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Hence, for all 4,j with 1 <4 <§,

(?)AJ_ —0.

It follows thaf A, =0 unless j = p%, where p i3 the c]nmc‘(ellsfle of
- GT(g). Since ot fl(modg—— 1), we must have p' = ¢", where k= 0.

(5.25)
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ACTA ARITHMETICA
XVIL (1871)

On the changes of sign of a certain class
of error functions
by

J. H. ProsceaN (New York, N.Y.)

§ 1. Introduction. Since its introduction by Euler in the eighteenth
century, ¢(n) and its behavior have been of great interest in numbel the-

ory [1]. During the next century G. L. Dirichlet [2} proved that Z‘ o (n)

~ 3N?/n? and F.Mertens ((6];]4], p.268) showed the error to be O(NlogN)
this has only recently been improved, to O{Nlog** ¥ {loglog ¥)*®), by A.
‘Walfisz [11]. The average order of p(n) is thus 6n/x?% and it is well
known ([4], p. 267) that limsupe(n)fn =1 and that 2l (n) = oo
for all 1)0=;1t1ve 8; there is also the theorem due to Landau [5] that

; (Lp(n) ~ (3L5Z(3)/2n*)log N,

Thess results all suppert the assertion that ¢(n) behaves agymptoti-
ea]ly very imuch like n. It is then reasonable to look ab ig’n—%l\? ? and
}—' 1-N (Which are "

Awn

bagis one Would expect E (0) 7

1N and 0) for qualitative information about the
N

errors E(N 3N2/x? and H(N) = } ¢(n)/n—G6N[=", on whieh
1

oo and H(x) very small. Sylvester

([97, [10]) conjectured that HB(z) > 0 for all ». Between 1930 and 1950

it was shown that in each of these respects p(n) differs radically from n.
Pillai and Chowla [7] proved that the average order of H(n) is 3/=* and
that of B(n) is 3n/2x% which comes up to expectation; but they also
proved that B{x) = 2(zlogloglogx). It follows that H () = £ (loglogloga)
refuting the conjecture that H{z) is small. Subsequently M. L. N. Sarma
[8] showed that H (820) is negative; in 1950 P, Erdds and H. N. Shapiro
[3] proved that H(x) = £, (logloglogloge). :
The purpose of this paper is to show that this behavior is
not peculiar to ¢(n), but is shared by a large class of functions f(n)
= n Y p(e)ple)je, where p(n) satisties certain admissibility condiftions

e

given below. The method is based on an extension of that used by Erdos
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and Shapiro, and is mmlva.ted by the following: if H(x) were linear we
wonld have H(An—B) = H{da)—H(B), and to contradict H{x) > 0 it
wonld suffice to find 4, B, and » such that Adn > B and H(dn) < H(B).

H(x) is not linear, but can be smoothed out by wemglng, it is pogsible
to find an averaging opemtm ¥ which gives

< WH (4n—B) < 1—H{(B).

The operator ¥ is constr_uctec’[ in two stages. The firgt hag the nature
of & convolution; it is the averago

1
(o 5 st 2, #m)

medx n=—H{d)

The second is o lmiting procedure; letting 4, he the product of all primes
less than or eqnal to » then ¥ i given by:

2_1'2_@2)"1( Y pmAEW).

oA, M Mg,
new— B )

H—00 X-r00

YI[H, B] =lim hm(

Under suitable hypotheses it follows that

(1.1) YIH,B] = —H(B)+f(B)B

If we have f(B) < B and can prove that H (B) is large for infinitely many
B, equation (1.1) immediately implies that H(») changes sign infinitely

often. The same argument is refined to provide £ -estimates for H ().
The results will concern frnetions fin) generated by pin) satisfying:

(i) #(n) is a completely multiplicative, 1ntegel valued, arithmetic
fanetion.

(i) p(1) =1.
(i) 0 < p(n) <n for n> 1.

{iv) ‘s}j p(n) =ols Y pn

)jm) ag & - oo,
NEL .

For guch f1111¢tibns we prove:
N
(i} H(N) = ,Ef n)jn—al = 0( Y p(n)jn) = o(¥
. w £

(). H{¥) = 2(logloglog N).

(iif) Hmsup H(N) = <oo; liminf H (N) == —oco.

Under somewhat stronger hypotheses, (iii) is strengthened to

(iv) H(N) = 2, (loglogloglog W).

Finally, an attempt is made to estimate the number of changes of
sign of H Lm); however unresoived difficulties 'remain,'relajte(l to transform-
ing the information obtained by these methods into explicit form. The
nature of this difficulty is exhibited in the special case f(n) = @(n);
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for this case the method produces IL(z) as o lower bound for the nwmber
of changes of sign of H{n) in the interval (1, ), where IL(z) is the smallest
integer K such that the 4K -fold iterated logarithm of » (to a sufficiently
large base) is less than 2.

§ 2. Notations and notions. We will use the following notations and
conventions:

(i) 3 g(n) will always mean X

NEEE Lmie -[.1:1
it will be explicitly displayed.

(i) Wherever ¢ s nsed as index in a sum or produet it will be un-
derstood to take only prime values.

(iif) F(z) = (G (o) means P(x) # o{G(x)).

(iv) F(x) = £, (G(m)) Means Lhue is a positive constant C such
that F(x) = - G(m) for infinitely many . F(z) = Q_{G(z)) means there
is a constant D >0 such that F{z) < —D~G(m) for infinitely many .

Plw) = Q,(G(2) means that Fle) = Q.(6(z) and F(z) = 2_(6(2).

The following functions will be needed, and are hated here for refe-

o0

rence:
o= Dumppt,  F = Y
1 1

= D pm, O =

[T}-22),
nsY N q

g(n); if the lower limit iy not 1,

- i,

E(N) = D p(n),

NV ne N
= D p(n)n?, SNy = D plw)p(n)jn?,
>N >N ’

fl4, ) "
B—3f(A)C(A)A—C(4) V(_ k! ) ¥ B> 1,
rn, 3y | ETHOOD 2l

aB—3f(4)0(4)/A B

A function p(n) will be called admissible if:

(1) p(n} is a completely multiplicative, integer-valued, arithmetic
function.

(2) (1) = 1. .

B3) 1kpm<n—1, for o >1.

(4) K (2) = olaL(x)} a8 » — oco.

B=0,1.
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The objects of our investigations will be the funetions

o []-22)-

gmn

M u(@)p(d)nja,

dln

H(N) = Z fln)jn—aN

ns N
and

L) = ) f(n)—

NNV

b2,

§ 3. Preparatory lemmas, In this section the basic properties of
admissible functions are established.

Lmnma 1. If P(n) is completely muliiplicative, then

(a) G(zx) = ZP H F(m/az 1 e w, if and only if
nax -
2‘” n)Pn)G{zin), 1Lo<w.
(b) ¢{n) ZP(CI (nfd) if and only if
dln

fin) = > w(@)P(d)g(nd).

|5
This lenma is a generalization of the Mobius inversion formulae,
and the proof is well known ([4], pp. 236-237).

Leanva 2. If p(n) 2 1, p(n) is completely multiplicative, and

= o

converges, then

Zu(w(n

converges absolutely and a[’ =1,

Proof.  Absolute convergence follows immediately from u?(m) < 1;

_then, as both sums converge absolutely, they can bo multiplied smd
rearranged to give

nﬁ’—‘;‘;‘ plm)p(m)p(n ) {mint = ZZ'“('""’ ¢) e

e=1 mle

(1).

icm
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LeMya 3. I p(m) =0, K(n) = o(mL(m)), and Bla) = O(1), then
L(z) = o).
- Trroof. Using Schwartz’s inequality, we have

ol ={ v L < Sy (327

ST

+)
or
(D} = (ml}(w)).

TawmA 4. If p(n) =0, B(») converges, and L(z) diverges, then the
following three condilions are equivalent:

(i) K (@) = olaL{x)),

(i) T{z) = o{L(m}/a),

(ifi) J () = o(mL(m)).

Proof. That (i) implies (i) is clear, since Li{x) =
show mnext that (i) imples (iii).

The hypotheses of this lemma together with (i) provide, via Lemma 3,
that L(z) = o(x). Hence:

1 for #= 1. We

& i
Somz(2) = X smr{7)+ sz
N a2 oy nsmn
p(n)
< o + 7 (m)L{2)
n;]xg TlopnET
= saL(2)+ Lz K (2)

which implies (%) = o(wL(m)]
We now prove that (i) is equivalent o to (i). Assume (i); then, ummmg
by parts,

3.1) Z

o+ lsngy

K@)
yz

pln) _
nt .

K (@)
@

1
K(’n) —n'; -
cEnsy—1

7
(n1p?

for " suﬂiciently large, K (n) < enL(n); thus for & sufficiently large we

have
pm) L) 1 )
2 nt A y 2 L\ PR
&1y gnsy—1
Summing again by parts,
' I | n) | D) L)
P _, () Y Z 10(2 .
n? y & Y
2+l=n<y a1 <y .

: 7
Acta Arithmetica XVII4
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or
7 L(%)
(3.2) )_‘ PE ( e ).ﬁ__m__
I LSnsy " 1—2¢

which yields (ii).

Now assume that (i) holds; summing by parbs

K{m) = 2 e 2%’1 = oL (®)— 2 L(n),

7

m<e e —1

Lx) = Z mé’f_@l‘l = E (n+1){T (0

m?
WL insma—1

= p—aT@)+ Y Tin)
:11,<:c1 -

thus

K(2) = 2 nT (n)— Z Z T {n)-|

g1 eig—1 nssd—1
+ f—22 T (#)+ O(1)

which, summing by parts, is

)— L {n-1))

Z T (w) -

AT 2N S

x) =2 Z N (n)— (w2 2a) T (@) -- OI(m) = o(wL(x)).

nER

Lemma 5. Under the hypotheses of Lemmas 3 and 4,

s
Proof.
Q) 10
1-— = 1o 2220
Q( Q)I.]( q”)%{‘()
soni< X wm AR < 328D oo
k159 n>N .

and the lemma fo]lows. :
Lmmma 6. Under the hypotheses of Lemma 3

T (kat) ~ L ().

[1-291-422)

)

icm
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Proof.
I(ka)— L (@) = Z plm)
rmsske K .
1 1 Kk Kz
D S ) g L L S
e S m m41 bl @

For all sufficiently large n, K (1) < snL(n), and thus
1 L(m)

L(ka)— Lip) < ¢

&1 <mZky-—1

+ eL (k).

"

The sum may be estimated ag follows:

L{m % 1
(on) < L (k) 1}_‘, —
- 1= mhke—1 i a—=1<<imshr—1 e
and
1 1 :
e _E 1 0(1) =logk+0(1).
z-tmkr—1 " [x] = m<le[x]
Thus:

L{kxy— L{x) < 4(logk) L{kx)

and the conclusion follows.
The preceding lemmas may now be combined to give:
Lmvma 7. If p(n) is admissible, {hen:

() af =1,
(if) (m) = o(®),
(iii) () = o(aL(a),

(iv) T(m = o(L(a’)/w)

(v) 8(z) = o(L(z)/a),

(vi) L(kx) ~ L{xm). ‘

Proof. If we can show that B(z) converges and L(x) diverges, the
conclusions follow from Lemmas 2,3, 4, 5, and 6. ‘

As p{n) =1, we have that IL(z) = loge and therefore diverges. As.
P (n) = n, we hwe that L(z) < @, and equation (3.2) vields T(x) = o(1);
thus B(x) converges.

§ 4. Order of magnitude of f(n) and H (n). We first show that H(n)
is indeed the error fanction associated with f(n), and estimate its order
of magnitude.

- TumoreM L. Let p(n) be admissible; then
(i) |H(»)| < 2T(@)+ Lio) = 0(L (@),
(ii) B (2)| < ;02T (#)+ joL(2)+-K (@) = O(mL(m)).

*
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Proof. Tt is possible to do withont these estimates by using a weighted hyperbolie
summation.
(1) é j—%?l = ; j’ﬂ‘%ﬂ@l == £ ———p-@ [ ] : TeROREM 3. If p(n) is admissible, then
v a)pin) Y1 wpn) [ wg‘r'p('rn)ﬂ(w) = YawL{z)+ Ry = oxL(z}+ o{xL(2))
”(” w "K"m n 1“} where .
p— Z ainle “” (1.2) Ry= }00° T(w)— 3 [2] - } {2} + O|J (2)).
Hhus e . w{ Proof. Replacing z by @/m in the identity of Theorem 2, multiplying

by p(m), and samming yields:
H(x)| < oL (@) L(2) = L{z)+o{L(x). ’

(i A_J f(ny = vZMdzﬂ(d _Z— 22y{n )9 (n) ([?] [_L]) | ZP(”")H(”) "‘Zm +]').p“"”)}":[(m) towL(z 23"("" ( )

nw . a<a dn e k1 . PRI mE mET
b o &
LU g_: ~yurt@+ Yy a (L) = S pma() +
2 n = poyi ,ﬂ . AL . ML
1 Ay AL N wi{m) p(fn) 1 4 (_g“f_)
i i = HAPLe z p{m)H .
Ty ,é; M(H)P('H){u} + 5 @ ;‘_/;; P :2—2!1 I (fn)p(n) {?@_} _ mZ(; m
and thug : Lemma 1(b) gives
1B (2)] < o? 3 o SW a kid
o)l < 3o T{(2) 4 30L(2) 1K (#) = OfaL(z)). n= > fdpl=
: dln
TrroruM 2. If R is a positive integer, then and thus
. d da
n;‘RH ) = (R-+1)H(R)— B(B)--} aR. - ZZiEﬂ(m’ (_9;_) Z p(c)f( ) _ Npe Zﬂd_}_,
PI‘GDf. ’ . nEr " din ed<z ez r1<\.7.‘(‘c ‘

(4.1)

ZH(M#Z(Z-@_G) S oy | o & ™

nER Nl dg o
n i n<h ] . | y }iit?&l qH (7{11) {w}+ and ()
~ (B41) Z _%;aRmi}aRz——Zf(ﬂJ = T
& (nsR wER _ similarly,
= (R-4+-1)(H(R)4 oaR)——«(E(R)«l—%al?‘“")m%al?”—%alﬂ ) e
: 24 - 324 2] = M B |—| + oz Y
= (B+1) H(B)—B(R)+ §oR. - HeT el émm) ("”’)Haw =
This identity will be used in § 7T t0 prove thmt 2 H(n) ~ }az, as o
. i :
in the ;pecla,l ea,se filn) = gn('rb) The proof requirey eafnnate% involving ' Z pm ( ) = T i el ),
o (%), which in the spem&l cage depend on the Prime Number Theorem. e |
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combining these and subsbituting back in,

3 pm () = JaeL(o) + 1T ) -3+ 1o me i ().

TRNER

As plm) > 1, [2] < E(2) = o(sL{w);

n

H (i;,?) = O(L()) implies " 2‘ p(m)H (WI’»;) = O J () = o el ()

M pm)H(n)— barL(w) = Ity = olnL(m).

TR <Cl

Our method involves summing H{n) on an arithmetie progression;;
for this we will nead the corresponding resuit for fin)/n.
TaroreM 4. If p(d) is admissible, then

3 flm)  04) N amp ()

Bt BV LR,
i

m A
Mz =} (B,
mr=f(A4)

where

By =0 3 Lzt s(n)p(o)/fs)
I8, 4)

and the O is uniform in A and {J‘.

Proof.
fom) X .u(d T Dp(@
Pl > 2 ~
MEE ez : risz cefd
me{A) cd=p{d) el s (et
2 () p(d ( A) o
dA !
{d,A)Iﬁ
where 0 < », < 1.
Let
rop(d)p(d 2 '
Ro= Y nAd2@ Bem— Y w(@)p (@) (d; 4)
a A
d<r [/
(2, A} 4 (2,4}

Clanges of sign of error functions

Then
m) - d)p(d)(d, A
Zf ) _ =z n( P(d( —)—4Rl+R
'ﬂ?z 4 (d,4)|8

4
E L

(d -i)l(ﬂ 4)

. 2 T 2 ,Ll(d Pﬁ“ + By Ry

d?
t(fd) ()=

S S D nn
Aild) (eld=1 ¢

B AN L)
7i(8,4) (e, A) =1

) k2 g g

7l{4,.d)

The remainders are:

3 (@) p(d) < 2 2 # ()2 (7) @ {0) p(e)
L a

EAES -
d=g 71(f,4) c<zfr
(@, )18 ¢, 4)=1
thug
Ri< ) O 52,
(8, 4) ¥ v
similaxly, '
Rz Y #E2E O
2l = v )
dqma ('-:%1 ¢
1 z . fz)
<k 3 w2 ().
(8, )

Ag wT{z) < »L(x) for all 2, % a consbant,

By| < v_mzz_mL(i
BT 2 T

(A, A)
and

|Ral = |R1+sz =

uniformly in 4 and g.

417
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§5. Q-estimates for H{n) and E(n).
THROREM 5. If p(n) is admissible, then

H(x) = Q{logloglogx).
Proof.

1<pm)<n and f(n)= %”(1—}3“@)

uln Z
imply that
fm) < p(n) < b,

Merten’s theorem ([4], p. 351) says that:

[I( _M) 10,9;

gz
which implies: for 2 # 1, & a consbant,

1 1
[L-3)-3

£LgsE

Pla,b) = [] g

a< gl

Define

Then if @ #1 and Ple,a’)|n we have

1w et 1 (1_%) =-Z)L—|—o(1).

n
el a”

n

We can then find constants &, 0, and 4, all positive, such that:

1.
H(1“5)<5<“ for @ > ¢.
&

LY _
This provides the key to the proof; for,

(5.1) H(xy+ 1) —H (mg) = Z .-f%"’l_ab

a‘-0<'nt§ma ]

- Z . _].C%l - Z f@-) — ki

Ty N T-Ey @yt rLnsag -k

‘We now choose T, &, a,nd %, 80 that the second sum in (5.1) is less than

ok, a8 follows:
Let z, be the least positive solution of the system

o =0 (mod 2),

(5.2) _ -
g+-i=0{mod P2" 7,2}, L1<igk.
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Tt follows that there are positive constants y, ¢ such that
yloglogloga, < & < wloglogz,.

Define t = min{n| 2% > &; it is mdependen‘t of k @,. Choosing &k >

yields:
" (n)
AL PR s BT B LC0)
ZJ " L i ”
agnszytk Lg<nEXY+T mu+r<n@.‘rn-§‘k

gZH Z F@ED L s r) < (1— 8) v 3.
— ot (@4 1) .
Thug (5.1} implies

H (- k) — H(zy) < (8—a) b+ 0O (1)
or .
(5.3)  |Hz+8)—H(zo)| > (a— 8)k+0(1) > yx(a—
A y(a—8) > 0, and «, can be made arbitrarily large by makmg k large,
(5.3) implies H{w) = 2(logloglogw).

Observe that in inequality (5.3} we have proved more than is needed
for this theorem. (5.3) implies mot merely that |H (x)| > clogloglogw
for suitable arbitrarily large «; but also that there are arbitrarily large
x for which H(x) changes by more than cloglogloga within the interval
(&, - wloglogas]. This stronger statement will be used in § 8.

THEOREM 6. If p(n) is admissible, then

Bz) = L2{wlogloglogz).

The proof is almost identical to that of Theorem 5, and will be

omitted. As with Theorem 5, the proof yields the stronger statement

that there arve arbitrarily large 2 for which #(z) changes by more than
exlogloglogw in the interval [w, 24 yloglogw].

8)loglogloga, —1—0(1) .

§ 6. On the changes of sign of H{z).

6.1. Averages over arithmetic progressions.
TuroreM 7. If p(n) is adwmissible, then

A D H(n) = D) Hin)—jas+M (4, B+ O0(L()

nss nes
nem—B{.d)

where

B )0 d—cia) ST{IE N e pay
B 37(4)0(4)] %((_4’0)) i

aB— 1f(A)0(4)/A if B=0,1.
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Proof. Let # = Av— B. Then for integral @ we have:

Changes of sign of ervor fumctions 421

Using the identity of Theorem 2, and combining the last two sums, we

4 ) Hmy=A ZH An—B) | : have:
= B() 4 Nm Z Hip)+ ) (o—B) M f(wm% (B—1)H (2 )+
‘1 f(.'m) ) v ) B ;1?: n<e u‘;.d ;n_J
=A 2 e —ad 2 (A9— B) eI 4) e Besald) :
nsl medn--B s ‘ - aBg— E;,“CLA;’IM %aﬁ -~ ‘éa(‘Bzm AB) .
= A ( /v I(-r_n_)w pa(drp? - A%p—2ABa), If B > 1, then, from Theorem 4,
L
mLdz—L Mo+ B)dansa - flan () 41" -
" St 3 Lo Sen iy A
N Sm) \ m+ B f{m) ad m=z e o A T|{er— Byl v
A Z H(n) = Az ,.>...f i —4 I R | : , md- B=o(d) N -
:if%_(f) . pvsdz—B mdiu—R where
_ . w () (x) (e
+4 Y f%”i — Ja{A2at b A2 —2ABa), R0 DB Y L),
mLdn—1 oA {0 —5,4)
== B(A}

A a positive constant independent of 4 and B.

f{m) m-4-B Y fim) '
4 3 ww e Y g S[E 1 w u(x)p ()

il —_ il (6.1) Z(U_B) 2 s

nm—B(A) . T
- sl Ti(a—B,d)
1 fim)
R YA —Ya(dz--BA A+ 22— B2), A-B 4B .
A g T et e A NNy A LTI S WELEL
=B : A
m ) . e=1—8 1:[([‘_.1) =0 7){,4) 4 s om Bl (6} v
Taking this a plece at a time we have: 4B 4
_ = plOp(n) | Y 1 al)p(r)
A1 vc Y———-+ b) (6—A) > AR
: L L -
msz =1 fi%d
= | SN, N ARGy eon)
\1 X f(m) = c;ﬁ T K
- ‘“Zf( I‘ 2; (o B) 22 " The first sum is:
M i
' e e (1} - %
" Therefore " Z y i p(T" = v (d)p(d) 2 ----- l 31 u{dyp (d) (A2 e :A)
f m o<d (e, A) e - EITJ,J d a
A 2 Hin) = z+B)2 Z Fim)+ b a( Bt AB— A=) Then e
E_B(A) : ‘ 20 4) . N w(z)p(7)
A4-1 f( ‘—“r (c—B) 2 ,___%_____" .
m ' A T|{o—08,d) ) .
+ 3 (0—B) I 14 2y
20 2 > e O fica, o
miB=o(d) m m_JJ(A) : s fads—do— A —20(4) (Ao)
H
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Substituting back in,

®2) 4 >

nsEy neE
n=-—B(d}

+4a(B*~ AB)+ R,.

Proceeding as with (6.1),

(6.3) IR, < 8L(2) Z (6— B) 2 E_QTLP (=)
Coad 7|{e—1,4)
AZ
< OL(z)ZMZ{r)p(T) < ad?0L().

. aF: |

The error infroduced by not requiring « to be an integer is 0 (1).
COROLLARY Ta. If p(n) is edmissible, then

(6.4) A Z Hn)p(m) = M (A, ByaL(z)+ o(eL(2)).

ST
s=—B(A)

Proof. This follows immediately from Theorems 7 and 3, and

Lemma 7.

6.2. Infinitude of the number of changes of sign.

TuroreM 3. If pin) is aodmissible, then H (m) changes sign infinditely

often.
Proof. In Corollary 7a, replace 2 by Ay to geb:
(6.5) > p(m)H(n) = M(4, BiyL(4y)}+ o(yL(4y)).
- <ty
Then, for A, =[[q and «> B
g
A,,, ¢
Zﬁ“ ) ‘2 H(B~1)+a(B—1)
c< B ’” G <B
and
M(4,,B) = al(4d,)+uB (l—«G(A,,))— ﬂ“é;)%@ ~—~H{B

As x —oco0,0(4,) =1 and f(4,)/4, - 0; thus

lim M(4,, B) = a— H(B—1) = %Bl) —H(B).

=00

~Deline the operator ¥[H; B] as

. . 1 1
= lim lim " \
o yos YL (,Y) é
 n=-B(A)

VLH; B] p(m)H(n).

= Z‘H{n)+M(A, B)o—taz+ (B—1)H(z)+

—;].).
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Then
B)
wii; B) =12 A (B)
which becomes
{6.6) —H(B)< P[H; B]<1—-H(B).
I¢ H(n) > 0 for all sufficiently large », then for all satficiently large
B we have that
WIH; B] = 0.

As H(n) = (loglowlogn) we may choose B so that H(B) > 2,

and thus

0L P[H; B]< —1
which iz impossible.

It we assume H(n) <t 0 for all sufficlently ]a,rwe %, then we can find
an arbitrarily large B- for which

1< WH;B]<0
which ig also impossible,

6.3. Large positive and negative values of H(n). Theorem 8 does
not make full use of Theorein 5. If we do then we can get correspondingly
stronger statements, namely that limsupH (#) = +oo and liminfl (n)
= — 00O,

Theorem 5 implies that for any integer ¥, there are arbitrarily large
B for which either H(B) > N or H(B) < —N. Buppose that H(B) > N;
inequality (6.6) implies that, for = > x,,

im > p(m)H(w)/yL(

y-reo 'nm-ﬂl ,,'y
ne=—B(d,)

A4,) < 2--H(B)

and thus for ¥ > ye(s)

(8.7) pX

Mg A
nsh-B(A,,)

p(m)H (n) < (3—H(B))yL(4.y).
Inequality (6.7) implies that for some #n* larger than B:
Hn") < 3-N«< —}N.
Similarly, if H(B) < —N we derive from inequality (4.6) that for

gome o' larger than B we have H{n') > 4 N. Combining both parts wo
have:
THEOREM 9. If p(n) s admissible, then as n - oo

Limsup H({n) = o0, LiminiH(n) = —oo,
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§ 7. More precise estimates. It is reasonable to expect that stronger
estimates for sums involving p(n) will lead to correspondingly sironger
results for H (n). In this section we will consider only functions f{n) gener-
ated by p(n) satisfying:

1) Y pld)p(d) = o(7),
<t

(i) dg pld)p(d)[w/d] = o(x),
(i) dg p(d)p(d){mlaf = o(#),

(iv) p(n) is admissible.
" These conditions are assumed to hold for each theorem of this section,
withowt being resfated each time. (Note that even stronger estimates
hold for the special case f(n) = p(n).)

TazorREM 10.
ZH(%) ~ Lap.
Proof. =
2 = X Swudypdyia = 3 ep(d)p(d)
n<e WL d.]n desim
u 1 @
2w ( 25D
f(% X u(d _____ w{d)p(d [ ]
nEL nzm dln d'{zm‘ d ‘

Substituting into the identity of equation (4.1),

(7.1) ZH (%) sz ") Ef('n)+H(R)+%aR—%aR2
n<h n=f 2 4
= BB HE 3RS E -1 Y pipa] ] -

=
——»} V! ul@yp(d { }
d*&lﬂ
Z p(m)p(w)fnd. That S{R) == o(1/R)
follows umnedmtely from condition (1) above, using an argument similar

‘o that of Lemma 4. (Note: if p{n) < M < oo, then {iii) follows frowm (i},
usmg a theorem of Pillai and Chowla (L, - 90-97) that 3 @, = o(»)

m 2 na;m
and |a,| < M < oo 1mplles 2“’" {—9;} = o(#).) Thus

nEL

2.:;‘:.4

where B is an integer and 8(R) =

(7.2) 2 Hin w-.%aRJ}o(E).

n<R
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CoroLLARY 10a.

(78) 4 > H(w)
1157’:;5(.4)

o M(4, B)et (B 1) H{2)  } a(B —AB)+

+ O{4*L(z)] +0{AM (4, B))+0(2)

where fthe O’s are uniform in both 4 and B.
This follows from equations (6.2) and (6.3), and fromn Theorem 10.
TuroreM 11. H(n) = 2, (loglogloglogn).
Proof. In equation (7.3) set 2z = da—B, dvide by 4z, and sel
z = AL{4% to get

1 . B
o (B—AB)\ = _[M(A,B)\ (B—1)H{4L(4%—B)
+2( (AZ)) O(AL(A)) Ty T
LILLAN)y, [ 1 |
+0 ( L4 )+”(L{A2)) '

As L(z) = o(w), for A sufficiently large A°L(A* < 247 and, by Lemma 6,
for A sufficiently large, L(24%) = 2L(4%).
If we set A = [] ¢, then

gl

(4, B) =i%3-—ﬂ(3)+o(1)

and {7.4) becomes

(7.5)

Yo ‘12 H(An—B)+H( 3)‘ 0(1).
Thusg for .B sufficiently large, there ig a Lonst(mt ¢, = 0 sueh that

(7.6) ‘] Z H{An—B) 4+ 1 (B)| < o,

2 1
A*L{45) AGAL( A%

Ag hefore, we may choose B so that
(B > eylogloglog B,

Tither H(B) >0 or H(B) <.0. If H(B) >0
existence of an »*, n" < AL(4%, for which

H{An*—B) <

y equation (7.6) implies tho

¢,— oglogloglop B« — eylogloglog B
or
H(An"~B) < — " loglogloglog{An*~ B).
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Similarly if H(B) is negative there is an n' < AL(A?) for which

¢ Jogloglog B

H(An'—B) = c,)ogloglog B— o0y =

or

H(An'— B) = ¢'loglogloglog(An’— B).

§8. On the number of changes of sign of H{n).

8.1. The general ease. For these estimates it iy convenient to set
M(A,B) = G(4) ¥ (4, B) and thus, for B> 1,

M*(A, B) = BD(A)—f(4)]4— W((A )4, 0),
Z,u Vp (m)nt.
n]et

We need a more precise version of Corollary 7a; it is obtained by
applying our summation operation to equation (6.2).
CoroLLARY Th. If p(n) is admissible,
8.1 4 Y C(4) M¥(A, B)aL{z)+W,(4, B,

musz
n=—B(d}

p(m)H(m) = )+ Wal),

where we huave

(8.2) Wi(d, B,2) = O([B+AB+AM(4, B) K (2)+0({4*J (), -
(8.3) Welz) = §02” T(2)— 4]+ e} 0 (T ()],

where the O's ave uniform in A and B.

Proof, In equation (6.2) replace 2 by z/m, multiply by p(m), and
sum. Bguations (8.2) and (8.3) are the ervors from (6.2) and (4.2),
respectively.

Deﬂne the overator ..,(H A, B,z as:

_ A
E(H; 4,B,4) = G f(“;" ﬂgz p(m)H (1),
= —B{4)

As wsual, lot 4, = [] g, for 1 > B; then
. gt :
(8.4) E(H; 4,,B,?)
f(A;) WI(AM'B 2)-+Wy(2)
BS(A
B3+~ 0(A)aE(z)
THEOREM 12. If p(n) is a,_d'msszble, there is @ function &(N) such that
() H(N) >0 implies H{n") <0 for some n*e[N,E(N)],
(if) H(¥) <0 implies H(n') >0 for some n*e[N,(N)].

= a—H(B—1)—3 12
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Proof. Assume H(¥) < 0; replacing B by N+1 in equation (8.4)
vields:
(8.6) E(H; A, N+1,2)+H(N)
J(4,) Wids N+1,2)+Wei2)

e RP [

It does not suffice merely to observe that by taking first 1 and then
2 large we would have

(8.6) E(H; 4, N+1,

:a’—-.

A+ H(N) > H(N).

While this implies that H(n) > 0 somewhere in [N, z], the choico of #
depends on knowing the value of H(N).
~We can avoid this by picking first 1 and then z large enough that

(8.7) E(Hy A, N+1,0)+H(N) > —a.

This choice of z depends only on N and, of course, on the estimates for
K (#) ete.; but it does not guarantee a change of sign. For that we would
have to know that H(¥) < — «. While we do not have this, we can geb
that H(N") < —a for an N* glightly larger than N, and an estimate
for how much larger; thiz will suffice.

The penultimate step of the proof that H(z) =
inequality (5.3): :

2{logloglog®z) was
|H (@, &) — H (5,)] > elogloglogm,
where
k< yplogloga,

and =, is a solution of the system of congruences (5.2). 'As we noted there,
this inequality implies that H(n) changes by more than clogloglogn
in less than wloglogn for suitably chosen, arbifrarily large n.

‘We have now arrived at a procedure that works:

(i) Pick 2* such that »* > ¥ and o* is a solution of the system (5.2)
for some % (note that #* and % are integers), and that clog:loglogw* > Za.

(i) Sot B = & +ylogloga”.

(iii) Take first A, and then #, large enough that 4 > B and
J(4,) W4y, B, 2) Walz)

AT“* BN+ Gidyeiia T 004y 2L {2 < 4.

(88 —2e<a—}

(iv) Define ¢ (n) to be the 2 so determined.

To illugtrate how this works, assume that H(N) > 0. Then either
H(z*) > 0 or H{#™). < 0. 1f less than, we have o change of sign; otherwise,
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 either H (z*) > 2a or H(2") < 2n. If greater, then {(V) it certainly large
enough so that

EH; A, 2", LN+ H{z") < 2a
or
E(H; 4,6, (V)] <0

and H(n) is negative somewhere in [N, {(N)]. Tf less, then H(x*+k)
differs from H (z*) by at least clogloglogs™. But then either I (w*-}- &) < 0
or H(z*+ k) > 2a; in either cage H(n) must be negalive somewhers on
[N, ¢(N)]. The corresponding argument applies if I (N) < 0.

To get a lower bound for the number of changes of sign in a given
interval [N, M], simply iterate £(n). We know that there ix at least
1 change of sign between N and {({N), and therefore 0 changes of gign
between N and (@(N). (The superscripts here denote iteration and not
exponentiation.) The lower bound is given by the largest & for which
N < I

A difficalty arises from the possibility that H (%) = (0 somewhere
during the iteration; this can occur only if « i rational. Bven then, it is
not a real difficulty; the same procedure nsed in steps (1) and (i) can be
used to produce an & for which H (#) = 0, and then steps (i) through (iv)
carried ont ag above. '

A more serious difficulty is that £(n) depends on how large
be so that K (2) < e2L{g), for a given & and the corresponding estimates
for J(z} and K(z). To have {(N) ax an explicit function of N (and, of
course, p(x)) we need an explicit function g(s) such that

(8.9) | (K@)L(z)) <& it 2> gle)

and the eorrespoﬁding funections for J(z) and T'(z

). We have only that
such funetions exigt. .

8.2, The special case f(n) = ¢(n). If we apply the above procedure
to the special case f(n) = g(n), corresponding o p(n) =1, we obtain
~explicit estimates for the number of changes of sign of II (m) for n < .
Wa have the following estimates:

a = 6/,

;)4 <1/logi,

(SN < T < 1/4,

K(x) =[2]<a

J(w)_ <zt+1+1fe—1),

loge < L{z) < logz+y-+1/(w~ 1)

' (8.10)

must
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and therefore:
zZT( ) < 2/logz,
{8.11) I (2) < 2/log=, _ v
J(7) < 2/logz.
Proceeding step by step: Given an integer N.
(i) Tn the system of congruences (5.2) net 0 = 3,y = 2, ¢ = 3/2n%

and take

(8.12) k= max {2 Ioglow N, Y.

(i) "+ 2logloga™ < 2 [ g < 2 '1, where the product is falen
over all primes not exceeding 2 23", (The estimate ([4], p. 311) used here
holds for all k; for large k bettor estimates ave available.) Therefore set

B = 20,

(8.13)
(iit) Set

(8.14) A =exp(2(B+1)/d),

(8.15) C(N) = exp(84ifa").

This guar Lnfeeq that

(8.16) |BS{A)—3f(4;)/4;] < (B--1)/logh < da

and. .

(8.17). {Wa(4,, B, O+ Wal2)OA)EL(0)] < da.

Collecting everything, given N we have:

O(N) = exp (8A%a%,

Az"‘—“Hq’

q<a
A = oxp(2(B-+1)/q),
L
B = 2(.; | 1)’

(8.18)

== max (2loglog N, 6%).

To make this qualitatively simpler, we way inerease the hases so
that all of the exponentials in equations (8.18) are to the same haso.
This gives a funcion z(N) which iy a 4d-fold exponontial to sowe sufti-
ciently large base. To geb a lower bound for the munber of changes of
sign in [1, N] reduces to finding the smallest integer » for which the
4v-fold iterated logarithm (to the shme basoe) of N ix less than 2, This iy
precisely the funection IL{N) mentioned. in the intvoduction.
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Page 246, (2.25)
for
vee =0, (Zg/m2___zljm)galm(m}. ..

read

i

tra + (Zz/mg— ZJ_/m)/gulm(m‘). ..

Page 248, (2.36)
for

L= logm"""zgS(”"“‘)/logm““ gS(s,mJ,

read

.. = logm**? g‘s('“+]="".) flog m*+1 gStem)

Page 251
for
algy m) == J (o, DH H, (0,) Wy ..
rond
wigymy = ... Hy(a) B Hy(mg) 2y ..



