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The boundary value problems for ordinary non-linear
differential and difference equations of the fourth order

by ZpzistAw DENKOWSKI (Krakéw)

1. Introduction. In the present note we deal with two boundary
value problems formulated, respectively, for differential and difference
equations of certain type. The first of them consists in the search for
a solution of the differential equation

(1.1) y(l'V) =gt v,9,¥"),
satisfying the boundary condition of the form
(1.2) Y(0) =700, Y(B) =7, Y'(0) =75, Y'(h) =7y,

where 740, 7ony 710, 735 aTe arbitrary fixed real numbers, and the second —
in search for a solution of the difference equation

(1.3) VAV Av, = g(i,v;, dv;,, VAv,)) (i =2,...,n—2),

satisfying the boundary condition of the form

(1.4) Vo = Fooy Uy = Fouy AVy =Ty, Vv, = Fin,
where Ao, Vv, VAv,, VAV Av; denote the difference operators and
Toos Fon y T10y T1n — arbitrary fixed real numbers.

In the sequel we shall assume that the function g: [0, h]X R -~ R
satisfies the Carathéodory condition (i.e. 1° for every fixed ze¢R® it is
measurable on [0, A], 2° for every fixed te[0, ] it is continuous with
respect to z) and the following inequality

3
(1.5) 192, 21 22, 2)| < Po(t)+ D) Pyl
j=1

where p,: [0, h] — R is a function sommable on [0, k] and P, (j = 1, 2, 3)
are fixed real numbers.

It is easy to see that condition (1.5) is fulfilled if the function ¢
satisfies the Lipschitz condition

3
(1.6) |9(2, 21, 22, 23) — g(2, 21, 2y, 5)| < Zpilzj_gj
=1
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and the function [0, h]>t — ¢g(¢,0,0,0)cR is sommable on [0, ]. It is
to notice that the general linear equation of the fourth order

Y+ 2y + P (MY + 220y + 21D Y+ Do (1) = 0
with . the coefficients of class C* can be transformed to an equation of
form (1.1) with Lipschitzien right-hand side by a linear transformation
y(t) = z(t)exp (—1 [ pa(t)dt).
Similarly, we shall assume that the function g§: {2,...,7n—2}X
X R® - R is continuous and satisfies the inequality

3
(LT) g, wi 00, )| < Pot D Pyley| (i =2, ...,n—2),
or the more restrictive Lipschitz cj;;dition
3
(1.8) 155, Wy Wy w03) —§ (3, by, by, 15,)] < D) Py fuoy— |
(0 =2,...,n—2, (wy, w,, ':;::)’ (W, "'-bz’ W,) e R?),

where 13, (j =0,...,3) are fixed real numbers.

The aim of this paper is to present some theorems concerning the
existence and uniqueness of solutions of problem (1.1) and (1.2), to give
analogous theorems for discrete problem (1.3) and (1.4), and to prove
a theorem concerning the convergence of solutions of appropriately defined
discrete problems of form (1.3) and (1.4) to the solution of problem
(1.1) and (1.2).

The proofs of the existence and uniqueness theorems for problem
(1.1) and (1.2) will be based on theorems of Lasota [3] (Theorem 2.1
and Corollary 2.1) for the general linear problems in the theory of differ-
ential equations. Similarly, the proof of the existence and uniqueness
theorems for problem (1.3) and (1.4) will be based on discrete analogues
of the theorems of Lasota given in [2] (Theorem 4.1 and Theorem 4.2).

All these theorems, as well for continuous case as for discrete one,
allow us, roughly speaking, to deduce the existence or uniqueness of
solutions of a linear problem for vectorial non-linear differential or
difference equations with single-valued right-hand sides if a homogeneous
problem for appropriately associated differential or difference equations
with multi-valued right-hand sides (the contigent equations) has only
the trivial solution. Thus, in order to apply these theorems, it is necessary
to fix in advance conditions which assure the required uniqueness of
solutions of mentioned problems for suitable contingent equations. In
case of problems (1.1) and (1.2), and (1.3) and (1.4) such conditions may
be given owing to & priori estimates for solutions of some differential
and difference inequalities. For to obtain these estimates we make use
of inequalities of Wirtinger type which, both continuous and discrete
cases, are given in [1].
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Finally, let us notice that in recent years an intensive development
of boundary problems for difference equations may be observed, generally
as numerical aids to problems for differential equations (see for instance
[4] and [6]). In this situation it seems useful to give a theorem concerning
the possibility of approximating solutions of boundary value problems
for differential equations by solutions of boundary value problems for
suitably chosen difference equations.

In Section 2 we give & priori estimates for solutions of some differ-
ential and difference inequalities. Section 3 contains the existence and
uniqueness theorems and Section 4 deal with the above mentioned approxi-
mation problem. Finally, some final remarks are given in Section 5.

Throughout the paper we shall make use of generally accepted
notations and notions which are explained in detail in [1], [2] and [3].

2. A priori estimates. Let 2, = x4 ¢ (¢ > 0) be the smallest positive
root of the equation chz = secz (see also Section 2 of [1]).

THEOREM 2.1. If y: [0, k] — R i3 a solution of the differential ine-
quality

(2:1) YO < Poly”|+Poly'|+ P lyl + Py,
satisfying the boundary condition
(2.2) ¥(0) =y’ (0) =y’ (k) =y(h) =0,

and if the non-negative constants P; (j = 1,2, 3) fulfil the inequality

2 2 4
(2.3) 9=P,(ﬂ—)+1"‘( 2h )+P1(—ﬂ—)<1,,

In+2¢ *r 3n+ 2¢ 3n+2¢
then
2h \!P,Vh
Iy <( —,
3n+2e) 1—p
h{ 2h \*P,Vh
2.4 N <— 0
(2.4) llyll\ﬁ(31‘:+2s) 1_9’
2 \*P, Vh
Iyl < .
3n+2e] 1—p
(I | — denotes the usual norm in the space L?([0, A]) of all square

sommable functions defined on [0, A]).

Proof. Multiplying by |y| and then integrating on interval [0, h]
both sides of inequality (2.1), we get

h h 1 hk h
258) [y yldt <P, [ ly"-yldt+ P, [ |y -yl@t-+P, [ y?dt+P, [ |y)dt.
0 0 ] 0 0



90 Z. Denkowski

Integrating by parts and applying inequalities (2.6), (2.8) from [1]
and the -Schwarz inequality, we obtain

h h h
[ 15 ylat>| [y™y|dt = [ )2a,
0 0 0

h

f wiwla<( [ wya)”( f vaf" < (25) f (v rat,

f 'l iglde<( f wra)” f v < 2 (2 f "y,
f|y|dt<1/h (fy’dt) I/E(Sn2+hze)2!(y")2dt.

Now, applying the a.bove estimates and the mentioned mequa.hty
(2.8) from [1] to inequality (2.5), and then dividing it by ( j (y")’dt)"’

(the case when ||y’’|| = 0 is trivial since in this case condition (2 2) implies
lyl =1yl =0) we get

(1—e>(f e P°f(3"+2£)z

Hence by (2.3) we obtain immediately the first of estimates (2.4).
We obtain the second from the first and from the also mentioned Wirtinger
inequality (2.6) (from [1]) applied to ¥’. Similarly, we obtain the third
of inequalities (2.4) from the first and from inequality (2.8) in [1]. Thus
the proof of the theorem is completed.

Let the operator T,: K} — R"*!, where

K} ={weR"": vy =0, =v,_, =10, =0} (n=4),
be defined by the formula:
(2.6) T,v = V®A®y,

and let AT denote its smallest positive eigenvalue (see also Section 3 in [1]).
In the sequel the set {0,...,n} will be denoted by N.
The theorem we state below is an exact discrete analogue of The-
orem 2.1.

THEOREM 2.2. If the vector veR"t! is a solution of the difference ine-
- quality

(2.7) VAV Av)| < Py |V Av,|+ Py | dvy| + Py [u) + Py (ieN),
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satisfying the boundary condition
(2o8) ’vo = ’Dl = vn_l = 'Dn = 0’

and if non-negative constants I;, (4 =1, 2, 3) fulfil the inequality

1 ~ 1 ~
g —

(2.9) On = -l;a +P +P <1,
3 2V A7sin — A
then
1 PVn—3
7o) < —— PIn=3
l/l? 1'—91;
1 PVn—3
(2.10) 40| < ;'/” ,
2V A7 sin — on
o] < — BoVn—3
1 1—o,

(I| denotes the Euclidean norm in R™*!).

Proof. The idea of getting suitable estimates in discrete case is the
same as in continuous one. As there are, however, some subtle differences
in calculations, we repeat the whole reasoning. Multiplying inequality
(2.7) by |v;| (¢eN) and summing with respect to i, we get

(2.11) | 3

1=0

< P,

[\d=

) |7 A0, 0+ Py idooi+ By th+P., 3o

i 1=0 i=0

i
.

Applying the summa.tion by parts formula — formula (1.3) in [1]
(the possibility of applying step by step formula (1.3) follows from anal-
ogous reasons as the possibility of summation by parts of scalar product
(T,v., v,) in the proof of Theorem 2 of [1]), Schwarz inequality for the
vectors of R"*! and inequalities (3.6), (4.2) given in [1] we easily obtain

Zn‘ VAV Av;- v, ?‘ —Zn: VAV v, v;| = ZR:(VA%)z,
i=0

=0 =0

S| Soon S

i=0
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SIA%.”K(Z(AQV) '2(2v2)m< . ﬁEZ(VAv,,),

i=0 =0 2s8in — 1 i=0
2n

ZWI = 2 log| < (5] %)mg Vﬁ%i‘(mw.

i=2

Now, applying these estimates and inequality (4.2) from [1] to (2.11),
and then dividing it by (Z(VA ;)% (the case if |FAv| = 0 is trivial since

i=0

in this case condition (2.8) implies |[v] = |4v| = 0), we get

n

(e ( Y (70" < ‘/1;__" P/n—3.

=0

Hence by (2.9) we obtain immediately the first of inequalities (2.10).
The second may be obtained from the first applying to 4v inequality
(3.6) from [1], what really can be done since condition (2.8) implies
[A®P | = |FAv|. At last, the third of estimates (2.10) may be obtained
from the first by a simple application of inequality (4.2) from [1]. This
completes the proof.

3. Existence and uniqueness theorems. In this section we state four
theorems from which the first two are related to problem (1.1) and (1.2),
‘and remaining two to problem (1.3) and (1.4).

THEOREM 3.1. If a real function g, the right-hand side of equation
(1.1), satisfies in the set [0, h] X R® the Carathéodory condition, condition
(1.8) with a sommable function p,: [0,h] > R and if the non-negative
constamts P; (j = 1,2, 3) in (1.5) fulfil inequality (2.3), then the boundary
value problem (1.1) and (1.2) has at least one solution.

Proof. Setting 2z, =y,s, =2, 23 = x,, 4, =¥, We can write
problem (1.1) and (1.2) in vector notation

(31) z = f(ta .’D),
(3.2) Le =7,
where z = (7, 5, @3, ;) €C4([0, h]) — space of all continuous function

z: [0, 2] — B* with norm |z| = max{|z(t)|: te[0, B}, 7 = (To0) Tons T10s T10)
eR4 and the mappings f: [0, k] X R* — R4, L: C,([0, h]) — R* are defined
by the formulae:

Tty 244 255 24y 24) = (zzv %3y %y §(Ly 21y 22y zs))-.’

Ly = (2,(0), @,(h), #(0), x,(h)).
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Let F: [0, h]xR* — ¢f(R*) be the map defined by the formula

3
F(ty 21,25y 23, 2) = {QGR4: 41 = 22,4z = 23, Qs = 2, [¢| < P,Izﬂ}.
=1

From this formula it follows immediately that F(t,z,, 2,, 23, 2,)
is a closed and convex subset of R<.

Notice that problem (3.1) and (3.2) is a particular case of general
problem (2.2) and (2.3) considered in [3]. Thus, owing to Theorem 2.1
of Lasota [3] mentioned in Introduction, it is sufficient for the proof
to verify that

1° F satisfies the Carathéodory condition (in the sense given in [3]),
for every fixed t€[0, k] it is homogeneous with respect to 2 = (2, 2,, 24, 2,)
(i.e. F(t,A2z) = AF(t,z) for 1<R), and the function ¢: [0, h] — R defined
by the formula ¢(f) =sup{|F(t,2)|: |2 =1} is sommable on [0, A],

2° f satisfies the Carathéodory condition and

h
(3.3) lim lfsupa(f'(a:, 2), F(t,2)dt =0
k—ro0 k v 1z|1<k

(6(f(t, z),F(t,z)) denotes the distance of vector f(f,z) to set F(t, 2)),
3% L is continuous and homogeneous (i.e. Liz = ALz for A¢R),
4° the homogeneous problem

(3.4) ' eF(t,x),
(3.5) Le =0

has only trivial solution.

For to prove 19, notice that for every fixed f{<[0, 2] the conditions
of homogeneouity and continuity with respect to z are simple consequences
of the definition of F.

Next, notice that for any closed fixed set A = R* and arbitrary
fixed z<R' the set {te[0,h]: F(t,2) N A # O} is either empty or the
whole interval [0, A], so that it is measurable (in Lebesgue sense), what
means that for any fixed z¢ R4, F is measurable with respect to t.

Finally, the sommability of ¢ on interval [0, 2] follows directly from
its form

¢(t) = sup l]/z§+z§—l-z§+ ZP,-]z,-]: 2] =1 (te[O, R]).

The required in 2° Carathéodory condition for the map f follows
easily from our assumptions about the function g.
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Condition (3.3) may be verify by a strightforward calculation. Indeed,
by the assumption of the sommability of p,, we have

Rk h
lim lf sup 8(f(t, 2), F(t, z))dt = lim lfpo(t)dlt = 0.
koo B i< koo B o

Condition 3° is a consequence of definition L.

TFor to prove 4°, suppose that the vector z = (z,,2,, z3, z,)
€Cy([0, ]) is a solution of problem (3.4) and (3.5). Setting y = z,, we
notice that the function y is a solution of the differential inequality (2.1}
satisfying condition (2.2).

Hence, in view of Theorem 2.1, we obtain from the third of esti-
mates (2.4) with P, = 0 that |y|] = 0 what, by the absolute continuity
of y, implies that y(t) = 0 for te[0, A]. '

Thus, we have # = 0 and this completes the proof.

On an analogous way we obtain

THEOREM 3.2. If a real function g, the right-hand side of equation
(1.1), is for any fized (2,,2s,2;)eR® measurable with respect to t, and
satisfies in the set [0, h] X R? the Lipschitz condition (1.6), where non-nega-
tive constants P; (j = 1,2,3) fulfil inequality (2.3), and if the function
[0,R)51—>g(t,0,0,0)cR is sommable on interval [0, h), then the boundary
value problem (1.1) and (1.2) has exactly one solution.

Proof. As in the proof of the preceding theorem we replace problem
(1.1) and (1.2) by the problem of the form (3.1) and (3.2), and we define
the mappings f, ¥, L. On a similar way one can verify that f, ¥, L satisfy
conditions 1° and 4° defined in the proof of Theorem 3.1, and the two
following conditions which replace conditions 2° and 3°.

5° f is measurable with respect to ¢ for any fixed ze¢R* and satisfies
the condition '

h
(3.6) f(t, )—f@t, w)eF(t,2—w), [If(t,0)]dt < +oo,
0

6° L is a linear (additive and homogeneous) and continuous map.

Now, the assertion of our theorem is an immediate conclusion from
Corollary 2.1 in [3].

Two following theorems are exact discrete analogues of Theorem 3.1
and 3.2.

THEOREM 3.3. If a real function g, the right-hand side of equation (1.3),
i8 continuous, in the set {2,...,n—2} X R*, satisfies condition (1.7), and
if the non-negative constants f—", (j =1,2,3) in (1.7) fulfil inequality (2.9),
then the boundary value problem (1.3) and (1.4) has at least one solution.
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Proof. Setting u} =v;, u} = Aul, v} = Vu?, u} = 4w} (ieN), we
write equation (1.3) as system
dub =u, Vi =, Aul =i, Vb =G0, ul, 6, )
(i = 2’ ...,%—2),

which with the boundary condition (1.4) has in vector notation the
following form

(3.7 Aa'"’i =f(i1ui) (ifN,s T_"(]-) —1,1, _1))1
(3.8) Zu =7,
where

F = (Fooy Fony F109 fln)ER‘ta Asui = (A“'}f Vui, A'“':, Vug) (teN),

and the mappings f: N xRE* - R%, L: (R)™*' —~ R* are defined by the
formulae

(w? 0,0,0), 1 =0,
(w2, w?, w', 0), t =1,

Fliy w0, w0t wh, 00t) = (w?, w3, o, G(3, wh w0t wY),  §=2,...,n—2,
(w2, w?, 0, 0), t =n—1,
(0,0,0,0), i =mn,

L(tgy «vny ty) = (Ugy Up, Ugy Un_).
Define mapping F: N xR* — of(R*) putting
{(wz,0,0,0)}, T :07

{(w?, w?, w, 0)}, =1,

{geB': ¢ = w?, ¢ = w?, ¢ =,
3 ~ .
|q4l<_§Pa'|w]|}7 t=2,...,m—2,

F (i, w', w?, w?, w4) =

{(w?, w3 0, 0)}, i =n—1,
{(0107070)}7 i=mn

(the convexity and closedness of F(i,w! w? w w*) for ieN,
w = (w?, w? w?, w')cR* is evident).

Let us notice that problem (3.1) and (3.2) is a particular case of
general problem (4.3) and (4.4) considered in [2] (namely, we have m = 4
and the components of multiindex s, which appear in definition of A,
are fixed as 8, =8y =1, 8, — 8, = —1).-

Thus, in view of Theorem 4.1 in [2], it is sufficient for the proof of
our theorem to verify that:
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1° The components of F satisfy the condition F* o, w) {0} if
s = —1 and F*(n,w) = {0} if s, =1 (weR* k = 1,...,4) F is upper

semi-continuous and homogeneous with respect to w (F (i, Aw) = AF (i, w)
for A¢R).

2° The components of f satisfy the condition f" (0 w) =0if g, = —1

and fk('n w)=0 if s, =1 (weR' %k =1,...,4), f is continuous and
satisfies the condition

.1y . e
(3.9) ’1‘1_’12 % 2; .i‘.lé’k 8(f (i, w), F (i, w)) = 0.

3° Lis continuous and homogeneous, i.e. Liw = ALw (AeR, ue(RY)™
4° The homogeneous problem

(3.10) Ay eF(i,u) (ieN),

(3.11) Lu =7
has only the trivial solution.
Conditions 1° 2° and 3° follow simply from the definitions of map-

pings f, -f’, L and from the assumptions of our theorem. Only for condition
(3.9) we give a strightforward calculation

1 - .
lim FZ sup 8(7(s, w), (i, w))

— o<k

h

3
1 - ~
= lim — sup (ini{|g(i,w1, w?, wd)—qd: gt < S P; luﬂl})
ot

k00 t=o wi<k
.1 ~
= lim = (n+1)P, = 0.

For to prove 4°, suppose that ue(R*)"*' i3 a solution of problem
(3.10) and (3.11). Then the components of vector » satisfy the conditions

3
Aut =i, Vui=ud, Adul =ul, 2 |l (ieN).
i=1

Hence, setting u; = v; (¢eN), we conclude by the homogeneouity
condition (3.11) that vector v = (v, ..., v,) e R"*' is a solution of difference
inequality (2.7) satisfying condition (2.8).

Therefore, by Theorem 2.2, we obtain from the third of estimates
(2.10) with 13,, = 0 that |»| = 0. Thus all components of v are equal to
zero and in consequence u = 0.
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This completes the proof.
In a similar way we obtain

THEOREM 3.4 If a real function ¢, the right-hand side of equation (1.3),
satisfies in set {2, ..., n—2} X R? the Lipschitz condition (1.8), and if the
non-negative constants f’, (j =1,2,3) in (1.8) fulfil inequality (2.9), then
the boundary value problem (1.3) and (1.4) has exactly one solution.

Proof. We reconsider problem (1.3) and (1.4) in form (3.7) and (3.8),
and we define the mappings f, f‘, Las il} t}}e 1_)roof of the preceding theorem.

Similarly as there one can verify that f, ¥, L satisfies conditions 1° and 4°
defined in the proof of Theorem 3.3 and the two following conditions
which replace conditions 2° and 3°.

5° f satisfies condition 2° defined in the proof of Theorem 3.3 with
(3.9) replaced by

(3.12) fi,2)—fli, w)eF(i,2—w) (ieN,w,zeRY).

6° L is linear (additive and homogeneous) and continuous.

Now, a strightforward application of Theorem 4.2 in [2] completes
the proof. '

4. Approximation theorem. Together with problem (1.1) and (1.2)
we consider now a sequence (for » =1,2,...) of discrete boundary
value problems

A7 VAR
(41)  VAVAW =h;g(t;° o, =% ”’) (i=2,..n—2),

y Yi ) 2
N
LR n o n o no__
(4"2) Vo = "0, Vn = Tony A"’o - hn"m’ an - h"nrlh’

where the function g: [0, 2] X R® — R is the right-hand side of equation
(1.1) and &, t? are given by the formulae

(4.3) h, =—, & =1ih, (ieN).
Let function g,: {2,...,n—2} X R? - R be defined by the formula

Wy Wy
by, I,
The theorem we state below states the possibility of approximating

(as n — oo) the solution of problem (1.1) and (1.2), if it is unique, by the
solutions of problems (4.1) and (4.2).

THEOREM 4.1 If the real function g, the right-hand side of equation
(1.1), is continuous in [0, h) X R®, satisfies the Lipschitz condition (1.6)
and if the non-negative constants P; (j = 1, 2, 3) in (1.6) fulfil inequality (2.3),
then

(4.4) Gn (8, Wy, Wy, wy) =h:g(t:;", Wi, ) {t=2,...,n—2).

7 — Annales Polonici Mathematicl XXIV
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1° for n sufficiently large there exists exactly one solution o™
= (V), ..., %) of problem (4.1) and (4.2), ’
2° lim o7 —y(t)] = 0 (¢ N), where y denotes the solution of problem

n—>00
(1.1) and (1.2), and this convergence is uniform with respect to i.

Proof. First of all, notice that the assumptions of our theorem
imply the assumptions of Theorem 3.2, so problem (1.1) and (1.2) has
exactly one solution. It is easy to see that the functions g, defined by
(4.4) satisfy in set {2,...,n—2} X R® the Lipschitz condition

(4.5) |§n(i7 Wy, Wy, Ws) '—‘.&n(iy ";’1’ "7727 ";’s)l

gPlh:l, |w1—"171|+Pah3; lwz—";’z[‘l‘Pahﬁlwa—’ﬁ’a .
We set
h\%2 1 h\3 1 r\* 1
w=nly) ) = n()

LA _ LA
MV W e = WA
2n

where A7 is the smallest positive eigenvalue of the operator T, defined
by formula (2.6).
It is to notice that, by Theorem 4 in [1], we have

limx*2} = h*i,,
N=r00

where A; = (3m+2¢/2k)* (see also Section 2.2 of [1]).
Therefore, by the definition of g,, we obtain

. 2h \* _ h{ 2h V 2k \*
(46)  limo, —Pa(m) +P 2_1:—(37*:—{—28) +P ‘(3n+2e)

what, by inequality (2.3), implies that g, << 1 for sufficiently large =.

Since problem (4.1) and (4.2) is a particular case of problem (1.3)
and (1.4), and the assumptions of Theorem 3.4 are fulfilled for sufficiently
large n, so for such » problem (4.1) and (4.2) has exactly one solution,
what proves 1° of the assertion of our theorem.

For to prove 2° we set y; = y(i}') (¢eN), where y: [0, k] > R is
the. (unique) solution of problem (1.1) and (1.2). By the Taylor formula,
applied to the function y in a neighbourhood of ¢}, we get

1 , 1

(4.7) h_n Ayy = y'(&), h_f;
1

3

1 ree
vAY: =y 0R), 5 AVAYE =y,
n

PAVAY? = y™ () (6 =2,...,n—2),

n n n n n
where &7, n7, o, 77 e(fi_gy Iiy2) -



Boundary value problems 99

Hence, by the assumption that y is a solution of equation (1.1),
we get

VAV Ay} = kpy"V (7)) = hag(e, y(z1), ¥'(+1), 9" (7))
(G =2,..0—2),

which can be written in another form

Ayt VAy?
(4.8) VAVAyr — h:.y(t:',yz,—yi, 'yi
bR

)+h:a(tz') (i =2,...,n—2),

where

oo o o A9 VA
8t = gle?, vlad), '), v D) — g (€, 2, S5, T,
’ n n

From (4.7) and from the definition of h, we obtain

lim (&2 —#) = lim (72— ) = im(o?— 1) = lim(F—#) = 0
n—oo

n—o0 —roo n—>00
what, in view of the continuity of g and v, y’, '/, implies
(4.9) limg, =0,

N—>00

where 6, = max|(7])|.
ieN

Set
uy =o7—y; (1eN).

Subtracting side by side equation (4.8) from equation (4.1) we obtain,
by the Lipschitz condition and the definitions of §,, and difference
operators, the following inequality

(4.10)  [VAVAUY| < Bo Py |[uf| + 1o Py | AuF| + B P\ V Aup| + k8, (ieN),
and we observe that the boundary value condition
(4.11) ug =0, u, =0, Aduy=a,h,, Vu,=2_§8,h,
is fulfilled, where constants a,, 8, are defined by the formulae
0 =710—Y (Op-hy)y  Bn =y (h—0 k) —ry  (6r, 0,¢(0,1)).
From the above definition of a,, 8, we obtain by (4.2)

(4.12) lima, = limg, = 0.

Let p be a polynomial of the real variable ¢ the third degree at most
satisfying the condition

(4'13) p(O) = 01 p(h) - 07 p'(hn) = auhni p(h—'h’n) = ﬂnhn'
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It is easily seen that such polynomial p has to be of the form

(4.14) p(t) = a,t®+b,t%+4c,t,

where
. — n? (o, — By) b — n((n—1)8,— (2n—1)a,)
" (n—1)(n—2)h?’ " (n—1)(n—2) ’

1"((’"’_1) an_ﬂn)

Cn ’
(n—1)(n—2)

and by (4.12) we have
(4.15) lima, = limb, = lime¢, = 0.
n—00 n—>00 —>00
Setting
wi =ui—p; (ieN),

where p? = p(lf), we obtain easily from (4.10)
VAV A < BAP, 0} + p2] -+ 5P, | Aw? + Ap}| +
+ b, Py |V Aw; +V AP} |+ k8,  (ieN),
what can be written also in the form
|V AV Aw}| < By Py |w}| - By Py | Aw}| -+ b5 Py |V Aw} | +- By Py (ieN),

where

Ap} VAp}
3=max(6n+P1|p§‘|+P2 14731 + P, | zpil)-
. ieN hy, by,
Obviously, by (4.9), (4.14) and (4.15), we have
(4.16) lim P} =0,

n—»00

and from conditions (4.11) and (4.13) it follows that
Wy =Wy, =W, , =w, =0.

Applying to vector w = (w,, ..., w,)eR**' Theorem 2.2 we get
(by the second of estimates (2.10))

4 ny/
(4.17) | Aw™| < i P"l'/" 3,
. ks — 0n
2V AT sin—
! 2n

Hence, using the evident identities
i1

t—1 n n—2
- 1
wf = M Awp = 3 Awp,  w}=— Y Awy = — Y Aup,
k=1

k=0 k=1 =,
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we obtain
n—2 _P/n
(4.18) il < 3 D 14wkl < 3Vn—2| 4w < Q1
k=1 n
where
(n—2)(n— 3) 1 Rt
Qn = %‘l/ nz T ]/n_4}f’" .
2n8in — 1
2n

By Theorem 4 of [1] it is easy to see that

2
lim @, = 2i— L_’
n—rc0 T '/’11
what owing to (4.6) and the convergence of Py to zero implies the uniform.
with respect to ¢ convergence of w to zero, as n — oco.
Hence, by (4.14) and (4.15), part 2° of the assertion easily follows
what completes the proof. '

5. Final remarks. Some further questions are related to the ones
considered in this paper. For instance, one can to ask if the methods
us€d in this paper allow to obtain some similar results

1° for differential and difference equations of general form (i.e.
if the functions g or ¢ depend on ¥y’’’ and AV Av,, respectively),

2° for differential and difference equations of higher orders.
The difficulty in a giving a positive answer to this questlon lies in

the 1mposs1b1.hty of estimating from above the integral f ly"""y|dt by
f (y'")%dt (and in analogous d].f.ﬁculty for suitable sums in dJscrete case)

m case 1° (for non-linear equations since, for linear this difficulty may
be omitted — see Introduction), and in too much complicated computations
leading to evaluations of 4, or A7 in general inequalities (2.2) and (3.5)
(for 1> 2) from [1] in case 2°.

Further question which concerns the problem of an optimal evalua-
tion of the length of interval [0, 2] on which the a priori estimates of
solutions of differential and difference inequality hold true is far much

h

complicated. Another way leading to an estimation for f (y”)2dt (or
[}

|V Av|) which consists in using first the Opial inequality — see [7] (or
its discrete analogue — [4]) and next the Wirtinger inequality (or its
discrete analogue — see inequalities (2.6) and (3.6) in [1]) gives less
exact result. It seems, however, that some progress here may be obtained
by applying the known principle of maximum of Pontriagin (see [5]).
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