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Repeating the reasoning in Section 10 we can derive from (LL.6)

(11.7) Z G (V) =< TQ(N)GXP (O(N””“ D]gg -0 N loglog N -
1

meE=My

loglog N
4y — My A (L) OLNG/(“-I-I) km---ﬂf(fx--i-l)_N (-1‘ 40 (0{.1702: ))1) .
log N ]

Naw choosing
M, e G N Lo D N (1210 VOO N,

(1 1.8) py = 1(.){.’:. Lf(e 104) N

(11.7) gives
E 0, (N) <. Q(N)oxp (— eN“ g R Ny

[T

with an unspecified positive ¢. This completes the proof.
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On the order function of a transcendental number
by
K. Maurer (Columbug, Ohio)

To the memory of Harold Davenport

Some forty years ago, I introduced the classification of all (real or
complex) transcendental numbers into three digjoint classes 8, 7', and U
(see the detailed treatinent of this clagsification and of an equivalent
one by J. I. Koksma in Th. Schneider [57, Kapitel TIT). This classification
possessad the Invarianece Proverty; i.e., two numbers which are algebraically
dependent over the rational field Q always belong to the same class.

kn the present paper, a new classification will be introduced. I associate
with each transcendental number £ a positive valued non-decreasing
finetion O(u|&) of an integral variable u z= 1, called the order function
of 5. For such erder funetions, both a partial ordering and an equivalence
relation will be defined, and it will be proved that if any two transcendental
nunibers & and y are algebraically dependent over Q, then O(u|f) and
O(u|y) are equivalent. We may now put any transcendental numbers
into one and the same clags whenever their order functions are squivalent.
In this way we evidently obtain a classification of the transcendental
nnmbers into infinitely niany disjoint classes.

The order function O{u|£) iz defined in terms of the approximation
properties of & Unfortunately, the aetual determination of O(u[£) for
o given & is o difficudt problem, and more work on sneh order functions
i enfled Tor.

1. The following notation will be used. We denote by ¥V the set of
all polynomials
» ("'I’) =% g |- Pyt + P o™ ‘where P 7 07
by ¥ the wel of such pelynomials with integral coefficients. The exact
degree of a polynomial in ¥ ix denoted by
. Up(p) =0 (p) = m,
andd we further put

Ly(p) = L(p) = [pol + 2ol 4+ [Pul,  Ae(p) = A(p) = 2P L(p).
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When the variable is ¥, we wrife instead 0,, L,, and A,. Tho funetion
L(p) hag the two properties

Lip+g)< L{p)+L{g) and  L(pg) - Lip)L{y),

and analogous inequalities hold for A(p). In addition, A(p) has the bagic
property that there are for every integer w > 1 only finitely wmany poly-
nomials p{e) in W for which

A{p) .

The set of these polynomials is denotod by W), i containg Lho constan
polynomial 1, and when 2 < ', then W{n) in o wubset of W (2",

For any algebraie number £, denote by (x| &) the primitive irro-
ducible polynomial with integral coefficients and positive highest coeffi-
cient for which

P(E]E) =0.
We then put

P(E) = 0(D), L&) = L(P), A& = AL},

In particular, #*(£) is the dogres of &,

Next let a(u) and #(%) be any two positive valued non-incroasing
funetions of «. If there exist two positive integers ¢ and 1w, and a positive
number y such that

a{u’) 7= yh{w) for m RTI
then we write
a(u) >>blu)  or  blu) << au).

This relation >> evidently definos a partial ovdeving. Tf, sivnultanceusly,

a{at) >>b{uw)  and  a(w) << bluw),
then wo write

a(u) > < blu).

Tt i cloar that this sign > < definey an equivalenco relagion. With rospoct
to thiy relation, the functions a(u) can bo distributiod into disjoint classes,
and then the sign >> defines a partial ordoring of thore classes.

2. Let & be any real or complex nwuber; put

) 1 if & ix reul,

a w2
& i & iy not real.

For avery positive integer » denote by £2(u) the set of all polvunmials

p(®) in W(u) for which

PLE) # 0.
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Thus, for all u, £2(u) 18 & finite set which containg the polynomial 1, and
0(u) I8 a subset of 2(v') when « < %', Therefore the minimum

o{u|&) = inf [p(&)]
{w)s )
exists for all u, satisfies the inequality
0 <<o(ulé) <1,
and i a non-increasing function of w. In the special case when £ is a rational
integer, or am intoger in an imaginary quadratic field, always
o(w|&) =1,
On the othoer hand, as iy easily proved, for all other £
0 <ofulé) <1
ag goon as w i sulliciently larpge.
We alzo introduce the derived function
(1) O(u| &) =log{ljo(u]§)} = sup log|1/p(é)|
() « H{w)
which we call the order function of & This function is non-negative and
non-decreasing for all «; it vanishes identically if £ is a rational integer
or an integer in an imaginary quadratic field, and otherwise is positive
as goon ag w i mufficiently large.
‘We shall use the notations
Ex>>n i Ow]é) >>0(un,
Ex><ny i O(u|&) =><O0(uln.
Hvidently & > > n defines a partial ordering, and & > <5 an equivalence
relation, on the set of all real and complex numbers.
3. Aresult due to R. Giiting [3] allows to formulate an upper estimate
for the order function when & iz algebraie.
Lebt & be an algebraic number, and let p(») be a polynomial in W.
Then, either
(€} =0,

max (1, | )@
IO &)X I () Eeted-1

or

lp ()] =

Assume heve, in particular, that p(s) lies in Q(u«). Then the first case
ig excluded, and A(p) == 2% L(p) does not exceed w. Hence there exist
o positive nimbers ¢, and o, independent of « and p(#) such that

lp(&) = eu i pl@)eR(w).
‘Wo can express thiz result in the following form.
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TaworeMm 1. If & s an algebraic number, then
O(ul| &) << logu.

4. Congider next the case when m is a given positive integer, and .
either is transcendental, or it iy algebraic but of a degree greator than m
We shall congtruet polynowmials p (@) in W, with degrees not greater tlhay
m, for which [p(&)f is small and 4(p) does not exceed o given value wu

The easiest method of finding such polynomialy uses an inegnality
from the theory of positive definite quadreatic forms

" W
ey )
ﬁ(mu [EEE .’I}R) == L\J 2_, ﬁfa..'s:whmiu uﬂh.’a s -FJM) '
Roees ]l fyaa ]
Denote by
lwll 'Fln
D PN PR )

the diseriminant of . On writing the forni ag the sum of {he B uare:
of » linear forms and applying Minkowski’s theorem. on linear forms
it can easily be proved that there exist to #' integers @Yy ooy @ ot al
zero such that

(2) Ia?, ..., o) < nDi",

Depending on whether £ is real or not, two different cases of this estimate
will e applied.

5. Rirstly, let & be real. Put % = m+1, and denote by & snd ¢ twe
parameters such that

s 2 max(l, |§) Yt = (1) (n - 2) 1 a1, | £y g

and hence
t 32 (k1) (mt 2)1 R0},

Take fox F the positive detinite quadratic forin
gy 1y oy i) == 8O (@ tpy Eobe o iy 8 o @b iR e st
which, iy oasily seen to have the discriminant
Dy = 14 gL g2 - g2
< 14+ (e Lymax (1, &))" < g0 4 2y amack (L, | £DY.
By the properiy (2), there exigts then s polynomial

P = pot Pt P a™
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with integral coefficients not all zero such that
SO (R P gl |
< {m+1) 6 (m A+ 2)Y0 D max (1, 1)) < @ m1-1).

Since p(z) # 0, and since § is not algebraic at most of degree m, this
implies that

0 < 1p(&)] < (mrf- 1) (m4 2) e+ Emax (1, [g]ymioned s

< (mA-1)EP 2 (- 2 P max (1, (g™
and thercfore

(3) 0 < [p(&)] < (m+-2)" max(L, &)™ ™.
It further follows that also

0 < potpi+-. .+ 05, <Bflm-+1),
whence, by Cauchy’s inequality,
(4) 0 < Lip) <t.

Secondly, let £ be a non-real complex number, and agsume now that
the parameters s and ¢ are such thaf

§ = max(l, !El)-—im,’(m—i—l)’ i = (m_l_ 1 (m+ 2)1I(m+l)ma'x(1’ iéi)zmﬂm*_l)si

hence that
t = (m-+1)(m-L )+,

The case # = 1 i8 now trivial and will be exeluded.
We uplit the powers

fk: = A tip say (b=0,1,...,m),
into their real and imaginary parts. The positive definite quadratic form
F(mo) Byg ey wm) = 3m+1 [w0+w1$+.'-'+wm§m[a+a;(2)+w%+"'+w2m

in @y, %,..., &, can eagily be shown to have the discriminant

b1
Dy = LA™ N4 ul) 4800 N (B e gy )
Tz O=cky <kgim. ’

where evidently
Dy < &m0 (-2 max (1, &)™,

‘We find thus jugt as in the real ecase that there exists a polynomial
P(®) = py+ 2194 - . .- P ™
with integral coefficients not all zero such that
S p (B o+ Pl 20 < (mH 1) 8 (m+ 2 D max (1, 5.
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As in the real case, this inequality implies that simultaneously

() 0 < |p(§)] < fme-t- 1) (m 2 P (1, [l
and
(6) _ 0 < L(p) <t.

On combining the two results (3), (4) and (b), (6), we have thus
proved:
Let m = (&), and also m < 8°(&) if & is algebraic; let further

M 12 (m-2) 0 tims)

Then there emists a polynomial p(x) with integral coefficients satisfying
(8) dipy<m, O0<L(p)<t, hence also A{p) < 2™,

and

{9) 0 < |p(H)] < (m42)"+HVOmax(1, |gyra-trrniddie,

6. Assume now, firstly, that £ is algebraic but iz neither rational
nor lies in an imaginary quadratic field. Choose m = o¢(§), and allow
i to tend to infinity. We obtain then infinitely many distinet polyuomials
p(x) with integral coefficients for which
o : 3*max (L, [£)" < 2-3%max (1, |£)A(p)™"  if & ig roal,

< < . .
2 &)l 4 max (L, &)%Y < 2*max (L, |£])%A(p)~" if £ is nof real.
Thus, in either case, for all sufficiently large u,

O(u] &) = ologu

wherse ¢; > 0 depends only on £. Hence, by Theorem 1, wo find ag a firgt
Tesulf. '

TemorEM 2. If & is algebraic, but is neither a vational number nor les
in an imaginary quadratic field, then

O(u| &) > < logu.

This result remaing valid in the excluded case provided & is not an
algebraic dnteger. '
Secondly, let ¢ be transcendental. We now chooge

t = 2™,
Then, for sufficiently large m, the condition (7) is sadisfied, and

A(p} < 4™,
Tarther

0 < |P(E)] < (mo- 2™ Vel mam (1, [§]ym - Detohs o g-ntio

a8 soon a8 o ig sufficiently large because o{&) < 2.
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This means that for every sufficiently large positive integer there
exists a polynomial p(2) = 0 with integral coefficients for which both

0 < |p(&)] < e aloe®  anad  A(p) < u.
Here ¢, > 0 i8 a certain absolute constant. From this result, the following
theorem follows at once.
TurorEM 3. If & is transcendental, then

O] &) >> (logu)2.

7. We proceed now to the study of the order funetions of two trans-
cendental numbers & and » which are algebraically dependent over the
rational field Q.

By this hypothesis, there exists a primitive irreducible polynemial

M N
A(m,y) = D' M Ayaty* 0

h=0 k=0

with rational integral coefficients and, say, of the exact degrees M =1
in » and ¥ >1 in y, such that

.A(E, 77) = 0.
From. thig we shall deduce that & > < 7.
Put
N
A4 = D Ayt (R=0,1,.., M),
g0 thatb =

M
Alw,y) = D 4,(y)a".
h=0
By the hypothesis,

Aply) #0,
and
{10) max d,(d,) = N.
0=<h M

We ghall use the notation
phs
8. The equation A(f,n) = 0 can be written in the form

Ay (n) 8 = —{Ao(n) +As (1) §+ ontdaa () §77} |
We multiply thiz formula repeatedly by & and each time eliminate t]}e
term in &' on the right-hand side by means of the formula. We so obtain
ap, infinite sequence of equations
M-l :
(11) Ap (e = Y a(m) & (8 =0,1,2,..).
h=1 .
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Here the a,,(y) denote certain polynomials in y with integral coefficients
which are defined by the initial values

h=Fk
hostk

Ay it

o and %k =0,1,...
0 if '

(12)  awly) = l » M1,

, by the recursive formulde
— Ay (§) Gago1,19) it B =0,
—An¥) aar_y W)+ A e (W () L A =1,2,
From these formulae and from (10),
(14) . &, (an) < BN for.all & and k.
Fuorther, for all &, by (12),
Loy <O* it

and, for k¥ = M, M--1, M--2,.

(13) G;I'!,r.:+1(y) = | vey M—1.

k=0,1,.., M—1,

and by (13),

Lylappe) <20 max L,(a) if
dche M1

k= M—1,

It follows therefore by induction for % that
(15) L, (o) <{(20)*  for all b and %.

It is convenient to replace the last formulae by slightly different ones.
Denote by m any positive integer not less than M — 1. The formulae (11)
imply that algo

M—1

2 Bhk

where the By, (y) denote new polynomials in ¢ with integral coefficients
defined by

{17) Buy(y)

Therefore, by (14) and (15),

{18) B, (Bn) << mN  and
9. Let"

(16) Ay () & (k=0,1,..., m)

= A (y)" Fan(y).

L, (B < (200" for all & and .

p(@) = po+p.@+...+ 2™, where p, #0,

be any polynomial in x with integral coefficients, of the exact degree

B.(p) = m.

Here it iz agsumed that
s ' m=M—1.

icm

On the order function of a tromseendental number 71

Therefore, by (16),

M—1
A" Z Zi"kBﬁk(’?

D=9 f=
sy
(19) Ay (" p(8) = me

h=9
Here we have put
(20) i) = D mBuly)  (h=0,1,..., M—1),
B0 '

so that also the b,(y) are polynomials in y with integral coefficients.
Trom the estimates (18), it follows immediately that
(21) 9y (by) < mN  and  L,(b) < (20" L,(p) (h=0,1,.... M—1).

Denote now by q(y) the resultant relative to 2 of the two
polynomials : :

Az, 4) = A, () + A e+ Ay (y)a™
and
A% (@, y) = bo(y)+-by (W) o+ ...+ by, ()

This resultant is given explicitly by the determinant

Ao(y) Auly) - Awly) ... 0
H ' : . : M—1 rows
0 e Ag(y) Ay(y) ... Ayy)
22 ql) = o
bo(w) buly) bpeay) o0 0
<, . : M rows
0 v boly)  baly)

e by (y)
Hence q(y) is a polynomial with integral coefficients. By ('10)
and (21},
) < (M—1) mN-+M -mN
and, therefore
{(23) ' O,(q) < mEM—1)N.

It follows further fromi the trivial estimate for a determinant and from
(21) that |

L, (9) < (2M—1) 120y (20" L (0)}
and hence o

(24) T,(g) < (2M— 1) 120" H DL, (p)
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10. Next multiply the 2nd,31d,...,(2M —1)st columns of the
determinant for g{y) by the factors
@, 2ty ., o
respectively, and add to the first column. The new first column becomes
then

Az, ), Alw, 1)@, ..y Az, y) &% A% @, ¥), A" (0, Mo, ..., A" (@, y)a™ .

Here put
g =§& and y=m1.
Then
A(g, ) =0 and A™(& ) = Ay (n)"p(8),
whence
(25) a(n) = Ay ()"0 (&) q*(5, ),

where. ¢* (£, ) denotes the deferminant obtained from that defining ¢(y)
by replacing its first column by the new eolumn

0,0,...,0,1, &, &, ..., 41

and substituting # for y. Thus ¢*(&, ) can be written as a polynomial
in £ of the form

(26) & =G Fa M E G ) EY

Here, for h = 0,1, ..., M1, the ¢5(y¥) denote the cofactors of the last
M elements of the fivgt column of the defermivant for ¢(y). They ave
thus polynomialy in ¢ with integral coefficients. Jugt ag for (23) and (24),
we find the estimates

@7) A,(¢}) <2m(M~1)N and L,(¢) < (2M—2)1(20)INL (p)"
(h=0,1,..., M-1).

11. The resultant ¢(y) does not vanish identically because A4 (w, y)

ig irreducible and has the exact degree M in wx, while 4™ (x, y) has at

most the degree M —1 in this variable. The transcendency of # implies
then that
g(n) #0.
By (23) and (24),

, A,(g) < 27N (A M — 1) 1(20)"EM DI, (p)
and, also -
Aw(ﬁ) = ZmLm(p)'
Hence there exist two positive integers ¢, and [, depending only on.
€, M, and ¥, and g0 only on the polynomial A (x, y), such that

(28) A <A@ i Adp) =TI,
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Next put
() = 65,  max(l, [£]) = ¢, and max(l, [p]) = ¢,
By (26) and (27),
16" (&, )| < MeFH2 M —2) | (20) 0L L, (p)¥-tni=0¥,
so that, by (25),
‘ﬁﬂ
p(£)

By this inequality, there exist two further positive integers ¢, and I
which depend only on the polynomial A (x,y) and on the two numbers
& and % suoch that

29) g S A (p)lp(8)l i Au(p)= T
12. Assume now that the parameter « ig not less than
I = max(ly, I}).

< GBMcglI-—l (2M"“2) ! (20)2m(.M—-1) Lx(p)Mulagm(M—l)N .

TFurther choose in (1) a polynomial p(w) satisfying the equation.

log1/p(€)] = O(u[§).
By this choice,

A (p) < w.
Tuarther, by (28),
(30) Ay (g) < ut,
and by (29),
(31) ()l < |p(€)u.

We found already, in the proof of Theorem. 3, that
log|1/p (&)} > callogu)?,

where ¢, > 0 wad & certain absolufe congtant. Hence, if I'y is a sufficiently
large positive integer, then, by (31),

(32)  loglljgln| > Hloglt/p(E) =02 E  uzle.

On the other hand, g(n) 5 0, and so, by (30), 4(y) belongs to the set
2(u'1). But then, necessarily,

0% |n) = log|1/a(n)l,
80 that, by (32), wo arxive finally at the estimate
Oty > 10| it w=T.
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Naturally, on interchanging £ and #, we also obtain an analogous estimate
0I5 = 10mln) i wxTY,

whers (7 and / ¥ are two further positive integers.
We have thus established the following Invarimnce Proporty.
THEOREM 4. Let & and # be tivo iranscendental nuwmbers which ure
algebraically dependent over the rational field Q. Then

Olu| &) > < O{u|ny)

13. Denote by .7 the set of all transcendental numbers. Let us then
subdivide & into disjoint subsets or classes 2, H, Z, ... by putting num-
bers £ and 7 into the same clasg if and only if £ > < #..Thus, by what
has just been proved, mumbers which are algebraically dependent over O
belong always to the same class. ‘

There are evidently non-countably many positive valued non-decre-
asing functions a(u), b(u), ... of the integer u =1 no two of whiclh stand
in the relation ' '

and thercfore £ > <.

afu) > < b{u),

but it is not evident which of these functions are order functions of trang-
cendental numbers. It is further clear that there exist tramscendental
numbers £ {e.g. Liouville numbers) for which O(u|&) tends arbitrarily
rapidly to infinity; but it does not seem to be easy to find the exact size
of these order functions. Thus the following two problems remain open.

Prosuem 1. Do there exist nom-couniably meny disting classes
2 H,Z, ..t (Y '

ProvueM 2. Let a(u) be any positive valued non-decreasing funclion
of the indteger w=1. To establish necessary and sufficient conditions for
the existence of o number £eF such that

a(w) > << O(u] &),

In addition to the equivalence relation > < we had algo dofined
an order relation >> for both functions and numbers, and it is cusily
seen. that it can be extended to classes. With respect to this oxder relation,
the following two questions arise.

ProBrem 3. Does there ewist @ pair of numbers & and 3 in .~ such thet
neither & >>n nor £<<<y?

PROBLEM 4. Docs there enist o number & 7 such that

E>>L forall  EeT?

{) Noto added on January 12, 1971, 8. Swicreskowski hag recently proved
that the answer is affirnative. :
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The following metrical question also has soine interest.

ProBreM 5. To decide whether there exist, and if so, to determine, twe
positive valued non-decressing functions a(u) and b{x) of the integer w =1
such that

(i) O(u] &) << a(u) for almost all real numbers £e7 , -
and _
(ii) O{u| &) <<z b{u) for almost all complex numbers £eJ

and that, in addition, a(w) end b(w) increase as slowly as possible.
I conjecture that this problem has the solution

olu) > < (logu)?, Bblw) > < (logu)?.

The actual determingtion of O(uw|E&) for any given feF presents
a difficult problem which has as yet not even be solved for the two
classical transcendental numbers e and wm For the order functions
of these two numbers the best Tower hounds known seem to be those given
in Theorem 3.

The best upper bounds known at present are those due to N, I. Feld-
man ([1] and [2]} which state thatb '

O{u|e) << (Jogu)*(loglogu)®,
0 (u|n) << (logu)?(loglog»)®.
We had, defined the order function O(u|£) in terms of the functional
Alp) = 2" L(p).

No essentially different results are obtained if 2 is here replaced by any
other constant greater than 1. It may, however, be useful to consider other

functionals. o
Just as in Koksma's approach ([4]) to my old classification, one cau

replace the order function O(w|£) by a new funciion
0% (| £) = Slllb)log{1/15~al}
ceQ¥(w
where £*(u) denotes the set of all algebraic numbers o for which

o % & and A a)<u.

However, both Koksma's work and a recent paper by Wirging ([67)
gnggest that the results will be completely amalogous to those for

O(u|é).
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A larger sieve
by
P. X. GarvaegaRR (New York, N.Y.)

1. Linnik's ‘large sieve’ gives an upper bound for the number of
integers which remain in an interval of length N after f(p) different
residue classes (mod p) have been removed, for each prime p. In its refined
form, due to Bombieri and Davenport [1], [2], and Montgomery [4],
the upper bound is ' '

NLo@g?

Y fw)
8@ 7

p—f(»)’

and ¢ is a posifive constant. In the applications, ¢ is chosen a little less
than N'? to minimise the bound.

In some oases, the bound obtained iz nearly best possible. For example,
if the quadratic nonresidues (mod p) are removed for each prime p, the
perfect squares rvemain. Here f(p) = 3(p—1) for odd p, so S(¢)> €.
Thug the upper bound iz <& N2 for @ = N,

In this note we give a simple sieve method which gives a comparable
bound in this example and is more effective than the large sieve when
f(p) is close to p. We put g(p) = p—f(p) and congider also prime power
moduli. _

TEROREM 1. If all but g(g) residue cdlasses (mod g) are removed for
each prime power g in o finile set &, then the number of integers which remain
in any interval of length N is at most

@) (qzy‘ A(g)—logN) / (Q; % ——.logN)

provided the denominator is positive. Here A(q) = logp for ¢ = p°.

Proof. Assume Z integers # remain in a given interval of length ¥,
and of thege Z(h, ¢} satisfy # ==k (mod q). Then

) where §(g) = M (@) [
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