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On meromorphic solutions of a functional equation

by J. MATKOWSKI (Katowice)

\We consider the problem of the existence and uniqueness of mero-
morphic solutions in a domain U for the equation

(1) ¢[f(2)]—g(2)p(2) = h(2),

where ¢(2) is the unknown function and f(2), ¢g(z) and h(2) arc known
functions of one complex variable z.
We assume that:
(I) The function f(z) is analytic in a domain U, f(U)C U and the
boundary of the domain U contains at least two finite points.
(II) f(z) =2 for ze U #f and only if 2= a, ae U, and

0<|e]<1, where ¢c= f'(a);

(LII) g(2) and h(z) are meromorphic functions in the domain U.

This problem was investigated by Raclis [3] in the case wherc
¢(2) = —1 and by Pranger [2] in the case where ¢(2) = const under a little
more restrictive assumptions concerning the function f(z).

Our considerations will be based on the following theorem, which
has been proved by Smajdor [4]:

THEOREM 1. Let us suppose that the function f(z) is analytic at the
point 2 = a

fz) = a—i—c(z—a)-l-z bk(z—a)k for lz—al <1,
k=2

where (¢| < 1, and h(z, w) is an analytic function of two complex variables z
and w at the point (a, b) with the expansion

o0

hiz, w) = 2 anm(z_a')"(w - b)m ’ oy = b

n,m=0

valid for |z—a| <r,, \w—>b] < R,. Morevver, let 1—cray # 0 for cvery n
(n - 1’ 2’ alo)-
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Then there exists a unigque solution ¢ of the equation

p(2) = h{z, p[f(2)))

analytic at the point 2 = a and such that ¢(a) = b.
Let us denote by f"(z) the n-th iteration of the function f(z):

=2z, &=

Now we prove the following

Leuma 1. Let hypotheses (I), (II) be fulfilled. Then the sequence {f™(z)}
of the iteratés of the function f(z) tends to a uniformly on every compact
KCU.

Proof. Since f/(U)C U for every positive integer n, the sequence
f*(2) in U omits at least two values, namely those lying on the boundary
of U. On account of Montel’s theorem [1] the sequence {f"(2)} is a normal
family in U. We shall show that the sequence {f"(2)} tends to a constant
function equal to @ in a neighbourhood of the point 2 = a. There exists
a number # < 1 such that |f'(a)] <® and there exists a number r > 0
such that the inequality

|f(2)—al = [f(2)—f(a)]| < #|e—a]
holds for ze U and |z—a| <. By induction we obtain the inequality
(2) \f"(2) —a] < §"lz—aj
for z¢ U and [z—a| < r. From (2) it follows that ﬂligj“(z) =a for 2e U

and |¢—a| < 7. Since f"(z) is a normal family, this completes the proof
of Lemma 1.

LeEMMA 2. Let the function f(z) fulfil hypotheses (I), (1I) and let the
Sfunctions g,(z) and h,(2) be a meromorphic in the domain U. Moreover, let
us suppose that the functions ¢,(z) and hy(z) are analytic al the point z = a
and g,(a) # 0.

If there ewists an analytic function @(2) in the meighbourhood U, of
the point z = a such that

(3) (2—a)glf(2)]— u(@)p(2) = hy(2)  for z € Ua (r e N},
then there ewvists a unique meromorphic function y(z) such that
(4) (z—a)p[f(2)]—qu(2)p(2) = My(z)  for z2¢ U,

(5) p(2) = ¢(2) for zeU,.

Proof. First we suppose that ¢,(z) and h,(z) are analytic functions
in the domain U and ¢(z) # 0 for z e U. Let K C U be any compact. Let
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us put K, = K, K, = f(K), Kn = f(Kn-1) = f"(K). On account of Lemma 1
it follows that there exists a positive integer n, such that f"(X)C U, for
n = m,y. Since f(2) € K, C U, for z ¢ K,,_,, we can define the function ¢,(2)
in the following manner:

(2—a) o[ f(2)]—Mu(2)
9:(?)

Similary we define the function ¢,(2):

(- a)'(pl[f(z)] — hy(?)
Pa(2) = ) for ze K, s,

»i(2) = for ze K,_, .

=)l (@)= h(2) _
@n(z) = 7?) for ze K, =

Now we put
yr(2) = @a(2z) for zeK.
We shall prove that yg(2) is independent of the choice of n. Let m
be a positive integer, m > n, and let v,(?), ..., ym(2) be functions defined

on K in the same manner as ¢,(z), ..., pn(2). We can suppose that m < n.
Hence and from (3) we obtain

Pn-m(2) = @(?) for z ¢ K= f"(K)

> gn-nlf"(2)] = @[f™(2)] for zeK .
It follows that
(2—a)on_m[f"(2)]—M(2) _ (2—a)@[f"(2)]— M(2),
9.(2) 0(2) ’
thus

‘Pn—m+1[f ()] = '/’L[fm

Hence in the same manner we obtain

Pn—miedl [ 2] = wlf" ()]

Finally @n(2) = pm(2) for z e K.

Now we take a compact set K* C U and the function pge(2). We must
prove that yg(2) = yre(2) for z ¢ K ~ K*. Let p be a positive integer such
that fP(K v K*) = f°%(K) v fP(K*)C U, and take the function yx x«(?).
Since we may take n = p, it follows that yx(2) = yr_xe(2) for 2 € K. Similary
we get yre(2) = yrors(2) for z € K*, 80 pr(2) = ygre(z) for z ¢ K n K*.

Let {K,} be a sequence of compact sets such that K, C K, for
every n and UIK,, = U. We put

n=

p(2) = yg,(2) for ze Ki.
21"
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Evidently, y(2) is an analytic function. It remains to prove that (4)
and (5) hold. If z e U, then there exist positive integers p and ¢ such

that z e K = K, and f(K)C K, and we obtain

(2= @) pu-[f(2)] — Iu(2)

¥(2) = yk(2) = e
_ =)yl f(2)] - In(2)
9:(2)
_ = a) el f(2)] - Iz)
9i(2)
_ e—a)y[f(2)]— ()
(2) '

Taking K C U“ it is easy to verify that (5) holds.

Now we assume that g¢,(2) and k(2) are meromorphiec functions and
their poles are different from @. Then, as in the preceding case, we shall
obtain meromorphic function y(z) in the domain U. In any compact
K C U the function y(z) has a finite number of poles as the quotient of
meromorphic functions. This completes the proof of Lemma 2.

By N we denote the set of positive integers. For a function a(z) we
denote by Z(a) the order of the zero of a(z) at the point 2 = a and by P(a)
the order of the pole of a(z) at the point z = a.

Now we shall prove the following

THEOREM 1. Let hypotheses (1)-(11I) be fulfilled. Let us suppose that
the functions g(z) and h(z) are analytic at the point z = a and, moreover,
that

gla) #0,1,¢c  for k= +1, +2, ...

Then there exists exactly one meromorphic solution of equation (1)
in the domain U. This solution is analytic at the point z = a and ¢(a)

__h(a)
1—g(a)
Proof. It is easy to verify that the function
w— h(z)
g(z)

hiz,w) =

h{a)

m and h(a, b) = b. Since

is analytic at the point (a, b), where b =

g(a) # ¢*, we have
c“
l—agye*=1———#0 for nelN.
" g(a) )
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According to Theorem I there exists exactly one analytic solution
of equation (1) in a neighbourhood of the point 2 = a. By Lemma 2 we
may extend this solution onto the whole domain U. This is a meromorphic
solution of equation (1) in the domain U.

Now suppose that there exists another solution. It must have the
form

(6) o(e) = )

(z—a)"’

where ¢,(2) is analytic at the point z = a, ¢,(a) # 0 and » ¢ N. We have
also

(7) f(z) = a+(2—a)fi(?) ,

where f,(2) is an analytic function, and fi(a) = ¢. Putting (6) and (7) in
equation (1) we obtain

® G-y THET  (e-a)
Since g(a) # ¢~7, the left-hand side of (8) has at z= a a pole of

order 7, whereas the right-hand side is analytic at the point z = a, which
is impossible. This completes the proof.

THEOREM 1’. Let hypotheses (1)-(III) be fulfilled. Let us suppose
that g(z) and h(z) are analytic at z = a and,

gla)=c¢"?, where peN .

Then there ewists in the domain U:

(a) ewactly one meromorphic solution of equation (1) that is analytic
at 2 = a;

(b) a one-parameter family F of meromorphic solutions of equation (1)
such that for every ¢ ¢ F' we have P(¢p) = p.

There are no other meromorphic solutions of equation (1) in U.

Proof. (a) The proof is analogous to that of Theorem 1.

(b) Suppose that there exists another meromorphic solution of
equation (1). It follows from (a) that it must have form (6), ¢,(a) # 0.
Putting (6) in equation (1) we obtain equation (8).

Hence we conclude that mnecessarily r = p. Putting r = p in (8),
we get the equation

_ plf@)] - - o) L)k ()
9

(g(a)[fr(@)]” = 1, and 1 —¢c"ay, = 1 —c¢* % 0 for n e N).

() Pu(%)
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Theorem I says that there exists a one-parameter family of local
analytic solutions of equation (9) (here b may be arbitrary). We can
extend these solutions onto the whole domain U. If ¢,(2) is a meromorphic
solution of equation (9), then ¢(2) = ¢,(2)/(z— a)” is a meromorphic solu-
tion of equation (1). Evidently these are all the meromorphic solutions
of equation (1).

THEOREM 2. Let hypotheses (1)-(11I) be fulfilled. Let us suppose that
g(2) is analytic at the point z = a, and h(z) = h(2)/(z— a)?, where h,(z) is
analytic at the point z = a, hy(a) # 0 and q e N. Moreover, let

gla)#0,c* for k=0, +1, £+2,..
Then there exvists exactly one meromorphic solution ¢ of equation (1)
in U, and P(p) = q.

Proof. If a function ¢(z) is a meromorphic solution of equation (1),
then it must have form (6), where ¢,(a) = 0 and r ¢ N ().
Putting (6) and (7) into equation (1), we obtain

(10) _olf@) o ¢ ()
e—a T (—a)  (z—a)

Since g(a) # [fi(a)] "= ¢~ ", we conclude that r = ¢. Putting r = ¢
in (10), we obtain for ¢,(2) the equation

ol f(2)]—[fi{?) (2))*ha(2) )
g(z)[fi( 2)]

(11) Pu(2) =

n

g(a)

of exactly one solution ¢, of equation (11) that is analytic at the point z= a.
By Lemma 2 we can extend this solution onto the whole domain U. The
function ¢(2) = ¢,(2)/(2—a)? is the only meromorphic solution of equa-
tion (1).

Remark. The example of the equation
(et —p(2) = 1fz

shows that in the case where ¢ = 0 there may be no meromorphic solution
of equation (1). Indeed, if ¢(2) is a meromorphic solution of this equation,
then ¢(2) has a form ¢(2) = @,(2)/¢", where ¢,(0) = 0 and r ¢ N. But then

Here 1—ctay =1— ;lz 0. By Theorem I we get the existence

(1) Every meromorphic solution of equation (1) must have a pole at z = a, for
otherwise the left-hand side of (1) would be analytic at # = a, whereas the right-hand
side has a pole at z = a.
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the left-hand side has a pole of order 27 and the right-hand side has a pole
of order one.

THEOREM 2°. Let hypotheses (I)-(I1L) be fulfilled. Let us suppose that
g(2) is analytic at 2 = a, and h(z) = hy(2)/(2— a)?, where h,(z) is analytic
at z=a, hya) #0 and ge N.

Then (a) in the case where

g(a) = o

there exists mo meromorphic solution of equation (1).

(b) in the case where
gla)=c¢?, where p>gq,

there exists exactly one meromorphic solution of equation (1) with P(p) = q
and there exists a one-parameter family F of meromorphic solutions such
that we have P(p) = p for ¢ ¢ F.

Proof. The same argument as in the proof of Theorem 2 shows
that if ¢(2) is a solution of equation (1), then ¢(2) must have form (6),
and for ¢,(2) we obtain the following equation:

12 . _ alf@l-hE AR
- nie) 1D

Putting z = a we obtain ¢,(a) = ¢,(a) —¢~?h,(a), which is impossible.
This completes the proof of case (a).

(b) Evidently, every meromorphic solution of equation (1) has
form (6). For ¢,(2) we obtain equation (8). It is easy to see that a necessary
condition of the existence of an analytic solution ¢,(2) of equation (8) is
r=gq or r=27p.

Let r = ¢; putting A(2) = h(2)/(z—a)? and r = ¢ in (8) we get for
o,(2) equation (12).

Here 1—c"ayy =1—c*?~ 23~ 0 for n=1,2,3,... By Theorem I we
get exactly one analytic solution of equation (1). By Lemma 2 we
may extend this solution onto the whole domain U. Let ¢,(2) be
a meromorphic solution of equation (12). Then ¢(z) = ¢,(2)/(z—a)? is
a meromorphic solution of equation (1) and, evidently, P(¢)= ¢q. Put-
ting h(z) = hy(2)/(z—a)? and » = p in (8) we get the equation

_ el (1= h@HEPE—a "
g(2) [fl(z)]p

(13) ®1(2)

As in case (b) of Theorem 1, we get a one-parameter family of solu-
tions of equation (13). By Lemma 2 we may extend these solutions onto
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the whole domain U. Let ¢,(2) be & meromorphic solution of equation (13).
Then ¢(z) = py(2)/(2— @)” is a meromorphic solution of equation (1). This
completes the proof.

THEOREM 3. Let hypotheses (1)-(I11) be fulfilled. Suppose that g(z)
has a pole and h(z) i3 analytic at z = a. Then there exists exactly one mero-
morphic solution ¢ of equation (1). This solution is analytic at z = a and
fulfils the condition Z(p) = P(g)+Z(h).

Proof. Suppose that ¢(2) is a meromorphic solution of equation (1)
that is analytic at z = a. Putting in (1) g(2) = g.(?)/(z—a)” and h(z)
= (2—a)%h,(2), where g¢,(2) and hy(z) are analytic at z = a, g,(a) #0,
hi(a) # 0, we see that Z(¢) = p+¢. Hence ¢(2) must have the form ¢(z)
= (z—a)’*%,(2), ¢i(a) # 0. For ¢,(2) we get the equation

_ = oA 0lf ()] h(2)
9:(?) '

(14) Pi(?)

From Theorem I and Lemma 2 it follows that there exists exactly
one meromorphie solution in U of equation (14). Let ¢,(2) be this solution.
Then ¢(2) = (z—a)* g, (2) is a meromorphic solution of equation (1).
Suppose that there exists another meromorphie solution of equation (1).
Since we have already found all solutions that are analytic at z = a,
it must have form (6), where ¢,(a) # 0 and r ¢ N. Thus we get for ¢,(2)
the equation

ilf ()] (&) () — h(z).
(z—a)Th(2)] (2—a)® (z—a)

On the left-hand side there is a pole of order p+ ¢ and on the right-
hand side there is an analytic function at z = a. This is impossible, which
shows that there are no other meromorphic solutions and completes the
proof of the theorem.

Similary we can prove the following

THEOREM 4. Let (I)-(I11) be fulfilled. Moreover, suppose that g(z)
= Gz — ), k() = W(2)(z— )%, where g(a) £ 0, hya) # 0, and

p,qeN.
Then there exists exactly one meromorphic solution ¢(z) of equa-

tion (1), and

(a) in the case of p = q it is analytic at the point z = a and ¢(a)
= — hy(a)/g\(a);

(b) in the case of p < q it has a pole at 2 = a and P(p)= q—p;

(e) in the case of p > q it is analytic at the point z = a and Z(p)
=P—4q
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