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1. Intreduction. In the course of an article [2] devoted mainly to
the strneture and interpretation of multiple exponential sums over finite
fields, Bombieri included an egtimate for the magnitude of eertain gpecial
exponential sumg “along a curve” (and, incidentally, generalized Weil's
method [20] for similar sums “along a line”). For comparigon purposes,
it will be nsefrl to have an abridged statermnent of this result (ef. [2],
Theorem 6, p. 97). Thus, let % = [¢] denote the finite field of ¢ = p~
elements (@ 2 1) and characteristic p, ¢ denote the absolute trace from
I¢"] to [p], ¢{x) denote exp(2miz/p), X a projective curve of degree d,
deiined over % and embedded in projective n-space P" over %, X, the
set of pointy of X defined over [¢™], B(X,, X, ..., X,) & homogeneous
rational funectionin P* defined over % (d, being the degree of its numerator)
and

(1) FulR, Xy = Y e|o(R()],

xeXym

where “'" indicates that the poles of R are omitted. Then

(2) L (B X)| < (di— 3d,+2d,d,) g™+ d,

provided that
(A) for every lLomogeneous rational %ek(X,,..., X,), the function

{(3) B— (&)

does not vanish identically on any absolutely irreédncible component of X.
This eondition (A), which restricts the choice of B not only in its

behaviour over L but algo over the algebraic closure & of k, is stated
(without details) to hold if(?) '

(B) p > d,d, and B is not constant on any such component of X.

(*) It seems likely that (2) continues to hold even if the restriction on p in (B}
i8 ignored. '
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Bombieri’s methods belong to algebraic geometry and the primcipal
tools (cf. [2], Theorem A (i), A (ii); pp. 87-88) arve the “Artin conjecture”
and the Riemann Hypothesis for the L-function defined by

) L, B, X) = exp( 3 ,.(B, X)i"m),

m=1
which tell us that L(¢, B, X) is 2 polynomial in 1 and that all its zeros
have modulus ¢ *#, respectively (cf. A. Weil, [21], pp. 72-83). In thix
paper, we shall congider first one of the simplest cases of interest in (1);
namely,

{3) a=1, k=/[p],

s0 that, by a slight change of notation,
D elF @y, 8)

Pz, Yy, 8)=0

ﬂszl, %=2, REk[XU,Xl,Xg]’

{6) FF, X) =

where now # and ¥ are forms in k{X, ¥, Z] and the curve X is defined
in P* by the equation ¥(#, ¥, #) = 0. In fact, with a view to applications
{cf. [17], [26]), we shall work with the affine form of (6),

() Baolfsw) = D' elflw,y)
e, y)=0

where f and u are polynomials in k[X, F] of degrees d, and d, respec-
tively, and the sum on the right is over all pairs (z, ¥)<k2 Onr methods
stem from the arithmetic and analytic theory of Artin-Schreier extensions
of function-fields of one variable over %, as developed by Hasse (cf. [9];
[10]; [11], Ta, § 8) in the early 1930°s and provide an interesting and,
close parallel to those of Bombieri (cf. [2], § VI, pp. 93-99). The resulting
estimate (Theorem 2)

{8) 182(F, vl < (d— 3y + By dy) p™* -+ d}

is precisely the same as his (in the special case (5)) and holds, subject
to the condition

9 (©) f(X, V) 2 a(mody, (X, ¥)) in k[X, Y]
Vack and V absolutely irreducible y,[y in k[X, ¥3,

which is an alternative way of stating the condition (B) for our case,
but without the restriction “p > d,d,”. Since estimates of this kind lose
their significance unless p is large compared with d, and dy, the coefficient
of p'® in (8) is the dominant one (and Bombieri [2], p. 99, remarks that
the constant df—3d,--2d,d, in (2) cannot be improved but that the
constant di can be pared down to (d,—1)(d,—1)/2).

In a discussion of Bombieri’s theorem, H. Heilbronn remarked that
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estimates such as (8) were implicit in the literature and outlined the
ideas, adding that Hasse's article [9] contained most of the relevant
background material. With supplementary veferences, including Hasse's
“Berichti...” [11], Schmidt [16], Bombieri and Davenport [3], the hooks
of Hichler [7] and Chevalley [6], and with (C) in mind as an economieal
way of excluding pairs f and ¢ which violate (8), the first part of this
paper is devoted to a detailed examination of the process by which Weil's
theorem on the Riemann Hypothesis for algebraie function-fields may
be applied to produce (8). In our case, the function-field is given by
I = K (u), {=fle,y)eE

and K is the function-field generated by w(w,y) =0 over k = [pl
A condition somewhat analogous to (A) iy implicit in Lemma 2, p. 196 and
it iy in fact a novel but quite minor extension of the result(?) of Bombieri
and Davenport ([3], Lemma 4) expressed in the langnage of field-theory.
It provides a valuable criterion, namely

(10) ‘ged (v, [RE, B(2)) =1

for judging whether I = K (u) is a genuine extension of K (and not just
of k), when ¢ i3 transcendental over k; i.e. it in a sufficlent condition to
epgure that the polynomisal

11) 0P—U—¢

where wWP—u—{ =0,

in K[U7is irreducible over K when { = f(#, ¥) is a non-constant element
of H. But, ag in Theorem 1, we shall arrange that the polynomial ¢ (w, F)
is irreducible over Z(x), in which ease % ¢ the exact field of constants
of K and of L. (For the “Arfin conjecture”, it is at least desirable to
maintain a minimal field of constants; see e.g. [9], § 6, p. 52.) Then, of
course, £ = f(o, v} is a constant element of K if and only if f{xz, y)ek
and condition (C) is enough (having been designed with this purposel)
to secure f(z,y)¢k. Further preparations for the proof of Theorem 1
are listed in Lemma 1 where, at the expense of excluding the primes p < & d,,
we ensure that ¢ iz a separating element of K over k. Thus, reading v
for FF in Lemma 1 (as we may) it follows that, for p > d;d,,

K/k(L) is a finite separable extension, by (iv).
Then since [RE: B({)] < [K: k({)], K being a simple extension of k()

we have _ ~
| [EE: RO < dBdy <,

and Lemma 2 (iii) tells us that L = K (), where u is a zerc of the poly-
nomial {11), Is a cyclic extension of K of deégree p. In (v) of Lemma 1

(%) This was the subject of a brief correspondence with Davenport in 1868.
Our version uses the same ideas, but permite greater freedom of choice for f and .

13 — Acta Arithmetica XVIIT
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it iz pure couvenience to replace the bound on p by p < (d,ds)?; for then
it is slightly less troublesome to verify the inequality (12}, which is precisely
what is required in {29) {where the degree of the discriminant divisor
of LJK is being estimated), to give the proposed coefficient of p'* in (8).
But, although the small primes may mneed special treatment in the pro-
gramme outlined above, it is economical to provide an alternative direet
proof of (8) for them; see end of proof of Theorem 2.

In Section 3, we skefch the main features of Hasse’s paper [9],
pansing only to supplement his formulae where needed by references
and ecomputational details relevant to the constants in (8) (and suggest
that the reader refer to the original paper, and the references given there
for a comprehensive freatment). As with Bombieri’s work, the “Artin
conjecture” and Weil’s theorerm (which in our case refer to the L-functions
and {-functions in (20)) are the essential tools. Tt appears that even in
our very special case where the Galols group G(L/K) is cyclie, some
clags-field theory seems to be obligatory in proving the “Artin conjec-
ture™ when the genus of K is not zero.

Theorem 2 iz a straightforward deduction from Theorem 1 and
provides a useful stepping-stone for lifting our estimates for exponential
sums “along a curve” to exponential sums “over a hypersorface”
{Theorem 3} in, mueh the same way as Uchiyama [18] did for unrestricted
multiple exponential sums. However, thig is by no means as direct ag in
Uchiyama's case and some preliminary normalization (Lemmag 8, 4)
of the hypersurface seems essential for the induction proof. The deve-
lopment, as given in Sections 5 and 6, hag been designed to retain the
flavour of the earlier work in Sections 2 and 3 on function-fields, but
a similar normalization counld be obtained by appealing to standard
results in algebraic geometyy on sections of varieties (e.g. [13], Lemma 2},

2. Throughout the remainder of this paper, & = [p] will denote the
finite field of p (prime) elements. On reading (X, ¥) for (X,, X,), the
notation and definitions of Section 4, p. 203 relating to (X, Loy, X))
apply here with » = 2. Thus, in particular,

f=g(modh) in E{X, ¥]
=fiah belong_ to k{X, ¥] and f—g = hd with Aek[X, ¥,

in accordance with the general definition.

Lemyua 1. For any -~ Fek[X, Y]—k[X]—R[X]—E[X, F°] drve-
ducible over k(X), let K = k(x,y) denote the algebraic Function-field over
generoted by Flx,y) = 0. Then

(i) K is a finile separable estension of k(x),

(il) the field of constants in K is & wself < F(X, V) 4s irreducible

over ky(X), V finite estensions %[k,
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(iil) if k& is the (emact) field of constanis of K and fek(X, V) satisfies
Vack
then o = fle, y)eK is transcendental over &k (i.e. ¢k),

(v) [ k(O] < @ F)d(f),

(v) if p > d*(F)d%(f) then K is a (finite) separable extension of k(L)
and moreover, {Iv) can be strengthened to

(12) [K: k(O] < a(F)d(f)-
Proof. Clearly (i) is a consequence of the hypotheses
E: B@)]<d{F) < e, F¢[X,T?].

2 a{mod F),

A well-known criterion for ensuring that the algebraic closure % of k in K
satisfies % = & is given in (i) (ef. Bichler [7], LI, § 3.4, pp. 135-136
and ITL, § 6.1, p. 1L71). In fact, for (ii) it is enough to nse the degree relations

(e K R(@)} = [k K ky(@)] (R (0): K{)] = [k B K][E: k(2)],
[B(2): B(®)] = [kz B]  (valid zince x¢k),
and note that the condition
e K: ba(@)] = [K: k(#)]
expresses the breduneibility of F(X, ¥) over k,{X), while
E=rk<(k: k)= [kE: K]

Fer (i), we mse the division algorithm in the polynomial domain
E(X)[¥] to produce # = 0 and g, both in k[X, Y], and s == 0 in k[X]
such that

V finite extensions % /k.

(X)X, T)—a] = ¢(X, Y} F(X, ¥)+r(X, T),
identically in k[X, ¥] and with degrees {in ¥) satisfying
dy(r) < dg(F}.

Thus, if there exists aek sueh that { = f(m, ¥} = a4, then #{x, y) must
vanish, since f(z, y)—a = F(z,y) = 0. But r¢A[X]| U E[Y], since both
x and y are transcendental over k. Hence r(z, y} = 0, which ia incom-

patible with the definition of 7.
In {iv) and (v} the special case when fek[X] can be treated directly.

Since, on general grounds, [k(t): k(f(1))] = d(f) for any transeendental
t over k, we have
[K: k(D) = [K: k(®)][k@): k(f@)] = dp(F)-a(f)

without restriction on p. Otherwise, when f¢k[X], we first form the
resultant R(X,2) of F(X, Y) and f(X, ¥)—Z k[Z][X, T] and. observe
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that it is not identically 0 in ¥[ X, Z]. Moreover (E being a linear combi-
nation of F(X, ¥) and f(X, ¥)—Z}, the substitution (X, Y) — (=, y)
gives E(z, () = 0 and then, gince neither of x and ¢ iz algebraic over F,
we have
Rek[X, Z]— k[ X]—E[Z].

Now

LE: B(D]I<TE: k(2)]{k(w, {): E(D)],
where

LE: E@)] = dp(F) and [k, {): k(O] < dx(B) < d(R) < A(Ha(F),

since & resultant of any pair of polynomials P, § say is isobaric of weight
= d(P)d(Q). This completes the proof of (iv) (in place of resultamts,
one could equally well appeal to Bezout's theorem).

To complete (v), we may suppose that fek[X, ¥Y]—%k[X] and, for
P > a*(F)d(f), that X is « finite separable extension of %(¢). Then, by
a standard theorem (%) on primitive elements of finite separable extensions )
there exists o ¢ek such that K = k(z, ) with

t=wdey.

If ¢ =0, there is nothing further to prove. Otherwise, we form the
resultant R*(Z,T) of F(T—¢Y,Y) and f(T—¢¥, ¥)—%; argue as for
R previously to obtain

(a) BYZ, T)ek[Z, T1—k[Z]—k[T7,

(b) R*(és 1) =0,

(o) dp(B™(Z, T)) < d(f)d(F).
Fhen

LE: B0 = [k(Z, 8): k(0)] < dp(R") < d(RY) < d(f)d(F),
gince the degrees of f and ¥ are unaffected by the substitution
X —>T—e¥.

LE?JZMA 2. Lt @ be a transcendental over & and suppose that K is o findte

extension of k(x). Let <K be amy tranmscendental over & which satisfios
' g.e.d. (p, [kK: B2} =1,

where k denotes the algebraic dlosure of k. Then

(i} the polynomial P(U) = UP~U—{ s irreducible over FE,

(i) if u 4s @& zero of P(U), then
{13} [EE (u): kK] = [K (u): K] = p,
and _

(i) T = K(u) it & oyelic extonsion of K of degree p.

() A condition such as p > {2(N)A(F)? arises at this stage if foll 3
argument in van der Waerden [197, p. 126, # e follow the
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Proof, By hypothesis, K is an algebraic function:ﬁeld of one variable
over k. Hence, there exists F(X,Z)ek[X,Z]—Ek[X]—%k[Z] with the
property that

F(x, &) =0,

which gives [k(®m, {): k(5)] < co. By means of the degree relations
[K: k()] = [K: k(z, D[k, <): k{z)],
[K: k()] = [K: ko, O]k, 0): k()]

it follows therefore that [K: k({}] < cc. We now observe (by means
of degree relations for polynomials) that { itself is not expressible in
the form

S = (Apuf—(/n)
for, on rewriting it as

with 2 and g in B[Z], (4, g) = 1;

WEE = Xp_lﬂ'p—l
and counting degrees (with obvicus notation),
pd,+1 = max {pdy, pd,--(d;— &)},
where ¢, < d, and p|1; a contradiction. Hence P(U) is irreducible over
k() and so B -
({2, u}: (O] =2p-

By the Artin—Schreier theorem, we know that

[EE (w): EK] =1 or p.

If this degree is 1, then EE(u) = kK, w <k and k(z, x) = kK. But, from
(RE: k()] = [RE: E(L, w)][E (L, w): k()] = [EE: k({, w)]-p = Omodp
and our hypothesis for [kK: k(L)], we arrive ab a contradiction. Hence
[RE (w): kK] = p;
which says, simply, that P(U) is irreducible in kK [U], as required. Since

P(U)eK{U], we also have
[E(u): K]=p
and (cf. [12], Theorem 11) K (u) is a cyclic extension of X of degree p.

3. TreorEM 1. Let f, v be given elements of k[X, Y1, subject to the
conditions :

(i) w(X, ¥) absolutely drreducible over k,

(i) f(X, ¥) £ amody(X, ¥), Vack.
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Then, with d, = d(y), d2 = d{f),

(14) 18a(f, 9)] < (B —3d,+ 24, d:)p"" + 1,
for all p = did;.

Remark. The condition on p is convenient in the following proof;
in fact, Theorvem 1 holds for all p (see e.g. (44)).

Proof In view of Weil’s estimate

18, (f(X), 0)| < (do—1)p*"

the theorem holds when pek[X] U E[Y]. By Lemmas 1 and 2 and the
remarks conecerning them in Section 1, it follows that, for p >d(f)d* ()
= ddy, [eH, the field L =~ K {u) obtained by adjoining a root of the
equation #* —u—¢ =0 to K is a (finite) cyclic separable extension of X
of degree p, whose {exact) field of constamnts is k itself.

Let ({) denote the principal divisor in K asscciasted with the field
element { = f(o,¥) <K and express ({} in the form

{£) =ab, g.ed. (a,b) =1,

a being the integral divisor of zeros of { and b the integral divisor of poles
of {. By Lemma 1 (iif), { i3 transcendental over % and go has at least one
pole in K; whence b is not the unit divisor (1) in K. Let

where

b =:pfl"' f'ry 61‘.:}12 (.pirpy') =1 (7’ WVL".?):

denote the decomposition of b in K as a product of powers of prime divi-
sors in K. For later use, we note that
(15) e; % 0(modp), 4 =1,2,..
since :
6; < g;degp; <t degh << [K: k()]

< did,

'?JT

(ef. [6], Theorem: 4, Corollary),
by Lemma 1(iv},

and so, ¢; < p, Vi under our present hypothesiz on p. We can now follow
Hasse’s account of the local decomposition theory for eyclie fields ([97;
§§ 3, 6). Thus, for each prime divisor p of K which does not ramify in L,
define §,() to be the trace of £ viewed as an element of the residuce cliss

field o/p, (o being the local ring of elements of K which are integral at p)
and puat

e(8,(2)),
(16) =1
#) l(}, H p is ramified in L.

On forming the infinite products

an - L) =[[0-7®Fp =1t e =1,2,...,p-1),
P

if p is wmramified in I,
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(18) tels) = [J11—¥p~*17*, over all p in K,
b
and
(19) Ip(s) = H [1— NPT, over all P in L,
B

direct verification ([9], p. B1) gives
B

(20) o) = L@ [ [ (s, ) (Bs >1).
v=1

From the Riemann—TRoch theorermn for function-fields of one variable
(and the functional equations for I, and Iz consequent upon it), it is
known that [;(s) and {g(s) admit analytic continuations into the whole
comples. s-plane and are meromorphic functions of s fhere, whose
singularities are simple poles at ¢ = 0 and ¢ = 1. The functional equation
also shows that {.(s) and (z(s) have precizely 2¢ and 2¢ zeros, where
@ and g denote the genus of T and K, respectively. It can also be established
{ef. [9), pp. 31-~52), that L{s, ¥’} is a polynomial in p~° of fixed degree
1 say (i.e., independent of »), which must therefore satisfy, in view of the
remark above and (20), '

(21) (p—1)1 = 26—2g.

Hence

(29) Lis, )= []01—af2™],
154t

and so, on comparing the coefficients of p~° on both sides,
(23) 3 = Y aof

degp=1 1l
for each » ==1,2,...,p—1. Then, by Weil’s theorem on the Riemann
Hypothesis ([22]; a version is given in Bichler [7], p. 308), as applied
to {5(s), we have

(24) lof] = p™, Vi,
0 that, combining (23) with (21) and (24),
I 26G—2g .
(25) | Xt g =,
peP P 1

where P denotes the set of all prime divisors p of K of degree 1 which
do mot ramify in L. Now (25) is oux basic inequality and (14) iy an .ele~
mentary consequence. First, the Hurwitz genus formulae (a ecnvenient
version is given in Miehler, [7], p. 134; (9), (10)} gives

26— 2g degg (Disc LK)
—_— = Yge-2
{26) p—1 q + p—1
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and since (¢f. Hasze [9], §3, part (1)),
(27) Disc L/K = [[ plp=vletn,

Iy

when ¢, = (0{modp) for 1 =1,25,..., 7,

degg (DiscL/K) = (p—1)[(e;+1}degp;+...+ (e 1) degp,]
< 2(p—1)[e.degp,+ ... +e,.degp,]
.= 2{p—1)degh
= 2(p—1)deg ()
(28) =2(p—-1)[K: k()]
(29} < 2(p—1)d,ds,
if we apply the estimate in Lemma 1(v) to (28). Thus, for p > (d,d,)’
we cal combine (26) and (29) for insertion in (25):

I .
B | D xlp)|< [2— 2+ 20,0,10* < [ 38+ 24,d,]p™7,
pelP . :
on using the classical bound g < 3{d—1)(d—2) for the genus.
Now, if P* consists of all the finite prime divisors of P, then

(81} 1P—P7| < dy(y)

(ef. [6], Theorem 4, Corollary)

sinc_:'-e any prime divisor in k(z), and in particular the infinite prime 00,
splits into at most dy{p) prime divisors in K. Moreover, if we write
8 =dy(y),d = d(es(X)) and

P&, X} = (X)X +... F o (X),
?he,u 65(®) has at most & prime divisors in k{(z) and each of these gplits
Into at most 6 prime divisors in K. Thus, if P¥ = P denotes the seb of -

finite prime divisors p for which y< X is integral at p (where v (z, ¥) = 0)

then d

[P — Py < 94,

For each a<Z, .let Pai (?2 =1,...,3) denote the prime divisors of K lying
above the prime divisor of k() corresponding to the polynon'li:ii
A —aek[X]. Then ag remarked above, ¢ < dy(p). Now let

(32) (X, Y=y ¥) = (F—82) . (Y —by) o, T mod (X — a)

denote t?le decomposition of (X, ¥)mod (X — a) into distinet linear
factors Y—¥;, where byck, and 2.(¥) satisfies ¢,(8) # 0 for any bek.
Then, by the Kummer-Dedekind theorem (ef. [25], pp. 168—169); there

exists a 1-1 correspondence between Po,. <P and the pairg (X—a, Y—b)

i=1,...,s given by *

(-’L‘— ﬁ) = p;fl - :p;fsa:
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where degp,,; =1, Vi and a has no finite prime divisor of degree 1.
Note that p,.¢ PT= @) =p(a,d) =0 for all such i. Moreover,
the general identity

P(X, T)Fla, T)

(33) F(X,T) = -

{(X—a)+
a

Fla, X)—T(a, b)
¥Y—b

valid for arbitrary Fek[X, Y] and any (a, b) <%, gives
(34) F(o,y) = Fla, bymodp,,
and so
(3D) Sn(‘:) = S‘p(f(m; y)) =f{.a’: b)ek,
whenever (X—a, ¥—5), or equivalently (@, b), and a prime divisor p
of K of degree 1 arve related under the Kummer-Pedekind correspondence.
Finally on applying these esimates to the difference bhetween

(36) Do(8,2) and D e(f(a, b)),

peP ¥(a,b}=0

(¥ —b)+ Fla, b),

(f =1,...,8),

where the second sum is over all pairs (a, b) ¢k* we obtain the bound
(37) |P—P*|+ |P*—P}|+ ¥ (y(a, b) = 6;(a) = 0).

Hence by our estimate for the terms in (37), the sums in (36) differ by
ab most 8-+98--96, since (X, Y) and 6,(X) are relatively prime in
£[X, T Since

& = (04 8)° = 6+2848,
the result is complete.

In the next theorenl we extend Theorem 1 to inelude the cases when ¢
is no longer absolutely irreducible and supply the additional argument
to remove the restriction p = didj. .

TeroREM 2. Let f, w be given elements of k[ X, Y] with y not identically
sero and suppose that they satisfy condition (C) (see (9)). Then

(58) 18a(f, 9] < (E— B+ 20y d) p+ &}

for all primes p, where &y = d(y) and d, = d(f). _
Proof. I d, =0, then pek—{0} and 8:{f, ) = 0. Otherwise let

H
(39) y=[]v, inklX, Y]

i=1

where (1) the y,; ave the factors of ¢ which are irreducible in k[ X, Y73 and,
for convenience, w; for j =1,2,...,8 Where s<1 will denote those.

) We may assume that the y; are distinet!
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factors which are absolutely irreducible over k. We use the theorem of
Bezout in the form

(40) N((e,b)e¥| fla,b) = F(a, b) = 0] < &(f) d(F),

where f and F are deveid of common factors in k[ X, Y] Thus

[

1) |8ulf, )= 3 Sulfy ) < X Nl(a, D) el = = 0) < 3 44,
j=1 7] ]
and

1 2
“2) | NS, v|< X Nia, bk p =0

f=g+1 i=8+1

H &
< D o= < Y [B+2d—3)0]

gu=g 1 {841

where §; = d(y;), since all zeros of y; for j > s are multiple zeros and
therefore singular. With Theorem 1 applied to each y; with 7 < s, these
give

8 . {
43) U I D8l Y Salfs v+ Y 8
7=1 F=54-1 i3]
i 11
< DG+ 26—3) 830+ Y 8+ 3 8,5
=1 =1 LET
i i
< [(Z 5’.)2_1_(%2——3)2; 5j]10”2—}—d§
“

i=1

A

[di+ (2d;—3) dl]Pm"JL" d%a

/AN

a8 required.

Now suppose that p < did; and that o is itself absolutely irrveducible
over k. Then

(44) 18:(f, 9)l < N (e, b)ek*} wla, b) = 0)
< p-+1+4-2¢p"" (by the Riemann, Hypothesis (%) for K)
= (PP +29)p +1
< (B—8dy -+ dyda+-2) "4 1
< (A~ 3434, d,) P+ .

ﬁence, We are now allowed to assume Theorem 1 for all primes p, and so
In particular, (43) is true for all p.

(¥) For & convenient reference, see [7], (23), pp. 299-307.
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4. Notation and definitions. Capital Roman letters will denote
independent indeterminates over k, while small Roman and Greek letters
refer to algebraically dependent transcendentals over %, unless otherwise
stated. In particolar, if X, X,, ..., X, are independent indeterminates
over &, then for gake of brevity, we shall uzse the notation:

X = (X,,...., %),
X = (X, ..., X, ..., X},

where ~ signifies omdgsion, (X", @) = (X4,..., X,_,, @), Where I*
= (Xg; .o, Xp) and X* = (X, ..., X, ,) are useful special cases of X*
with ¢ = 1 and ». Similarly, for algebraleally dependent transcendentals
By, gy .ne, By, We introduce the same notation for =, 2%, and (2™, a).

For the polynomial ring k[ X], we adopt the following definitions.

DerINITION. (1} For any fek[X],

f containg X, <> fek[X'].

(2) For any fek[X], d(f} denctes the total degree of f and dp(f)
denoties the degree of f regarded as an element of k[ UJ[ V], where (7, V)
is a permutation of X.

(8) f =g(modh) in ¥[X] < f, g, h belong to k[X] and f—g = 1k
with A<k[X].

Qccasionally, it is convenient to uge the Vinogradov symbol “<&”
in place of “0”; the implied constant will depend only on » and at wmost
on the degrees of the polynomials concerned.

5. The main theorem iz an extension of Theorem 2 to the case of
%> 3 indeterminates X = (X, X,,..., X,) with no attempt at pre-
cigion in the matter of constants. In the course of the proof, we shall
he working with a polynomial yek[X], absolutely irreducible over k,
and need an accurate form of the assertion that, for almost all aek, the
gections @(Xy, Xy, -uny X, py 8) = p(X" a}e B[ X"] remain absolutely irre-
ducible over %. As it stands, this iz not quite true, as may be seen from
the example
(45) p(X) = X}+ XX, n=3,

where (X", @) is never absolutely irreducible over %, although (X}
itself is. However, the difficulty can be circumvented by a preliminary
linear non-singular tramsformation of yp. In fact, for n2= 3, a suitable
permutation of X,,..., X, and an application of a shear of the type

{46) X, =X+ oX, 1,

with an appropriately chosen cek, will be sufficient to ensure, for some 7
transcendental over k, that

w(X", n) ek [7][X"]
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is absolutely irreducible over k(x). Then the hypotheses of Lemmua 3
are falfilled and the desired form of the assertion above may be concluded.
The proof of Lemma 3 itself is entively clasgical and depends upon the
theort of resultant systems; one might note, in passing, that the existence
of the absolutely ireducible section (X", ) of w(X) is used solely
as a device to avoid the possibility of the resultant system vanishing
identically under the specializations congidered.

Lexza 3. Suppose that w(X) is absolutely drreducible over &k and thaf,
Jor 5 transcendental over E, '

(47) (X", n) e B[] [X"]
s absolulely dirreducible over k(n). Then (X" a) is NOT absolutely
irreducible over & for at most O, 4(1) values of aek. :
One critical step in the proof of Theorem 3 concerns the mmmber
of zeros a"ek™ " of y{a", a) and requires what is essentially a special
case of the theorem of Lang and Weil ([13], Theorem 1) on the number
of rational points on a variety, defined over % (c¢f. [24], Proposition 2,
. T4 '
COROLLARY. For each a<k for which ¢(X™, a) 48 absolutely irreducible
orer k,
(48) H(e"ek™| pla®, a) = 0] = p"4 0, (" ~*).

In order 6o realize the hypothesis of Lemma 3 in the manner degeribed,
we recall the clasgical argument of Zariski ([27], Lemma 5), as reproduced
in [8], {pp. 81-83), for varieties defined over a field % of characteristic 0.
{For unrestricted characteristic, see e.g. [23], pp. 97-99 and references
given there.) The modifications for the eagse of characteristic p are rela-
tively minor i p is large and they are noted in our ontline of the
proof of Lemma 4.

LeMMA 4 (n2>3). Suppose that w(X) is absolutely irreducible over k
and contains both X, and X,. Let p > 2% where d = d(y). Then there
erists cek such that

¢(X) = (X" X, +oX,_,)

has the property that o(X™, [)ek[Z][X™] is absoluiely irreducible over %(()
Jor some ¢ transcendental over k.

Proof of Lemma 3. Regard v(X) as an element of E[X,1[X"]
and p_ut ‘d,,, = dxn(y). Then, by the Emmy Noether theorem ([147;
a version is given in Perron, [15], Satz 140), we can agaert, for each integer I
with 1 <1< d,—1, the existence of a finite set of polynomialy

(49).. : R (X)), A=1,2,..,40

%11 k[X,], where A(l) and the degree of each R, in k[X,] are bounded
in terms of # and d, with the property:
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If we regard ¢ as a variable element of some fixed algebraically closed
field K containing k(%), then

(50) B, () =0, 1=1,2,..,4(0

is a necessary and sufficient condition for (X t)<k[t][X"] to factorize
in the form w,(X™) -y, (X™) with

(51) dlw,) =1, d{yp,) = dp—1

and ek [X™], ¢ = 1, 2, where %, iz some (necessarily finite) extension
of L(f); it being nnderstood that f does not take one of the finite set of
values for whieh the coefficlents 8,(f) of the terms of highest degree in
y (X", 1) vapish simultaneously. Hence if ack, a factorization of (X", a)
over some finite algebraic extension of % will, apart from possibly
0,,2(1) exceptions, entail the simultaneous vanishing of

(52) Ryila), 1=1,2,...,40

for some ! with 1 <! < d,—1. Moreover, by our hypothesis on 3 (X™, %),
it is impossible for R;,(t), 4 =1,2,..., A(l) to vanish identically in .
Thus, there can be at most 0, ;(1) values of aek for which ¢ (X", a) splits,
or reduces to a constant. '

Outline of the proof of Lemma 4 (cf. [8], pp. 81-83). First,
let ¥ denote any Irreducible polynomial in %'[X] containing both X,
and X, ; &' being any extension of &. Introduce algebraically independent
indeterminates &,,..., £, over & and let X = &'(&, &, .-, &) = K'(E)
denote the function-field over %' defined by the equation F(&,, £u, ..., &)
= 0. Suppose that p > d(¥); then

(b3) F ig absolufiely irredueible over &’
< k' is algebraically closed in '(£).
We shall apply this criterion for absolute irreducibility in two cases:
(1, &'y F) = (n’: k, "P(X)) and (’l“b—l, k(L) p(X", E))r

where { = £, 0f,_; for some ¢ek. From the first case and our hypothesis
for y, we have :
k is algebraically cloged, in k{£).

Algo, { is clealy transcendental over %k and so, by Gauss’ lemuma,
P (X", £)eR[L][X™] is irreducible over k(). Heunce by the second case,
it follows that ¢(X™, ¢) is absolutely irreducible over k({) if and only if

(54) k() iz algebraically closed in A{{){&1, &5« Eny) = k(&)

Thus it remaing to prove that for “large® p there iy a cek such that
¢ = E,+ ¢k, ratiaties (B4). :
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Since #—1 3= 2, we can define 2" as the field of elements of 2 which
are algebraically dependent over &(&, ,, £,). Then, for any a <k, we define
2, to be the field of those elements of X' which are algebraically dependent

on k(&,-Faé, ;). Then clearly,

(53) k(fn-1y &n) € 24060} = 27
Since
(56) 4= d(p) > [5: Bz, ..ms £)]
=X (&sy ooy Eua)t By .oy &)
[

2 Tﬂ(én-u En)]!

by our hypothesis concerning the algebraic independence of &, ..., &, .
over k, it follows that Z'/k(£,_,, &) is a finite separable extension and
therefore simple. Thus, there are at most 2¢ fields £2,(£, ;) between X'
and k(&,,, &) and since p > 2% there are two distinet elements b, ¢
of k such that

. *Qb('sn-l) = Qc(E —1)3

le.,

(57) ‘Qb(‘fn_l”cfn—l) = ‘-Qc(é-n,“{"bé:n—l)‘

Note that as k is algebraically closed in X it is certainly algebraically
closed in, the sub-field £;,. Then the main part of the proof ([8], p. 82), which
we omit as it is valid for fields % of arbitrary characteristic, is the deduetion :
(08) % algebraically closed in £, = k() algebraically closed in @,(¢).
The ecompletion of the argument is now routine, for any element of 2,(¢)

which is algebraic over k({) is therefore in k(). But any element of 2
iy algebraic over E({), and

{59) Qc = Qccfn“}"b’fn—l) = ‘Qb(c)

Hence any element of @, is in %(2), i.e. O, = k(&) or k(Z) is algebraically
closed in k(£), as required.

6. THEOREM 3. For n > 3 let f, y denote elements of k[ X], and suppose

that

(60) f(X) # emody,(X)

Yeek and ¥V absolutely irveducible factors w,(X) in k[ X] of w(X). Then
(61) Sfv) = 3 elfle) <pmon

wek™ P{x)=0

Remark. The following proof proceeds by induction on # from the
case n = 2 (Theorem 2), and assumes the result

8,(f,0) <p" ' when v is identically zero in % [X].
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For # = 1, this is due to Weil [20] and the elementary inductive extension
to general # is dune to Uchiyama [187.

Proef. By the lemma of Chalk and Williams [5],
I
18 (s ) < D 18L(F5 )+ Oalp™Y),
i=1
where [ <X d(y} and @; (j =1,2,...,1) are the distinet irreducible factors

of p(X) in k[X]. Moreover, if any v, i3 not absolutely ixrreducible over %,
then (¢} (¢f. [1], Lemma 2 and Theorem 1, Corellary 2)

Sulfyw) € D 1<Lp™.
yy(x)=0

Thus, without loss of generality, we may henceforth assume that

(1) w(X) ig diself absolutely irreducible over % and

(if)
{62) fIX) == emody (X)), Veek.
Thiz hypothesis and the desired conclusion (61) are clearly unaffecied
by the application of non-singular linear substitutions on X and, in
particelar, by permutations of the X,. From our remark about 8,(f, 0)

above, the conclugion is immediate in the cases when f and v can be
rendered “digjoint”, i.e., when, after a suitable permutation of the X,

fek[ Xy, ..., &1, "Pek[x‘r-!-l!'”’XWL Ry
and

(63) Sn(.f: ) o= Sr(f: 0)'N{($r+17 vaey wn)":kﬂ—rl Y= 0)
<Pr—1f2'pn—r-1 —_ Pn~3{2‘

We may therefore assume that f, w are not of this type and so by a suitable
permuiation of the X; (1 <4< n) arrange that both f, » contain X; and,
as p is absolutely irreducible over ¥ further ensure that y confains X,
unless w is linear and of the form X,-4¢, where cek. By (62), the cases
where y is linear are a trivial consequence of the estimate for 8, ,(f, 0)
and are excluded henceforth, Hence, by Lemma 4, we know that a suitable
sliear of the type (46) will ensure that v meets the requirements in the
hypothesis of Lemma 3. Then, from its conclusion we have

(64) W <1,

where
(63) A" = {wek| p(X", 6)k[X™] not absolutely irreducible over k}

i) This also follows from [5], as was noted by K. 8. Williams.
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and from our reduction above we can express f,» ag elements of
ELAIX]:
{66) X)) = (XN X3+ 41X, exz1,
{67) P(X) = 9 (X)X 4. (XY, d21
where neither of fy, g, is identically zero in k[ X"]. Now, for a more useful
form of our present hypotheses (i} and (i) (cf. (62)) we introduce the
resultant B(X", Z) of f(X)—% and w(X) which is obtained by elimi-
nating X,.
Then, by hypothesis (ii),
{68) B(X’, ¢) is NOT identically zero in %k[X'], Voek
or, equivalently, if we view R(X?, Z) as a polynomial with coefficients
By (X,,Z) say, in E[X,, Z], then ' '
{69) for each cck, R,(X,, ¢) identically 0 in k[X, ]Vt is impossible.
Congsider the effect of the specialization

{70} X, >a (ack)

upon f, » and note that the following sets

{71) H = {ack| p(X*, a)<k[X']},
{72) F = {ack| f(X* a)eh[X']}

{for which they become independent of X,) are small, in the sense that
{73) 2] €1, |F| <1.

For, each of the sets {y(X,)}, {f3(X,)} say, of coefficients of y,(XY),
Jo(X), viewed now as polynomials with coefficients in & [X,], can vanigh
for at most O(1) values of a<k. We shall also need to know that w{X" a)
i8 not identically zero in k[X"] for any aek. This follows from the fact
that ¢ (X) is irreducible over k and that if it is regarded as & polvnomial
with coefficients §,(X,,) in k[X,], then the g-6.d.0,(X,)}, taken over all »,
Is 2 unit in % and so there can be no ack for which 8,{a) = 0, Vy. We
colleet onur “small” sets together amd introduce the notation,

(1) H=BUFuW, @=k—1HO,
‘where, by (64), (73), we have
{75) | Hi <1.
For our sum,
(76) CAhw =3 Y elf@, a)
el gl opti—1
iz, gy=0
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it is convenient to splif the summation over ack into two parts 2,2
say according as aeH or ae@, respectively. Then

(77) < ZN(m“ek““ll p(a" a) = 0)
acH
< p"t|H|
(78) < p"t,

in view of (75) and our remark about the non-vanishing of ¢ wunder the
specialization (70). For the remaining sum 5, over &, two cases have
to be distinguished and we define further sets

(79) Gy = {e<@! p(X™ o)|[f(X", a}—c] in k[X”],.for some cek},
(80) Gy = {a¢@| p(X", a)f [f(XT", a)—c] in K[X"], Veek}

so that @& iz the disjoint union of &, and @,. Then

(81) L=+

ael]  aelly
and
(82) 2 =2 Y el a<pp
aely aeldly ghepn—1
v (™, aj=0

since our induetion hypothesis applies for any ae<f, (when, of course,
a ¢ 47). The full foree of our hypothesis i3 now required for the smn over
the ae@y, ie. if aed,

(83) w(X" @) [f(X* a)-~¢] in E[X"] = Ry){a, ¢) = 0, Vi.
An essential step in the ensuing argument is the identification of the
two sets:
(84) 81 ={@a" a, &)k X Gy xF| p(a” @) =f(a" a)—2z =0},
(83) 8, = {{o" &, 2) k" X G X E p(z", ) =0, Ria,2) =0, Vi}
and this is a direct consequence of the definition of &; and (83). Then

(86) D= D elfa™ )

aeldy (@) ekl dy
vz a)=0

= e(?)
(2™ a,2) eS8y

(87) = D el

(o™, d,2)e Sy

. R .
(88) = 3 eaf X 1},

(a,2)e2(Fy) afegn—l

v (@™ a)=0

14 — Acta Arithmetica XVIII
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on rearranging the order of snmmation in (87), and where, in general,
#(8) denotes the set defined by

(89) #(8) = {(a,2)ek?| aeS, Ry{a,z) =0,Vi}.

For the inner sum over a™ek"~! in (88), we can apply the Corollary to
Lemma 3, since ae6, and, in particular, a ¢ 47 so that (X", a) is absolutely
irreducible over k. Hence

(90) Nl k"™ pla"y a) = 0) = p""+-0(p""*")

and the implied constant in the (-symbol depends at most on n and
d(y) (but not on e). Combining (88) and (80) and rearranging the terms,
we getb '

(91) D -

el (&, =} R (GH)

o(s) < PP\ R (K)..

But, since not all of the polynomials B, (X, , Z) are identically zero inw

k[X,, Z],

(92) 12 (k)] <1,
and so, by (91), it only remaing to prove that
(93) 2 el <y

(e,2) R (G )

By definition of H, &, and ¢,, we know that #(%) is the disjoint union
of #(H), %((;) and 2(#;). But, by (80) and (83) :

(94) EG,) =0
and
(95) 2 e(z) <1,

{2, 2) e RF)

s_ince if, for some a4« H, the polynomials B,(a, Z) are constant for all ¢
{i.e. the range of ¢ in the sum is unrestricted), the sum is zero and otherwise,

the number of zek with B,(a, 2) = 0, Vi is clearly bounded. From (93)

(94) and (95), we have ’

(96) 2 e = Y e@— Y e@— 3 e
[CRATE () {a, 2yeR(E) (ct, =)t (Gp) {2} e H)
= ) e@)+0Q).
(@.2)eR(k) .

Now, not i ica, i
om ot all R,(X,,Z) are identically zero in k[X,,Z] and so we may

(97) BT, 2) = R(X,, DX, 2), Tt

On Bombieri’s estimale for exponential sums 211

where R(X,,7Z) denotes the g.c.d. of the set of all the R, (X, Z) and is
not identically zero in k[X,,Z]. Then

(98) N oear= 3 elx+0(),
(ez,2) (%) }g‘ffl ; fﬂ

since (¢f. Bezout's theorem (40)), we have
(99) N ((a, 2)ek’] Rym,2) =0, Vi) L1,

Finally, for the sum on the right of (98), we use Theorem 2 to complete
our argument; it remains to confirm. the hypothesis and for this we note
that

(Z—¢)| R(X,,,Z) for some cek

=>(Z—e)| Ry(X,,%), Vi

~ Ry(X,, ¢) identically 0 in k[X,], ¥,
contrary to (68). '
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ACTA ARITHMETICA
XVIII (1971)

The multiplicity of partial coverings of space
by
L. Few (London)

1. Let X be a convex body in #-dimensional space. Consider & system
of translates of K such that no point of space belongs to more than % —1
of the translates. This system is an (A 1)-fold packing. Yet the proportion
of space belonging to at least one of the bodies be §, and let

(1) ' k = —log(l— 4).
We prove that, provided n is sufficiently large, and
(2) nd™™ < 8 < L—e™ 0,
there is such # systen. with A—1 = [I], where
_ nlogd(n+1)—2ke—logd— flogn+tn
logn—log2ke

{3) l 1
and we alzo prove that the density of the system is greater than 2%
and ~ 2k, E '

These results are illustrated by examples in § 7. ,

This paper uses methods of Erdss and Rogers [1], and the notation
of that paper is used where convenient. '

2. In this gsection we take K to be a Lebesgne measurable set with
finite positive measure V, Let A be the lattice of all pointy with integral
coordinates, and suppose that all the distinet translates of K by the

veotors of /A are disjoint. )
Let the N points @, X,, ..., £y be chosen at random in the ecube

C of points o with _
' o<y <l (1=1,2,...,0).

Consider the system of sets
(4) E+atg

and, for 0 < &k < N, the set B, of points belonging to just & of the sets (4).
Then, given A and &, the density §(E,) of the set F, is a function of

(I<i< N, ged)



