,t) e G\S} and denote by m the n-dimensional Lebesgue
measure.

LEMmA 3. If the manifold S is of class Czyq, then there exists a constant x
depending only on 8 and such that

m(G\Gy) < =[t—1| .
Proof. Denote by W* any (n+1)-dimensional cube

{ae<<ei<d E=1,..,n), &< 6;;} (O —ex = Sr— &k, &k >= 0).
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The assumption of the lemma implies the existence of a finite number
of cubes W* (k =1, ..., k) with centres on S, covering S and such that
every manifold 8% = W* A S can be represented by (1.1), where h* e Czyq.
Hence, writing

St =8 A @, t) r<i<T} (1<7)

and using the formula for the surface area, we immediately obtain

n
(1.6)  m(Sh) < (D)@ e sup [1+ 3 (57 + (] = te 1)
it
It is easy to see that the set (G, v G )\(G: n G) is contained in the
projection of the manifold

S =8n{(m,t): t<T <71}

on the plane f= 0. Since the n-dimensional Lebesgue measure of any
n-dimensional manifold is not less than that of the projection of the
manifold on a plane of the same dimension, therefore by (1.6) we have

ki ky
m([G: v G NG A G]) < m(S) <m( D) 85) < D m(SE)
k=1 k=1

and the lemma follows.
Denote by M the o-field of all Lebesgue-measurable subsets of the
domain

D= U Gi.

o<t<?
We shall make use of a non-negative measure u(x, !; D) (depending
on (z,t) e @) defined on M which satisfies the following conditions:
(1) there is a constant M, > 0 such that for any (x,1) ¢ G

u(@,y t; Do) < My;

(2) there exists a finite non-negative measure g defined on G such
that for any D e A4 and any points P(z,t), P'(z',1’) of the domain @
we have

(@, 15 D) — pla’, 5 D) < w(D)[a(P, P,

where 0 < y < 1 is a constant.

If @ is not a cylindrical domain (i.e. a domain which cannot be re-
presented as the topological product of a domain in E, by an interval
of variable ?), we additionally assume that
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(3) for any D e M there is a positive constant M, such that
p(@,t; Dy < Mym (D),
m (D) being the Lebesgue measure of D.

As a simple example of a measure satisfying conditions (1) and (2)
may serve a measure given by the formula

u(@,t; D)= o(x, t)u(D), (a"yt)eay Ded,

o(x, t) being a function non-negative and uniformly Hoélder continuous
in G.
LEMMA 4, We assume that the measure u satisfies conditions (1) and (2),

or, if G is not a cylindrical domain, we assume that u satisfies conditions (1),
(2) and (3) and that S € Corq. Moreover, suppose that w(x,t) is uniformly

Holder continuous with exponent a in G.
Then the function

o(w, 1) = ju(?l, Yu(z,t; dy)
Gt

is uniformly Holder continuous with exponent 6 = min (a, y) in G.
Proof. Since u ¢ C,(@), the integral

Gfu(y, (@, t; dy)

exists. Making use of the known properties of integrals, we obtain
(1.7) o(@,)—v(2, V)= L +1,— I,+I,—I;,

where

L= [ [y, )—uly, e, d), L= [ uy, )@, t;d),

GGy GeN Gy
L= [y, tue,t5dy), L= [ uwy, eetd),
GGy G\ Gy
I, = fu(y,t'),a(w’,t’; dy) (%) .

G \Ge

Further, we have

Li< [ July, d—uly, O, 5 dy) < M= [ ule, b dy)

GGy GGy
= Mift—1["u(@, t; G ~ G) < MM, T7a(P, P)Y,
P)—u (P’
where P = (z,t), P' = (', 1"), My= sup [u(P)—u(P])| .

r.Pea [d(P, P)T

(%) If G is a cylindrical domain, then for any ¢,t ¢ [0, T] we have G, = G = D,
and consequently I, = I; = 0,
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Direct application of the definition of integral and condition (2)
yield the estimate

I, I| < #(G: ~ Gy) sup [u|[d(P, P)T < u(Dy)|ulsTd(P, P)T .
If GA\Gy # O, then it follows from Lemma 3 and from condition (3) (3)
that
| < Mylulg #|t—t'| < Mluls »T"~**a(P, P')]’

and the same inequality is true for I;. The estimates obtained and (1.7)
imply the inequality

['v(:v, t)_v(wly t’)l
< (MM, T £ 5(Dy)|uls R~ 42 M,ul§ T %) [d(P, P')]°,

R being the diamater in the parabolic distance of domain @. This com-
pletes the proof.

2. Existence theorems for parabolic equations in bounded
domains. Set u(xz,t)= (ul(z,?), ..., u¥(z, 1), @(z, )= (uz,1), ..., uN(z,1)),

where wu*(z, t), uk(x, 1) € C14.(G). We define the following operations
and norm:

U7 = (W+tu, .., wN+u¥)y,  qu= (g, .., ")

(n is a real number),
N
el kG
]u|l+c = 2 |'u’ |l+a .
k=1

Then the set Crv..(@) of all vector-functions u(z, t) for which |fu|ﬂ;e < oo
is a Banach space.

For every 0 <t<T let B* (k=1, ..y N) be an operator defined
on the set of all vector-functions u = {u*} regular in G° with values
belonging to the set of all functions defined in GT’\Z’, where G = G
Nn{®,1): 0<t<z}and 2= X~ {(z,t): 0<t<T}

We shall consider the first boundary problem

n n
(2.1) Lf%* = 2 as(x, t)uf;'ﬂ,qLZ b¥(x, tyuk + @, t)u* —uf = B*u,
i=1

i,7=1 —_—
(@, t) e GN\Z",
(2.2) W@, t) = oMz, 1), (@, 0)eZ (k=1,..,N).

() If @ is a cylindrical domain, then assumption S ¢ Ce+q and condition (3) are
superfluous.



262 II. Ugowski
The following assumptions are introduced (¢,j=1,...,n;k=1, ...
SN 0<T<T):
I. For any (z,t)eG and &¢e¢E, we have a{r‘,-(a:, t) = aﬁ(w, t),

af(w, 1) &&= K|E] (K, is a positive constant).

1

?Ms

H
IT. The coeffici_ents of L* satisty the uniform Holder condition
with exponent a in G and, moreover, a}; € C1_o(8).
ITI. The manifold § belongs both to Cosq and to Cs.o.
IV. The functions ¢* are of class €45~ Cote (a < f < 1).

V. It & e CLip(G) ~ C2a(GF) and @ = ¢ on I7, then B = L*
on oR,.

VI. Operators B* map the space CY.o(G") into the set |J C.(G")

0<e<1
and there are constants 4,,’4,, 4,>0, 0 <A< 1 such that for any

u € Cppa(@) the following inequality holds:
(2.3) Bulg” < Ay+Ag(lwl) + Ayl

where
N N =
Gt ka7 k,G*
luly = 2 %o +22 luzido -
k=1 k=1i=1

VII. Operators B* are continuous in the space Cryq(G°); more precisely,
if w,ue Oﬁa(G') and 11m lul—ulHu = 0, then lim 1kauz—B'”ulo = 0.

1—o00

By assumption IT 1nequa11t1es (1.4) and (1.5) hold true for coefficients
o LF (k=1,..,N).

Let F"(w, t} be continuous functions in & and let L"apk = F*
(k=1,..., N) on 8R,. Then it follows from assumptions I-IV and from
the remark to Lemma 2 that there is a constant K (8) (6 = a, §) depending
only on 8, K,, K,, K, and domain @ such that for any solution u¥(z, t)
(k=1,..,N) of the problem

(2.4) =% in @\Z, w=¢" on
we have
(2.5) [u¥i%e < K(0)<" P FH T + | LF0"(S) + 10810,

where @* ¢ Ci+5(G°) ~ Coo(GF) is any extension of ¢F.
THEOREM 1. If assumptions 1-VII are satisfied and

(2.6) K(a)NAz-92 < 1,

then there exists a solution wu(x,t)= {u*(z,t)} of problem (2.1), (2.2);
furthermore, u € Oty p(G°) A Coy (GF) for some &, 0 < e < 1,
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Proof. Denote by Cj the set of all functions u(xz,?) e Oro(G") such

that |u|ﬂa< M and u(x,?) = p(x,t) on X%, where the constant M > 0
will be specified later. Now for u € C3; consider the problem

(2.7) L = By = F¥a, 1), (2,1) e G\Z",
(2.8) i@, t) = @, 1), (x,t)eZ” (k=1,..,N).

By virtue of assumptions I-VI and Lemma 1, problem (2.7), (2.8)
possesses a unique solution #{x,?) which belongs to C’ﬁe((}') for some
0 < ¢ < 1. Moreover, by (2.5), »(z, t) belongs to Cris(G").

Now we define on Cp a transformation Z setting v = Zu. Using
Schauder’s theorem, we shall prove that Z has a fixed point. We first

show that Z maps Cj; into itself.
In view of (2.3) we have

(2.9) FES < A+ AM A M (k=1,..,N).

Hence, by (2.5), we immediately obtain

(2.10)  |olthe < K(0) NA, MO 1 K (0) N A, M7 1
LR () (A, 4| LM T+ 14T

Using (2.6) we now select M so that for 6 = a both the first and
the third terms on the right-hand side of (2.10) are equal to or less than
the expression

I[1—K(a) NA71=a2] I .
Thus, by (2.10), we have |v|y, < M, i.e. Z maps Cy into itself.
It also follows from (2.10) that the set {Zu: u € Oy} is bounded in

the space C]_N.;.p(Gt), whence, by Theorem 1 of [4] (p. 188), this set is a pre-
compact subset of Cr..(G).

Note further that Z is continuous, i.e. luz—ulﬂab—cy 0 implies

\Zw— Zultra j=> co. Indeed, by the definition of Z, we have v = Zu
and v, = Zu;, where

L = F¥w»,t), LM = B*w =Fi=z,t), (z,t)e E\Z’,

=vf=¢"on X (k=1,..,N).
Hence

(2.11) L¥of —o") = Fi(e, )~ F'@, 1), (2,0) e E\Z",

(2.12) o—2*=0 on X (k=1,..,N).
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Assumption VII and Lemma 2 applied to (2.11), (2.12) yield the
relation

. T . -
lim |of —o¥|$l, =0, ie lim |[Zu—Zu|Te=0.

I—>o0 >

Finally, since Cy is a closed convex set of 07,o(G), then by Schauder’s
theorem Z has a fixed point #. Observe that w satisfies (2.1), (2.2) and
U € Cf;,,(G’) A Cpio(@) for some 0 < ¢ < 1, which was to be proved.

Now we derive corollaries from Theorem 1 concerning some special
cases of operators B*. We introduce the following assumptions:

1. Let P¥(x, t; (-, 1) ((z, 1) ¢ G' < k < N) be a functional defined,

for every 0 <t < T, on a set of all functions z(x, t) regular in & such
that for any z, Z € C11.(@) we have the inequality

|¥"‘(m t 2(+, 1) — i”"(w t Z(- ,t))lo < Mz—z ,

M, > 0 being a certain constant. Besides, for any z e C,1.(G"), functions
7=, T"(m t; 2(-, 1)} satisfy a uniform Holder condition (with ex-
ponent a’ which ma,y depend on z and k) in G

2. Let functions f=,t,p,q,7) (k=1,..,N), defined on @ x
X Eninn+n, satisfy a uniform Holder condition in every bounded set
(-;'XH (HCEN.{.nN*.N) a'nd

(2.13) fle) 0,9, 92y Yo, 05 9(+, 0)) = L"  on R, ,
where
Ue = ('u:]rn L) u::n) ceey u:?;v ey ufz\;) ’

¥ (@, t; u( )—(‘I’l(m tyu (5 0)y ey, P2y 8 uN(‘,t))).
Moreover, there exist constants N,, N,, N, = 0, 0 <1< 1, such that
Iff, t, 2, 4, 1) < Ny+Nolp, ¢, N +Nol(p, g, 1)1,

(p, q,7) = Z Ip’l+22 Iq"|+2,1 ] .

i=17j=

CoROLLARY 1. If assumptions 1-IV, 1, 2 are fulfilled and

where

(2.14) K(a)NNy(M,+1)r0-a2 < 1
then Theorem 1 holds true in the case
(2.15) B*u =f"(w, ty u, Uz, Y’(w, bwu(:, t))) .

(*) Expressions of this form ocecur in differential inequalities of parabolic type
treated by Szarski in [10].
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In order to prove this corollary it suffices to observe that conditions
(1), (2), (2.14) imply assumptions V-VII, (2.6) respectively, and to apply
Theorem 1.

COROLLARY 1'. Let assumptions I-IV, 2 and (2.14) be fulfilled and

let the measures u¥(x,1; D) satisfy all the conditions imposed in section 1.
Then Theorem 1 is true in the case

(2.16) Bu = f*e, t, u, usy [ uly, Dpls, 4 dy))
Ge
where .

G[u(y, (o, t; dy) = ( [y, O uiz, t; dy), ..., GfuN(y, 1) uN(w, 15 dy)) .
Gy t

Proof of this corollary follows immediately by applying Lemma 4
and Corollary 1.

At present, under stronger assumptions than those of Theorem 1,
we shall prove the existence and uniqueness of solutions of the problem
(2.1), (2.2) and the convergence of successive approximations. We retain
assumptions I-V whereas VI-VII are replaced by the following ones:

VI'. Operators B* (k =1, ..., N) map the space Cryq(G) into Co(&F).
VII'. There exists a constant A{ > 0 such that for any u, @ € Clyo(G%)
we have
|B*u— B uly < Ajlu—al{"
THEOREM 2. If assumptions 1-V (5), VI'-VII’ are satisfied and
(2.17) K(a)NAj70-92 < 1,

then problem (2.1), (2. 2) has a umque solution wu = {u*} in the space
O ol G). Moreover, u ¢ Cryp(G7) ~ Coia(GF).

Proof. Denote by A the set of all functions u(z,?) € Gﬁ,(G’) such
that u(x,t) = @(x,?) on Z'. In view of Lemma 1 problem (2.7), (2.8)
has, for u € A4, a unique solution » = {v*} in the class 0r,o(G). Moreover,
by (2.5), v € OYyp(GF).

Now we define on A a transformation Z setting v = Zu. We shall
prove that Z is a contraction in CHG(G’) Indeed let 7= Zu. Then
L"('v —v*) = F¥, t)— F¥x, 1) for (v, 1) e F\Z", v*—o* = 0 on Z*. Setting
@* =0 in (2.5) and making use of assumption VII’ we obtain

v —v*1% . < K (a) A7 lu—a|%, .

() The condition a < § < 1 may be replaced by a < § < 1.
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Thus
|Zu—Z7\%, < K(a) NAIT" " —u)%,,

which means, by (2.17), that Z is a contraction. Since A is the closed
set of O o(6F) and Z maps A into itself, then by the Banach fixed point
theorem Z has a unique fixed point ». At the same time we have proved
that u e OTyp(G) A C2yo(@). Obviously the function u is a (unique) solution
of problem (2.1), (2.2), and the proof is completed.

The solution of the above problem can be obtained by the method
of successive approximations. For this purpose we construct a sequence
fwy = {ui, ..., ur } putting

(2.18) =D, w=Zu (=0,1,2,.).

It follows from the proof of the Banach theorem (see e.g. [4], p. 59)
that the sequence {u;} is convergent in CY.«(G") to a unique fixed point u
of the transformation Z. Thus we have relations

limuf = «*  and lim (uf)e=ut, (k=1,..,N;i=1,..,n),

l—o00 100
where the convergence is uniform. Suppose additionally that
VI”. Operators B* map every bounded subset of Ciyq(G°) (0 <7< T)
into a bounded subset of Ci(G).

Then, by Lemma 1, the sequence {|u{‘ lﬁ,} is bounded as well. Hence,
in view of Arzela’s theorem, there is a subsequence {ufr} such that

. . 2 . E

(2.19) lim (4)ez = Use; and  lim (uf) = uf
V—e0 1/'—o0

where the convergence is uniform. >

In order to derive corollaries from Theorem 2 for cases (2.15) and (2.16)
we make the following assumptions, instead of assumptions 1, 2:

1’. Assumption 1 with o’ = a.

2’. Functions f"(w, t,p,q,r) satisfy a uniform Holder condition
with exponent a in (z, t) ¢ @, uniformly with respect to (p, q,7) € Ensnn+nN
and condition (2.13) holds true. Furthermore, there is a constant N> 0
such that

(2.20) IfYe,t, 9,4, 1) —f%2,1,5,8 D < Nil(p—D,q— 7, r— 7).
CoroLLARY 2. If assumptions I-1V, 1', 2’ are satisfied and
(2.21) K(a) NNy (M, +1)z-22 < 1,

then Theorem 2 remains irue in case (2.15).
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COROLLARY 2'. Let assumptions I-IV, 2’ and (2.21) be fulfilled and
let the measures p*(x,t; D) satisfy all the conditions imposed in section 1
with v = a. Then Theorem 2 is true in case (2.16).

Since assumption VI’ is fulfilled in cases (2.15) and (2.16), there

exists a subsequence {u;} of sequence {«;} defined by (2.18) such that (2.19)
holds.

3. Lemmas for the parabolic case in an unbounded zone.
Now let G be an unbounded zone E, x (0, T'). We preserve the definition
of norms |u|e (I =0,1,2) introduced in section 1.

Consider the Cauchy problem

(31) Lu= Y ay(®, s+ Y bil@, ) g+ c(@, )u—u = fla,t),
=1 im1 :
b (@) € @ = By x (0, T],
(3.2) u(w,0)=¢@), wekly,.

We make the following assumptions:

(A) The operator L is uniformly parabolic in G’ (see [4], p. 3), whereas
its coefficients are bounded and uniformly Hélder continuous, with
exponent a, in G'.

{(B) The function ¢ together with its first and second order derivatives
are bounded in £,. Moreover, ¢ and ¢, are uniformly Holder continuous
with exponent a in E,, while derivatives g are locally Hoélder con-
tinuous with exponent « in F,.

(C) The function f(x,?) is bounded in G’ and satisfies a uniform
Holder condition with exponent a in every bounded domain H x (0, T]
(H C En).

LeMMA 5. If assumplions (A), (B) and (C) are satisfied, then
problem (3.1), (3.2) has a unique regular solution w(z,t). Moreover, u and
all its derivatives appearing in Lu satisfy a uniform Holder condition with
exponent o in every bounded domain H X[o, T} (HCE,, 0< o< T).

Proof. The existence and uniqueness are immediate consequences
of Theorem 12 of [4] (p. 25) and of Theorem 16 of [4] (p. 29) respectively,
whereas the Holder continuity of w and its derivatives follows from the
proof of Theorem 10 of [4] (p. 72).

LEMMA 6. If assumptions (A), (B) and (C) are satisfied, then any
reqular solution w(x,t) of problem (3.1), (3.2) belongs to Ci;(G). Moreover,
there exists a constant K depending only on a,n, T and L such that

(3.3) lulfe < K115 + | Lol§ ) + 19| Fa
where G = E, < (0,7), 0 <t < T.
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Proof. Proceeding as in the proof of Lemma 2 of [4] (p. 193) one
can derive for a solution v(x, t) of problem Lv = f(x, ) — Ly (z) for (z, t) ¢ ¢,
v(x, 0) = 0 in E, the following estimate

[olita < Ko7~ Lol
which easily implies (3.3).
4. Existence and uniqueness theorem for parabolic

equations in an unbounded zomne. In this section we prove the
existence and uniqueness of solutions of the Cauchy problem

(4.1) LFu* = B*u (), (2,1)e @ = E,x(0,71].
(4.2) u¥x,0)=¢Xz), xeEy (k=1,..,N).

We make the following assumptions:

I. Operators L* and functions ¢* (k = 1, ..., N) satisfy conditions (A)
and (B) of the previous section.

II. For every 0 <t<7T and for any u e Ciio(G°) functions B*u
are bounded in G'* and satisfy a uniform Hélder condition with exponent a
in every bounded domain H X (0, ] (H C Ey).

II1I. Assumption VII’ of section 2.

Let functions F¥(x,t) (k=1, ..., N) satisfy assumptibn (C) of sec-
tion 3. Then it follows from assumption I and from Lemma 6 that there
exists a constant K depending only on a, #, T and operators L* (considered
for (x,t) e G') such that for any regular solution w*(z,t) (k=1,...,N)
of the problem L*u* = F* in %, u*(x, 0) = ¢*(#) in E, we have

(4.3) (e < KPR + | L%ME) + 0¥
THEOREM 3. If assumptions I-III are fulfilled and
(4.4) NKAjz0-a2 < 1,

then problem (4.1), (4.2) has a umique regular solution w(x,t) = {uk(z, 1)}
in class Ciio(GF). Moreover, derivatives uﬁm and uf are uniformly Holder

continuous of ewxponent a in every bounded domain H X[o,7] (HC E,,
0<o<)

Proof. The proof is similar to that of Theorem 2. Namely, let us
denote by A the set of all functions u(z,?) € Cial@) such that u(z,1)
= ¢(z) in B, and consider, for u ¢ 4, the problem

Lfo* = B*u, (2,1)e@",
vk(z, 0) = p*(=) , x e l,,

(®) We retain the notation of section 2.
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By Lemmas 5 and 6 the above problem has a unique regular solution
v&(xz,t) (k=1,.., N), where v" ¢ C1,4(G"), whereas vi‘w, and vf are uni-
formly Holder continuous of exponent a in every bounded domain
H x[o,7] (0 < o < 7). This enables us to define on the set 4 a transfor-
mation Z by formula v = Zu. '

Let 7 = Zu. Then we have

Lo —3") = B'u—B*u, (z,1)e@",

5z, 0)—0*(w,0) =0, xebkH,,
and hence, by (4.3) and assumption I1II,
|Zu—Zu|% e < NKAJTY 0 — %%, .

Thus, by (4.4), Z is a contraction. Since the remaining assumptions
of the Banach theorem are also fulfilled, Z has a unique fixed point which
completes the proof.

The solution of problem (4.1), (4.2) can be obtained as a limit
of the sequence of successive approximations defined similarly as in
section 2.

Now we formulate Theorem 3 for cases (2.15) and (2.16). For this
purpose instead of assumption 2’ of section 2 we introduce the following
one:

2”. Functions fk(:v, t,p,q,7) (k=1,..., N) are uniformly Holder
continuous with exponent a in (v, t) in every bounded domain H x (0, 7]
uniformly with respect to (p,q,7)e€ Exinn+n. Moreover, functions
¥x,t,0,0,0) (k= 1,..., N) are bounded in G’ and condition (2.20) is
fulfilled.

CoROLLARY 3. If assumptions I, 2" and 1’ of section 2 are satis-
fied and

(4.5) NEN{(M,+1)r4-or < 1,

then Theorem 3 remains true for case (2.15).

COoROLLARY 3’. Let assumptions 1, 2"', (4.5) be satisfied and let the
measures uk(x,t; D) fulfil conditions (1) and (2) (with y = a) of section 1.
Under these assumptions Theorem 3 is lrue for case (2.16).

S. Lemmas for the elliptic case. The elliptic problem will
only be treated in a bounded domain. So let G be an open bounded domain
of the Buclidean space E, of the variables & = (z,, ..., #z). Following
Friedman [4] we formulate several definitions concerning norms, sets
of functions, properties of the boundary oG of domain G and functions
defined on 2@.
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The following norms are introduced:

a « a wlx) —u(x'
ulf = sup (@)l k= uié -+ sup @) —u(@)|
re€

z,zed | — w'|°

n n n
G 1] \' G G G @ a
|uliha = |ulo + 2, |Uzila o [#leva = |ulo + 2, |ugilo + 2, %242y
im1 i=1 £,5=1

0<a<l).

The set of all functions » with finite norm |ul}. (I=0,1,2)
will be denoted by Ci.(G).

For every point & € 2@ let there exist an n-dimensional neighbour-
hood V such that ¥V ~ oG can be represented, for some ¢ (1 < i< m),
by an equation of the form

(Di = h(ml, see g $i-1, .’l?i.|.1, vesy mn) .

If the functions & belong to C.4,, then we say that 0@ is of class Czy,.
A function ¢ defined on 0@ is said to be of class C,4, if it has an ex-
tension @ € Cz44(G). Then we define

ngl»a = iBf l(blg..a .

Consider the Dirichlet problem:

(.1) Lm == ‘\«_: ai,-(w)'umJ.J,—E bi(w)ur,+c(w)u = f(z), ze@,
1,j=1 =1
(5.2) u(x) =gp(x), xedd.

We shall need the following assumptions:
(A) For any z € @G and & € E, we have

a;i(@) = a;(x), c¢(x)<0, Z a.(x)EiE; = Ky|éF (K, = const > 0).

5,i=1

(B) The coefficients of L and the function f are uniformly Hoélder
continuous with exponent a in @. Thus for some constant K, > 0

(e G G >
|a'iila ’ Jbila ’ lcla <Il1 .

From [4], p. 86, and [3], p. 808 (sec also [1]) we obtain the following
LeEMMA 7. If assumptions (A) and (B) hold true, the boundary oG
18 of class Cpyo (a< a' <1) and ¢ € Coyq, then problem (5.1), (5.2)
has a unique regular (*) solution w(x) in the class Ciy(G). Moreover, there

(") Le. continuous in G and possessing continuous first and second order deriva-
tives in G.
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exist constants K, f (depending only on L and @) and K’ (depending only
on Ky, K,,a and G) such that

(5.3) lultrs < K(If15 +1LDI5) +|D|Tsp (%) .
and

[wlgra < E'(Iplgvat1fI2)
where D € Coo(F) s any extension of ¢.

Now denote by A the o-field of all Lebesgue-measurable subscts
of the closure G. Let u(z; D) be a non-negative measure defined on ¢,
depending on z ¢ G, and satisfying the following conditions:

(1) there is a constant M, > 0 such that

p{; é) < M,
for any z e G;

(2) there exists a finite non-negative measure u defined on A such
that for any De M and #,2" ¢ G

|u(x; D)—p(a'; D) < u(D)lw—a'",

where 0 < y <1 is a constant.

By an argument similar to that used in the proof of Lemma 4, one
can prove the following

LEMMA 8. If a function u(x) 18 wuniformly Holder continuous with
exponent a in G, then the function

o(@) = [ uly)pl; dy)
G

18 wuniformly Holder continuous with the expoment a = min(a,y) in the
domain Q.

6. Existence theorems for elliptic equations. In the present
section we discuss the existeneg of solutions of the Dirichlet problem

(61) L%*= D afi@)ule+) bi(@)uli+c@)u* = B, ze@,
1,7=1 i=1

(6.2) uk(z) = ¢¥(zx), wxeo@ (k=1,..,N),

where B” is an operator defined on the set of all vector-functions » = {u*}
regular in G with values belonging to the set of all functions defined
in G.

Fori,j=1,..,n; k=1,.., N we need the following assumptions:

(®) It is easy to see that relation @ ¢ Cs+qo(G) implies @ ¢ C145(G) for any 0 < f < 1.
Annales Polonici Mathematicl XXII 19
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I. For any # ¢ @G and ¢ € E, we have

(@) = afi(z), @) <0, D ak@)&& > K (K, = const > 0).

1,7=1

II. The coefficients of L* are uniformly Holder continuous with
exponent a in G. Hence, for some constant K, > 0, we have

kG kG G
ladile ,  BES, | < K,.

III. The boundary oG is of class Coie (a < @' < 1) and ¢* € Caoyq.
In order to formulate further assumptions we introduce some symbols.
Assume that functions F"(w) (k=1, ..., N) are uniformly Hoélder con-
tinuous with exponent a in @. Then, by assumptions I-IIT and by Lemma 7,
the problem

L' =F in G,v" =¢* on 8¢ (k=1, ..., N)

has a unique solution v%(x). Moreover, there exist constants K and g
(depending only on L* and domain @) such that

(6.3) 0°1hs < K(IF*G + | L*0"0) + 1014,
where @° € (214(@) is any extension of ¢*. Now let 4, and 8’ be such

constants that

(6.4) < A < (KN)?,

0
(6.5) RP <142, 0<p <8,

where R is the diameter of the domain G and 4 =1—KNA,.
IV. Operators B* map the space Cfp(@) (°) into the set |J C,(@)

0<e<1
and there exist constants A,, 43 >0, 0<<1<1 such that for any

U € O’ﬁp’(G) we have the inequality
(6.6) |B*uls < Ayulf 4+ Ay(ulf) + 4, .

V. Operators B* are continuous in the space Ciyp(@), i.e. if u,wu e
e C1ip(@) and llim luy—u|%, g = 0, then lim |B*u,— B*ul§ = 0.
—>00 l—>00

THEOREM 4. If assumptions I-V are satisfied, then problem (6.1),
(6.2) has a solution u = {u"}, which belongs to ol @) for some 0 < e < 1.
Proof. Denote by Cj the set of all functions u(x) e Oﬁ.p'(G) such

that lulﬂpf < M and u(x)= ¢(z) on 8@, where M > 0 is a constant to
be conveniently chosen.

(*) We retain, with obvious modifications, the notation introduced in section 2.
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Consider now, for % ¢ Cj, the problem

6.7) L =Bu=F'=), xeG, "@)=09¢"x), «co@
(k=1,..,N).

This problem, by Lemma 7, has a unique solution v = {v*} belonging
to the class Gﬁ.(G) for some 0 < ¢ < 1. Now we define a transformation Z
setting v = Zu. Applying (6.3) we obtain

(6.8) *|Tsp < max (1, B ~7) (K (IF* + | L"®*(5) + |0%|7, 4] .
Hence, by (6.6) and (6.5),

olihp < (14 4/2) N[K (As+ | L*0"(5) + |° |7 5]+
+(14+4/2) KA, NM*+ (14 A[2) KA, NM .

Choosing the constant M so that the sum of the first and the second
term on the rigth-hand side of the last inequality is less than or equal
A4 A

2
into itself. The further argumentation is the same as in the proof of
Theorem 1.

As in section 2, we shall consider now some special cases of opera-
tors B* for which Theorem 4 holds true. We introduce the following
assumptions:

1. Let P*x;2(:)) (@ k=1,..., N) be a functional defined on
the set of all functions z(x) regular in G such that for any z, z € Cy;5(@)
we have the inequality

to M, we get, by the definition of 4, |v|%,s < M. Thus Z maps Cx

|!Ifk(:n; 2(+)— ?"‘(a;; zZ( -))If:| < M|z—z ,

M, > 0 being a certain constant. Besides, for any 2 € Cy.4(G) the function
g¥(z) = Y’k(w; 2( -)) satisfies a uniform Holder condition (with exponent g
which may depend on 2z and k) in Q.

2. Let functions ¥, p, q,7) (k=1, ..., N), defined on G X Ensnn+n,
satisfy a uniform Holder condition in every bounded set G x H
(H C Eninn+n). Moreover, there are constants N;, N, >0 and 0<1<1
such that

1@, p, ¢, )| < A(M,+1)"((p, g, )|+ Nl (p, g, 7)*+ N, .

CoROLLARY 4. If assumptions I-III and 1, 2 are satisfied, then the
assertion of Theorem 4 remains valid with

(6.9) B*u =fk(m, Uy Uzy Plw; u( ))) .
19*
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CoroLLsRY 4'. If assumptions I-III, 2 and 1, 2 with (u = u*) of
section 5 are satisfied, then Theorem 4 is true for operators B* given by the
Jormulas
(6.10) Bhu = f*(z, u, us, [ u(y)p(z; dy)) .

G

Now, under stronger assumptions than those of Theorem 4, we shall
prove the existence and uniqueness of solutions of problem (6.1), (6.2)
and the convergence of the successive approximations. Instead of assump-
tions IV, V we make the following ones (assumptions I-I1I being retained):

IV’. Operators B* (k=1,.., N) map the space CYp(G) into Cy(@),
where 6 = min(a, §).

V'. There is a constant A] >0 such that for any u, @ e Ciup(G)
we have

|B*u— B*a|§ < Ajlu—al{ .

THEOREM 5. Let assumptions I-IIL (), IV’, V' be fulfilled and let

(6.11) A < (KN)™.

Under these assumptions problem (6.1), (6.2) has a unique solution
u = {u*} of class C]_N.|.p(G). Moreover, u e C2yo(G).

Proof. The proof is similar to that of Theorem 2. Namely, let us
denote by A the set of all functions u(z) € Cﬁ,ﬁ(G), such that u(z) = ¢(z)
on 2G and consider problem (6.7) for u € A. Next, using the theorems
on the existence and uniqueness of solutions of this problem we define
the transformation v = Zu. We show that Z maps A into A ~ Cpys(G)
and that Z is a contraction in . This enables us to apply the Banach
fixed point theorem, from which the proof of the theorem follows.

As in the parabolic case the solution of problem (6.1), (6.2) can be
obtained by the method of sueccessive approximations.

To end this section, we formulate Theorem 5 for cases (6.9) and (6.10).
For this purpose we make, instead of assumptions 1, 2, the following
ones:

1’. Assumption 1 with ' = f and B=é.

2’. Functions f(,p,q,r) are uniformly Holder continuous with

exponent é in x € G, uniformly with respect to (p, g, 7) € Exinn+n. More-
over, there is such a constant N;> 0 that

Ifk(a},p, q, 'r)_'fk(m) P4, N <Ni(p—P,¢—q, 7).
COROLLARY 5. Let assumptions I-1I1, 1', 2’ be satisfied and let
(6.12) N, <[EN(M,+1)]".

(*) In III, instead of assumption ¢* € Cita, We may only assume that ¢* e Cas.
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Then Theorem 5 holds true in case (6.9).
CorOLLARY 5'. If assumptions I-11I, 2°, 1, 2 (with u = u* and y = 0)

of section 5 and condition (6.12) are satisfied, then the conclusion of Theorem 5
holds true in the case of the operators givem by (6.10).
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