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On a generalization of the convolution

by E. GESzZTELYI (Debrecen)

Let C(a, oo) be the set of all continuous real functions f of a real
variable £ > a > — oo, Let K(z,{)>a be a real-valued continuous
function in the domain D: a <t < & < oo, and let ¢(z) be a real function
of bounded variation in every finite interval a < z < X. For f, g e C(a, o)
let f% g be the function whose value at z is

(1) Fxg@ = [ fIK (@, )1g(t)dp(t) .

If K(z,t)=xz—1t, ¢(tf)=1t and a = 0, then (1) reduces to the con-
volution

(1.1) [f@—tyg@war.

Therefore we will use for f% g the term ‘‘generalized convolution”.

It is well known that the set C(0, oco) forms a commutative ring with
respect to addition and multiplication in the sense of (1.1). It follows
from Titchmarsh’s theorem that this ring has no zero divisor [1].

We raise the following question: For which functions K and ¢ does
the set C(a, oo) form a commutative ring without divisor of zero, where
the generalized convolution (1) is taken as the ring multiplication?

In connection with this problem we prove here the following

THEOREM. Let K (x,1) be sirictly monotonic in the variable t for every
fized x and conlinuous in D: a <t < x < oo, and let p(z) be a normalized (1)
monotonic function in a < z < oo.

If C(a, oo) has no zero divisor with respect to the generalized convolu-
tion (1) and if
(2) 1%f=F%1eC(a, )
for every feC(a, oo), then

(}) p(z) is said to be normalized in [a, co) if ¢(a) = 0 and

¢(w)=wm——l (@ <z < o0).
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(a) @(x) is continuous and strictly monotonic in a < x < oo.
(b) The function K(x,t) can be expressed by the form
(3) K(z,t) = o (@) —o(®)],

where ¢~Y(x) 18 the inverse function of ¢(x).

(e) C(a, oo) i a commutative ring with respect to the generalized con-
volution as ring multiplication.

We give the proof in several steps.

§ 1. ¢(x) 8. continuous in a < & < oo.
Proof. Since f(t) =1 € C(a, o), we get by (2) (?)

p(@)= [ dp(t) = 1%1 ¢ C(a, o).

§ 2. ¢p(x) is strictly monotonic in a < & < oo.

Proof. If ¢(x) were constant in an interval a<a< o < f < oo, we
should have

1%f= [f)det) =0 (a<a< o)

for the function

if z¢la,p],

0
J(@) = =(a;—— a)(x—pB) if ze[a,p].

This is a contradiction since, by hypothesis, C(a, co) has no zero
divisor with respect to operation (1).

§3. If a<t<ax < oo, then
(4) a< K(z,t) <.

Proof. We make use of hypothesis (2). This may be written in
detail by (1)

(5) [ & (@, )dp(t) = [ f(Hydp(t) .

Proceeding to the proof of (4), suppose that it is not true. Then there
is an x;, and ¢, < z, such that
(6) Kz, 4) > w, .

(*) It is enough to assume only 1#1 ¢ C(a, o) and the supposition f«1 ¢C(a, oo)
for all f eC(a, o) can be left aside.
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Then, by the continuity and the strict monotonity of the function
K(t) = K(z,, t), there exists a largest interval [a, 8] C [a, #,] containing ¢,,
so that
(M) K(t)= K(z,1) > 2,

for all a < i< B8, and
K(t) < o,
if t¢[a,p]. Let A= min[K(a), K(f)] and B = max[K(a), K(8)]. We
have, by strict monotonity of K(t), 2, = A < K({) < B, A < B (L ¢[a, B)).
Let C(A, B) be the space of the functions g continuous in [4, B].
Clearly,

B
(8) Lg= [ gLE (1)1dp(t)

is a linear bounded functional on C[A, B]. We write (8) by the formula
for the change of the variable of a Stieltjes integral

B
9) Lg= + [ g(A)de[E (M),
A

where K~ '(1) is the inverse function of K ().

The set of all elements g,eC(A, B) for which g,(A4)= g,(B)=10
will be denoted by Cy(4, B). Cy(4, B) is naturally a subspace of C(4, B).
Let g, be an arbitrary fixed function of Cy(A, B). Define

_ [9%(t) if te[4, B],
Folt) = {O otherwise .
Then f, e C(a, c0) and we have by (5) for x =2, = A

ﬁ Eo )
[ glEW1de(t) = [ ft)dp(t)=0.

Hence
B

(10) ILg= + Af g()dg[E(1)] =0

for any ¢ € Ci(4, B).

It follows from the continuity of the function a(1)= @[K ()]
that (10) holds for any g e¢C(4, B). To prove this define the functions
gon(4) for enough large » as follows:

fng(A+%)-(l—-A) it Ae -A,A+%],

" ~— r—

. 1 1
gon(h) = { 9(3) it 2e[a+t,5-1],
1 . 1
'ng(B—;)-(B—l) if 1e LB—;,B] .

24 %
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Since go,n € Co(4, B), we get by (10)

B
(11) 0= [ gonl2)da(2)
4
A+% B-%
= [ moa+)a-aam+ [ gndai+
i et
H

+ | ng(B—%)(B—l)da(A)

-1

It s easy to see by the continuity of ¢ and a that

A+=
fng(A—l—%)(l—A)da().)»O if n>oo,
A

B

j ng(B—-l—)(B—l)da(l)—>O if n>c0,
B-L "

B-lﬁ 5

f g(l)da(l)—>fg(1)da(z) it n>o0.
A+ <

In virtue of (11) we obtain

B
(12) [ g(dyda(ry=o
A

for any g e C(4, B).

Thus, in virtue of the theorem of F. Riesz concerning linear func-
tionals (?), (12) implies that a(1) = <p[.K"(1)] = ¢ = constant in [4, B),
i.e. ¢(t) = ¢ in [a, ], which leads to contradiction, since by § 2. ¢(z)
has no points of invariability.

§ 4. The equation
(13) K(z,t)= 12

has a solution in a <t <z for each fized x and a < A< «.

(®) See, for example, [2], p. 102.
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Proof. Let us suppose on the contrary that there exist an interval
[a, 2,] and a number 4, €[a, x;] such that

K(x,,t) # 4

if te[a,x,]. Since the function K(z,,!) is continuous, we may assume
a< i <a.

By the continuity of K (x,,t) we have only the following two possi-
bilities:

(i) K(xy,t) > 4, for all te[a, x,],

(1) K(», 1) < A, for all te[a, z].

Let

A—x fa<axr<2,
fi@) = { if A<z,
If i<i< K(x,t), then fi{K(x,?)] = 0 and thus by (5)

A

O—ffa[Kwnt)]dw(t)—ffz(tdrp(t)—f (A—t)dp(t) f«p(t

a

for each Ae€[a, 4,]. By the continuity of ¢(x) this implies that ¢(4) =0
in [a, 4;]. Since ¢(x) has no points of invariability, case (i) is not possible.

If K(z,,1) < 1, <21<uw,, then fi[K(z,,1t)]= A— K (x,, t). Consequently
aceording to (5)

Iy

a 2
[owat= [ a—vap) = [ fiyde(t) f FLE (m,, )]dp(t)
= [ A=K (&, 0]dp(t) = 2p(x,)— f K (x,, t)dp(t)

i.e.
A I
[ oyat = dp(@)— [ K(,, t)dp(t).

Thus we have after derivation ¢(1) = ¢(z,) for all 1 €[4;, 2,], but this
is impossible by § 2.

This contradiction proves the statement.

§ 5. It follows from our supposition that for K (x, t) only the following
two cases are possible:

(I) K(x, 1) is, for each fixed #, increasing in ¢,

(II) K(»,1t) is, for each fixed #, decreasing in f.

The following statements are obvious according to § 3, and § 4:

(14) K(r,a)=a and K(r,2)=ax foral z>a
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wm case (1),
(15) Kx,a)=2 and K(x,x)=a foral z>a
in case (II).

§ 6. K(x,t) 18 (for each fized x) decreasing in t.

Proof. Suppose that K(z, t) is increasing in ¢. The solution of equa-
tion (13) will be denoted by ¢t = K '(z, 4).
‘It follows from (5) by (14) that
z T z
[ fdpt) = [ fIE (@, Dldp(t) = [ f(DdplK (@, D].
a a

a

Since the function [ K ~'(z, 4)] is continuous and ¢[K (=, a)] = ¢(a)
= 0, both ¢(1) and ¢[K '(x, 1)] are normalized in [a, ). Thus by the
theorem of F. Riesz we obtain ¢[K '(x, 1)] = ¢(2), i.e.

(16) o(t) = o[K(z,1)] (te[a,s]).

Since the function ¢(f) is strictly monotonie, it follows that K(z, ) = t.
The generalized convolution (1) has in this case the form

Fxg=[fygwapq) .

It is easy to see that C(a, co) has zero divisors with respect to this

multiplication.
Thus K(z,t) may be only decreasing in ¢.
§ 7. We have

(3) K(z,1) = ¢ '[p(@)—e(1)] .

Proof. Fix ». Since K(x,?) is decreasing, it follows from (15) that
K Y2,2) = a and K™Yz, a) = . Thus using (5) we obtain

[1(nde) = [ fydp) = [ 1K (@, )]dp(t) = [ F(2)d[E (@, 1)]

= —[ F)dpIE (@, N = [ f(Da{—g[E (@, D]}

a

= [f(ha{p(a)— B (@, 1]} .
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Since
(@) — oK (2, a)] = p(@)—p(x) = 0,

the continuous function a(1) = ¢(z)—¢[K~'(x, 4)] is a normalized function
of bounded variation. Hence by F. Riesz’s theorem

9(2) = p(z) - ¢[K ™ (z, 2)] .
Substituting t = K~ '(«, A), i.e. A = K (&, 1), in this equation, we get
p[K(z, )] = p(@)—p(l).

Denote by ¢~(z) the inverse function of ¢(x); then we obtain (3).

§ 8. C(a, oo) is a commutative ring with respect to the gemeralized
convolution

(17) F¥g= [ flo~ o) —e R gt)dp(t)

as ring multiplication.

Proof. It is obvious, by the continuity of ¢, that f%geC(a, oo)
for all f, g €C(a, oo). Similarly the proof of the distributivity of this
multiplication is omitted. Thus it remains to prove only the commutativity
and the associativity of the product (17).

Let f(x) be an arbitrary element of C(a, oo). Then, on the supposition
that ¢(«) is increasing (%),

(18) F(y)=flp~(4)] eC(0, 00} (0<¥y < o0)
and (18) establishes a one-to-one correspondence between the sets C(a, oo)
and C(0, co), in which the product (17) corresponds to the ordinary

convolution product (1.1). Indeed, by substituting = ¢=(z), (@) =¥
in (17) we get

b4
frgle= )= [ Fly—)G(r)dr,

where F(y) is defined by (18) and similarly G(y) = g[e¢~*(y)]. Thus the
product (17) is ecommutative and associative, since the ordinary con-

() If @(z) is decreasing, then y (z) = — @ () is increasing. Therefore by substituting
p(t) = —p(t) in (17) we get — (fxg) instead of fxg.



358 E. Gesztelyi

volution is commutative and associative. This asserts the isomorphism
of rings C(a, oo) and C(0, o).
The proof of our theorem is thus complete.

The author is indebted to Z. Dardczy for some valuable remarks.
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