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21z dans le polyndme

37y gl

N T

en remarquant que clest le coefficient de

Par exemple, en prenant f; = w, fi = £—w et y(n)
on obtient ainsi le résultat suivant. .

TrhoREMT 4. Ftant donné les entiers m =2 et b= 1, il ewiste une
suite de polyndmes Py, Py, ..., Py, ... de degré m—2 telle ‘que, v, ; (@) étani
le nombre des n << @ pour lesquels w(n) =m et L(n) =m-h, quel que soit
g entier 22 0, on o quoand x tend vers oo

=1 pour fout »,

q
o1 2P, (logloge piloglogmy™ -t
"’m,h(m) = > J( AEi ) ( ( glog ) )

£ (logay ™! (log)tF?

Le coefficient de X" dans P;(X) est

(_1)5‘ o .\ 1 1
A2 moay, a e ==Y

(#n— 2)! § & phtus”

Ajoutons que le complément an théoréme C mentionné au para-
graphe 6.4.2 permet ’obtenir un développement asympiotique du nombre
des » an plus égaux & o tels que

w{n} =m, L@n)=m+h o8 n=I1(modk).

Regw le 15. 2. 1970 (38)

AQTA ARITHMETICA
XIX (1971)

On Waring’s Problem in GF[p]
Ty

M. M. Dopson (Heslington)

Tn this paper we consider the solubility of Waring’s Problem and
of two related equations in GI'{p], the Galois field of p elements. It is
convenient to congider the equivalent guestion of the solubility of the
congruences (mod p). Throughout, p will denote a prime, % a positive
integer and & = (k, p—1) will denote the highest common factor of &
and p—1. We shall always write ¢ = (p—1)/d. '

The first congruence to be considered then Is

{1) O =

where N is an arbitrary integer. Let I'(k, p) be the least positive integer ¢
such that this congrueence hag & non-trivial solution (i.e. a solution with not
all of the integral wvariables xy, ..., 2, divisible by p) for all integers N.
Hardy and Littlewood ([12]) showed that if d < $(p—1), then I'(k,p) <k
and Chowla, Mann and Straus ([6]) showed that if d << %(p—1), then
Pk, p) < [3(k4-4)]. 1. Chowla {[4]) showed. that if %k is sufficiently large,

(mod p),

then for all primes p with d = (&, p—1) < #(p—1), we have

Dk, p) < B °t"

where, as always, & is a positive number, and e = (103 — 3V 641) 1220
lies strictly between 1/8 and 1/9, a result which for large & is mueh stronger
than Hardy and Littlewood's and that of Chowla, Mann and Straus.
Here this estimate is improved slightly to the simpler result that if
d << 4(p—1), then _

Ik, p) < K",

provided % ig sufficiently large. This is probably a long way from the
truth and indeed Heilbronn ([14], 1. B) has conjectured that given & = 0,
and % large enough,

I'(k, p) < &,

for ¢ sufficiently large or at least, that if ¢>2 (corresponding to
4 < Hp—1)), then I'(k, p) = O(k'®). We note that the cases d = p—1 and
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d = }{p— 1) are exceptional in the sense that in these cases I'(k, p) can
be. determined exactly and is in general not small. For ingtance, Hardy
- and Littlewood showed ([12}, p. 524, Lemma 7) that if p = k-1 >3,
then
I'p—1,p) =p =kt1

and provided p >3, if p = 2k+1, then
I'3p—1),p) = 3(p—1) = k.
Secondly we let #(k, p) be the least s such that the congruence
(2) a4 ... 42 =0 (mod p)

has a non-feivial solution. Plainly if % is odd or more generally if —1
is & kth power residue (mod p), 0(k, p) = 2. Clearly for all = 1

0(k, p) < I'(k, p)

and 8. Chowla ([5], p. 62) has conjectured that if 4 < p—1, then for & ‘

sufficiently large,
(%, p) < B2, _

The simplification of having ¥ = 0 enables us to combine an estimate
developed for I'(k, p) which iy effective when d iz near p**, with the ine-
quality ‘
8k, p) <t = (p—1)/d,

which ig effective when ¢ is near p, and we aire able to show that if @ - p—1,

then
Bk, p) < B+

for & sufficiently la.rgé. This goes some way towards proving Chowla's
eonjecture. ‘ '

Thirdly we consider the function »*(k, p), defined to be the least
positive integer s such that the congruence

(M @i+ .o @k == 0 (mod p),

Wbe?-e iy -nvy Gy BTC arbitrary integers not divisible by p, has a non-
trivial solution. When % is odd and sufficiently larpe, A. Tietiviinen
([15]) has proved using beautifully arguments that

¥ (k) = Maxy* (%, p) < (L+ &) (log k) /{log2),

a rg.sult which is also best possible. In general, such argunients are not
;waala.ble and the problem of estimating »* (%, p) is much more difficult.
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However the aunthor ([9], p. 16‘7, Lemma 2.6.7) has shown that if
1<d<p—1, then for k=1,

| p*(ky p) < 12 (logh)P K2
so that for k sufficiently large,
'Y* (B, p) < e,
By using estimates 6b1:~a.ined for I'(k, p) and 6(k, p), thiz iz improved to
¥ {k, p) < E*E

for d < p—1 and % sufficlently large. Of course this result is of interest
only when k is even.

We conclude by obsérving that the improvement gained for y*(%, p)
leads to a corregponding improvement in the estimate for the related
function I'* (%, p).

1. The comgruence ¥ ... +zf = N(mod p). The arguments and
resulty given in this seetion are modifications of those due to I. Chowla
{[4]) in hiz investigation of Waring’s Problem (modg). Unfortunately,
his paper which is not easily obtainable eontains a number of misprints
and obscurities and for these reasons and in order to keep this paper
reasonably self-contained, we give his arguments in some detadl.

It is well-known that the non-zerco residue classes (mod.p) form
a cyelic group of order p—1, and it follows from thiz that the values
agsumed by 2%, for a given exponent & and arbitrary « are the same ag
the values assumed by 2, where as always, d = (k, p—1). Hence

Ik, p) = I'(d, p)

and therefore it suffices to investigate I'(d, p) where d divides p—1.
The case & = 1 is trivial and plainly

{4) I, p) = 2.

From now on we shall asgnme that p is odd, since when p =2 the
only possibility is d = 1, covered by (4). Alse for the rest of this section,
we agsume that & << L{p—1), since the cases d =p—1 and d = ${p—1)
are gomewhat special and do not concern us here.

Tt is convenient to introduce the function - (d, p), which is defined
to be the least positive integer s such that every residue class (mod p)
ig representable ag a sum of ¢ dth powers (mod p). Plainly

y(d, p) < T, ) < p{d, p)+1,
and since I'(d, p)<<d when d < 3(p—1) {[12], p. B33, Theorem 4) we have.
y(d, py< T, p)<d.
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This has been improved by Chowla, Mann and Straus ([6]) to
I(d, p) < [3d+4)1,

where [z] denotes the integral part of », but nothing would be gained
by using their result heve.

As is well known, the use of exponential sumy provides a powerful
method of attack in additive problems. We make some definitions: we

define
”n— 1

S(a) = 3 e (af),  T(a) = Dle,(au),

=0 M

613('3/) = G(me]mi
where the last sum iy over the ¢ = (p—1)/d distinct non-zero dil power
residues (mod p). We shall always let # denote a non-zero dth power
residue (mod p), so that for instance the ¢ distinet nom-zero dth power
residue classes (mod p) will be written u,, ..., 4,. Since the congruence
#” ==u (mod p) has just 4 solutions, we have

Sla) =1+ aT (a).

We recall that the p—1 non-zerc residue clagses {mod p) fall into &
disjoint equivalence classes, one such class consisting of the dth power
residues, and the others being the various classes of dth power non-
residues. We denote by Z 2 sum in which b runs through a set of &

distinct representatives. of.these clagses. It can be proved readily that

s

(5) STISHIP = d(@—1)p

b

([91, ». 170, Liemma 32.5.1).
Also, we shall write L = (logp)/r, where r is a large positive number
80 that 0 < L < 1. Then we have (loc. eit. p. 170, Lemma 2.5.2)

- Lmwma L. Suppose y(d, p) >r. Then there exisls an integer a, prime
to p, such that

_ |8 (a)| > p(1—L)
and this implies that .
|8 (ma)| > p(l—ml)

Jor every mom-zero integer m.
As an immediate eonsequence we have the
COROLLARY. If for oll integers o prime lo p

[S(a)l < p(1—1L)
then

?(dyzﬂ)ér
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Moreover, if ¥ < p and if for all integers o prime to p,

|T(a)] < p(1—2L),
then
y(d,p)<7s

1S (a)| = L+dT(s)] < 1+ @ (1l—2L) < p(l—1I).
Using thiz lemma in combination with the equation (5) it can be
shown ([9], p. 171, Lemma 2.5.4) that if p > ¢, then

(6) vi{d, p) < [8logp]+1 < Max(3, [32logd]+ 1)

gince exponential sum arguments (loc. cit. § 2.4) give v {d, p) < 3 if p > d*.
Thus unless otherwise stated we shall suppose that from now on p < &
and we shall write

For

p =47 0<o<l.

A natural approach to additive problems is by means of theorems
on the addition of residue claszes (mod p), and here following I. Chowla
we make repeated use of the Caunchy-Davenport Theorem (Cauchy [1]
and Davenport [7], [8]) in order to obtain an estimate for y(d, p) which
iy effective for small g, ie. when p is not much greater than d.

Levwa 2, Let p = @7 (0 < o << 1) be a prime > 243 such that p—1.
is o multiple of d with d < $(p—1). Then

y(d, p) < B4 - Jl3/8H1-Fe)

Proof. Since by hypothesis { = (p—1)/d > 2, we can find a non-
zero dth power residue (mod p), E say, which is not congruent to -1
{mod ). Consider the least positive residues (mod p) of the numbers

0, R1 2R, ..., ([p1[2]+1)R_
These are all distinet and define [p'"]+2 different points distributed
amongst the [p”g‘]-{-l intervals defined by
P E < (r 1) r =0,1, ..., [P

By the Box Prmc.]ple at least one of these intervals must contain at least
two pointy and it follows that there exist integers @ and y satisfying

p‘,;l <:p1f- 1< Y < plfz
such. that

R ow=g-y "t (mod p).

Moreover we can assunie without loss of generaliby that » and y are coprime
and that |#| >y, since otherwise we can replace R by E~'in the preceding
argument. Thus we have

Be=gy

. L {mod p),
where 1 <y < |z < p*?, (z, y) =
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We consider three geparate cases:
Case 1. 9™ < |z < p'*, The ([3p*°141)° numbers of the form

tsm,n < %172[53

(7) m-+ nlt,
are mutually incongruent (mod p). For suppose

My, B = my+n, B (mod p).

Then _
(1 — #ig) B = my—m, (mod p),
i.e.
(90— 1y) @ == (My— M)y (Mod p).
But
2 {1y — mg) — g (mg—my)| < P p* < p,
whence

(g —ng) = Y (Me—my).

Moreover, since # and y are coprime, it follows that z divides I T
and in view of the inequality || > p** > |my—m,|, we deduce that
M, = My, which plainly implies that n; = n,. Thus the numbers (7)
form. ([$p*°]4-1) distinet residues (mod p), each number being the sum
of at most p*° dth power residues (mod p).

Now by the Cauchy-Davenport Theorem, the expression

ot Bt b, By 0 <o, 0 < 39, 1<,

represents at least minf{ry—r-+1,p) distinet residue classes (modp),
where » = ([3p*°]+41) . It follows by definition that provided p > B,

y(d, p) < p*(p—1)/(v—1),
whence

7{d,p) < 8-p°°.

Case 2. p'* < |#| < p*°. The argument in this case is gimilar to the
previous one, except that here we congider numbers of the form

(8) I-mB4nB, 0<1,m,n<< ",

We note that R? =& 41 (mod p}, since otherwise we would have a®--y?
= 0 (mod p), where y < [#| < p**, which is impossible. Suppose two of
the numbers of the form (8) are congruent (mod p), i.e. sappose that

Lk my Rt ny B = 1y + my R4-5, B (mod p).
Then

| (o Ta) o (11— 10,) B (g — ng) B = 0 (mmod p),
whenoe ' : '
(s — Lo}y (my— ma) oy + (0 — )2 = 0 (mod p).
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But the inequality
[T — L)y + (g — ma) ay |- (30— ma)2®| < 3- 3% p** = p
implies that _
(L) Y2+ (my— mg) 2y 4 (R —Mp)2® = 0.

Since (v, ¥) = 1, we must have that # divides I, —1I., and by the inequa]itjr
[o| >p"® > I,—1,|, we have further that I, =I,. Thus we have that

(g == M) Y+ {0y — Mz} = 0.

Again ¢ must divide m,—om, and it follows from the inequalities
[@] > p'* > |my—m,| that m, = m,, whence plainly #, — n,. Therefore
the integers (8) form ([4p*]+1)® distinet residue classes (mod P), each
numbher being the sum of at most p'® dth power residues {mod p).
Now by the Cauchy—Davenport Theorem the expression

LtmB+n R4+ L4m B0 R 0L, m,n, <395, 1<igr,

Tepresents at least min(ry—r-1,p) distinet residue classes (mod p),.

where » == ([}p'#]4-1). Again, provided p > 243, it follows from the

definition of y(d, p) that

s P —1i
—1

y(d, p) < p <25 L o pagihs,
v
Oase 3. 1 < [o| < p'. Since |z| > 2, we can find a positive integer F
such that ‘ '
pﬁlﬁ <« ]m\f < pa.'s_
Thus we have
R =2y (mod p),

where (27, ") = 1,1 <y’ < |aff < p*%, |2 > p** and it follows that R,
which is plainly congruent to & dth power, is not econgruent to 41 (mod P

The argument now proceeds on the same lines as before: numbers of
the form

(9) m-+nk,

0<m, n < $p*,

are all mutmnally incongruent (mod p). For suppose
my+ny B =m,+n, R {mod p).
Then

B =2Ty™ = (my—my) (ny—ny)"" (mod p),
whence

& (g —ms) = (my— my) (mod p).

-But we have that |27 (n,—ns) — 9/ (m,—m,)| < p**-p* = p, Whioh.implie&

& (hy—m;) = Y (1, — my)

4 — Acta Arithmetica XIX, 2
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and since (2, 4) = 1, it follows that «' divides m,—m,. However since
lzf = g > |my—ms|, we have m, = m,, whence n; = #,.

Thus the nwmbers (9) form ([3p*°]+ 1) distinet residues (mod p),
each number being the sum of at most p*° dth power residues. The Cauchy—
Davenport Theorem implies that the expression

myt+n B+ .+ myetn, B

represents at least min(rv—r+1, p) distinet residue classes (mod p),
where » = ([3p*]+1)%
It follows that provided » > 5,

0 < my,m < 3P, 1<igr

a5 P

-1
wdy py < g LT < apt £ gt
r—1 P

which combined with the other two estimates for (4, p) gives us that
y(d, p) < B4 p*S = g4+,

since we are given that p = d'?, 0 < p << 1.

We see that this result, which was obtained by elementary considera-
tions, gives us an effective estimate for ¢ (d, p) when p is not much greater
than d, i.e. when p iz small. The principal difficulty arises when p is not
much less than 4°, and we now proceed to discuss this case.

The underlying idea here is that 4 (d, p) is small providing the expo-
nential sumg 7'(w) are all sufficiently small in modulus for every « prime
to p, while if for some a, |T(a)f is large, then there is some regularity in
- the distribution of the residues aw(mod p). Thiz regularity is exploited
in developing the arguments which lead to the estimate for y(d, »). We
begin with a lemma whose proof has some features in common with that
of Lemma 1.

- LeMuMa 3. Suppose a is @ non-zero vesidue class (mod p) such that
|T (@) >t(1L—1L).
Then the ¢ residue classes awu (mod p) have representatives which lie in an
interval of Tength pVL[2A with Tess than 2 exceplions, where 0 < A < 1.
Proof. For suitable real 6 (0 < & < p) we have

H1—L) <1T(@) = D o,(au—0) = > cos(on(ou—0)/p) <t,
u W
whence
2 gin?m(aw— 0)/p < $iL.
Now suppose that m of the residue classes au(mod p) have representatives
b say, which satisfy the inequality
' < p—0l<p—is.
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where 0 << <Cp. Then sinee siny = 2y/r for 0 <y < =/2, we have
sin*{w (au — 6)/p) = sin® (mw/2p) = (2/p)
for m values of . Hence '
m(2)p)® < $1L
which implies
0 < PpHL[2p?

which on putting 1 = pLL/2x* gives the desired result.

The following lemma is based on & dissection argument and the
preceding result with i = 1/logp is used repeatedly. For convenience
we shall write

8 = 3/(loglogp).

Lmmaa 4. Let p be sufficiently large and let o, be a non-zero residue
{mod p}. Suppose that
1T (@)] >t(1—L).

Then there exists a positive number ¥ < pV3logp-L and o positive inieger
& < Yp°lt, such that at least t/(2log2p) of the residue classes aw have repre-
sentatives, b say, which satisfy '

Y < b <2Y.

Proof. Let % == [floglogp]+1 and take p large emough to ensure
that 2" < logp and note that #6 > 1. Let X = p¥ilogp L. Then by

1
Lemma 7, at least t(l—
log

) of the nmumbers a,u have representatives

which lie in an interval of length X. It follows by a box argument that
there exist two such residues, B, and B, say, such that

, /
0 < B,—B, < X/ [t(l— —I();—p)] < Xt

and we note that there exist two dth power residues, » and »' say, such
that
B— By = a,(v—7") (mod p).
We write .
a; = By~ By < 2Xt.

Now since 7'(ay) = T'(a,9} = T(a,v’), Lemma 3 and the above remarks
also apply to numbers of the form ayuw and a,uv’ where % runs through ¢

distinet dth power residues (mod ). Thus therve are at least t(l—— 1 = )
0gp

representatives of the residue classes a,uv (mod p) and at least ¢ (1 —7 ) .
ogp
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representatives of the residue classes a uv’{mod p) which lie in the game

) residue classes

2X,2X) which

2
interval of length X, Hence there are a,t least t(l— "

(mod p), which we will denote by &,, in the interval (—
satisty
by == apuv— aouy’ = au (mod p).

Write ¥, = 2X. Digsect the interval (0, ¥) into {2logp]--1 sub-
intervals of the type (2™ '¥,, 27" ¥} where 0 < m < 2103_19, and the
in‘ﬁei*val (— ¥4, 0) into subintervals of the fype {—2"™¥, , fZ“m“_l Yo,
where 0 < m << 2logp. None of the integers b, lies in the interval

(_2—[210;;'9]—1 Yo: 2—[2102;13}—1 Yu)
since the length of thiz interval is
gy, < '2‘t21°gp)+12p-l/%logp-L <1

for p sufficiently large, since 0 < L << 1. Thus the numbers |by] lie in
less than Zlogp subintervaly with less than 2#flogp exceptions and so

at least one of these subintervals containg at least t(l—-—w) / (logp)

of the numbers |by|. Let (270 T, 27" ¥,) be the longest such sub-
interval (0 <, < 2logp), am.d wnte

Yl — 2—')1!0——1 YD g X,

go that at least t(lm ] Z ) / (logp)® of the b, satisly the inequality
ogp : : ,

(10) Y < by £ 27,
) Now suppose that '
. gmg+1 < pﬁ
50 that
-:YJ. — 2"'”10“1 Yn :.} pmd YU'
Then

0<a; <2Xft = Yot < X970,

and in view of (10), the lemuia follows on p111.t1ng Y Yl and & = a,.

On the other hand, suppose

omytl > p.'s
8o that o o
; Yl < p_a X,.
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Then it iy evident from the -definition of ¥,
2 .
2t (1—@) / logp of the b, satisfy
2V, < by € Y,.

that less than

2
Bince there are at least t(l— o ) of the b, in the interval (—¥,, ¥ o)
. ¥y :
there are at least

1 wep) g e =l s> o)

in (—2Y,,2Y,) and by a box argument, this implies that there exist
two such residues, B, and B; say, such that

. , 4
0 < B, —B <4Y1/[t(1—-——)] < 8¥,/t.
logp

Define a, = B,— B, and note that there exist two dth powel residues
(mod p), », aud; v, 8a, such that B, = a;9; (mod p)and B, = a, %, (mod p),
whence a, = a,(v,—uv,;) (mod p). ' '

4
Moreover at least t(1~ 1
0

£
i1 4
Io

the interval (—2Y,, 2Y,) since our arguments still apply when we replace

) of the mumbers a,v,% and at leagt

P) of the nwmmbers a;2]% have residues (mod p} which lie in

&y by a,v; or by a,v,. Hence there are at least t(lbﬁzg) residues

(modp) which we will denote by &,, in the interval (—4Y¥,;,4Y,) which
patizfy
by =2 a4y (0, — 9))u = a,u (mod ).

As before let the largest interval of the form (g7 ty,, 2~ ¥,) where

: .. 4
—2 < m < 2logp containing at least t(l — T_) / (logp)* of the numibers
g

ogp}/
lba] be (¥,,2¥,), where 0 < Y.< ‘>Y Then at least, since Pp i suffi-
ciently large

t(l— + )_'2(10 +1)x(] 4 )/(10- )2>t(1 8
logp &P " logp)/ RPN = _logp)

2 = SYI_’P_‘S thell
Y, <2V, <X
and the lemma is proved with a —= a, and ¥ — ¥,.

of the mumbers b; lie in (—27,,2¥,). If ¥

0<a,<¥,p°l1 amnd
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T ¥,<8Y,p" we repeat this process. Suppose that for each
2L r< fn,d= [3loglogp]+1, we have at the rth stage,

(11} Y.>8 Yr——lp_ﬁ

27

where at least t(1- 12 ) / (logp) = t{2(logp) of the residue classes
Og_p . -
a,u (mod p) have representatives b, = a,u (mod p) which satisfy

Yr‘g 1br| ggY?‘

227‘-—1 ‘
. t{l— <8Y¥Y, [t
0 < ar <4Y,,,1/[ ( 103‘19)] | of

Y, <2, < 2'8:&—21’_5 < < 2-8”"11)‘3(""1) Y, <X

where

and,

sinee 4 = 3/loglogp and 7 < [4loglogp]l+1. The lemma follows on
putting ¥ = ¥,,a = a,. ' .

Thus it remains to show that the inequaliby (11) holds for some
r < n Asgpume the confrary, i.e. assume

Y@’ < 8Yr—1p_ﬂ
for each v = 2, ..., n. Then in particular

Y, <8Y%,_p°

2n

and ab least t(l—
logp
representatives which lie in the interval (—2%,,2%Y,). But

); 1t of the residue classes a,u (mod p) have

4Y, < 4-8Y, p~" < 2 Xp~ < 1 t)2,

by the choice of » and J, which ig a contradiction, and the lemma i3
proved.

We now give a series of lemmas which provide estimates for y(d, p)
in gpecial cases. :

LEmma b. Let ¢ > 1 be congruent to the difference of two distinet non-zero
d-th powers (mod p). Then '

j}(d, P) \<“ 262103’211'103‘0.

Proof. We have td show that every integer ¥ is congruent to & sum
of at most 26#P°%¢ Gth powers (mod p). Without loss of generality we
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can suppose 0 < ¥ < p and then we can express N as
N =gyt a0+ ... Layc®,

where 0<Ca;<<e¢ for each ¢ =10,1,...,2—1, and 0 < g, < c. Plainly
< p.

Now we are given that ¢ = u—» (mod p) where u, » are dth power
residues {mod p). Hence we have

N = E 0,0 = Z aiz (—1y (;) w' o (mod p),
= i j=e
ie.
# i ; R i,
N o= c—1 () Ty c—1—a, (t) wt o
_ _;Sj( ) ; ; + ;‘( ) =2 ; +
jodd Fodd

SR L
- Fa3ecsmmin,
i= i=t

Jeven .

We see that the first sum is a fixed residue clags (mod p), while the

other two sums consist of positive terms only which give rige to at most

{6—1) (2" —1) < 2¢2" dth powers. Sinee h < logp/loge, the proof of the
lemma iz complete.

Lmmna 6. Let ¢ and r be infegers > 1 and suppose ¢ or — ¢ is congruent
to the sum of v d-th powers (mod p). Then
y{d, ) << 20708708,

- Proof. We have to show that every integer ¥ is congruent to a sum
of ab most 2er'°*?™°8¢ Gth powers (mod p). Without loss of generality we
can assume 0 << N < p so that we can express N ag

N =ay+a,0+ ... +a,ct, _
where 0 < a; << ¢ for each = 0,1,..., h—i, and. 0 < a4, << e Plainly
& < p. ' '

First suppose ¢ is congruent to a sum of v dth powers (mod p). Then ¥
is congruent to-a gum of at most

. b . ?"h-}_l——l .
(e— 1)2 7 =(c—1) o <2t < 2eriospiloge
i=0
dth powers (mod p).

Next suppose — ¢ is congruent to a sum of + dth powers (mod p), i.e.
suppoze that

6 = —(u+ ... 4-u,) (mod p).
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Then
h .3 .
=Y gt o Fu)— D tilunt . ) (mod p)
ii:eﬂn 1'.16;&1%1 ’

h R
— H(g_l)z (gt ... —i—u,,)""~i—2 P (T S Ny VA L
. <

io?ld ieven

h

-+ E (e—1—a) (g4 ... o) (modp).
i=1
i0dd

The first termn on the right hand side of fhis congruence is a fixed residue
13

class (mod p) and the other two terms consist of at most (6—1) Y rt < et
dth power residues (mod p), whence the lemma. =0

LeMMA 7. Let n be o positive integer and let ay, ..., 6 be 1 distinct
residue classes (mod n). Let by, ..., b, be m distinct residue classes (mod ),
one of which is O and the remainder prime to n. Then the number of distinet
residue classes representable as

b, - 1<ig, I<j<m,
18 at least
min{i4+m—1,n).

This modification. of the Cauchy-Davenport Theorem is due to I.
Chowla ([2]) but a more Qonvenient reference is Halberstam and Roth
{[11], p. 49, Theorem 15). :

Temma 8. Lei n be a positive integer and let ay, ..., 0 be U distinel
residues (mod p), where I << n. Then the congruence

Tyt s F2, =0 (mod 1),

wheve @y, ..., &, are chosm Jrom among the wszduee gy eey Oy %eﬁetitiom
being allowed 78 soluble with :

s <€ (nloglogn)/t.

Proof. Buppose a,, ..., 6; ave all prime to #. Then by Lemina 7 we
can solve the congruence

4 o = 0 (mod #),

providing 7 = (n—1 )/1—1—1 Thus the 1ea.st mteger 8 for thh this con-
gruence ig ‘soluble satlshes

n—1 3n‘
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Let »(n) be the number of divisors of » and let d;, ¢ =1, ..., »(#), be the
divisors of #. Let b, .. b be those f; regidues from a,,..., ¢y which

satisty (b, n) = d;. Then by conmdemng the congruence
1
ot ... ta. =0 (mod-——-)

where @, ..., #. aré chosen from b, |d, ..., bif_|cli weé deduce that for
. £l
each i =1, ..., »(n),

12 8§ << 3n
() af
Algo it ig plain thab
' »(n)
Z fi = 1.
i=1

It is well known that o(n) < enloglogsu where of{n) is the sum of
the divisors of # and where ¢ is an abgolute constant ([13], Theorem 323).
Hence we have

N
2
kX

1
d;

1 T

M

1
= — a(n) < cloglogn.
s

3

Now for some 4,1 < i< »(n), we must have

(13) ‘ d;f; = 1/(cloglogn),
since otherwise
#(n) »(n)

[ 2 i< Z(Z 1/d; )/ eloglogn) <1,

which is impossible. The lemma follows on substi_tuting the Inequality
(13) in the estimate (12).

TEMMA 9. Let 0 < 8 <1 and let p = & ¢ where p is sufficiently large
and where

14) (14 B)-+26+ (3loglogp}/logd+(8log2)flogd < o << 1.

Suppose that ot least t/(2log?p) of the residue eclasses awu (od p) where
w runs through the § non-zero d-th power residues (mod p) and where

(15) < a< Yp'lE
have 'represématiﬁes, b say, such that
| T < b <2Y
where ¥ < (plogp)/dtD0=8), Then
yid, p) < 217.10g3d.d(1-|-ﬂ)12_ ‘
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- Proof. At least one of the intervals (Y, 2¥) and (—2¥, — ¥) must
contain at least #/(4log?p) of the numbers b. Let ug suppose that w of
the numbers b lie in (¥, 2F¥) and that » = t/(4log?p); ie, we suppose
that there are w > i/(4log?p) numbers b == au (mod p) such that |

Y<bgL2Y.

- The inequalities (14) and (15) together with ¥ < {plog p)/atR-f
imply that a < #/(8logp)’ < w/16. We deduce that there oxists o residue
clags (mod ) which contains at least w/a > 16 of the numbers b fay
biy ...y by where I [w/a] and where T

Y <be<..o <y, K27,
Congsider the [1/16] positive integers
(b17m ‘bl)/a'}

Their sum is aﬁﬁlmo.a‘t Y/o and each integer is at least 16, since a divides
each b, —b; (1< ¢<1). Hence the least wuch integer, & say, satisfies

ooy (Orspnege — Or6ia16-13.1) [0 -

16 <h < X|a[l/16] < 32T /al < 64 ¥ jw < 2567 (logp )t
< 256 (logp)'p/(d4™H1-0y) < 512 (log p)? e0-+0)
since P = di--1 < 2df. "Also each of these integers is congruent (mod p)
to a difference of two dth powers, since we have b, = au,,—}—irp, b, = +
. a
+Ap _for some integers 4,, A, whence (b b,) o == w,—u, (mod p),
where w,, u,, are dth power residues (mod p). In particular # is congruent

(mod p) to two distinet non-zero dth
. Wt powers, #o that we can a
‘which asserts that ’ wapply Lomma s

‘Jf'(d, P) < zhplogwmghl

The right hand gide of this estimate ig for a fixed p, a decreasing

. . Viogs.Tocn . .
i‘unct}l/on of & for b6 8180 " and iz an increasing function of 7 for
ChizetloElRr  Yyanaa

y{d, p) < max {32p™1, 2"(log p)? d(lfz)(l-i.ﬂ)pmmnogd}
< max {324, 2(log d)3d(1f2)(1+ﬂ)}
since B < 4. Tt follows that
v (4, p) < 27 (log d)* gm0+

which ig the desired result.

]i iIlaJHY y if at le"bst t/(4 108 2 {). . |.|'|] ers b i i | 1
c 'p) f the mb L y v
( ’ )’ ; N . . ]. e 1 1}11@ ln'be]:‘ a:]

—217<b,+1<_b«,<.., <bh <Y

icm
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where I w/a, then the result still holds. For we congsider instead the
integers
Y (b16[1}16]--15_ blﬁ[l}lﬁ]+1) fa,

{by—b17)/a,

which are positive with a sum of at most ¥/a and where each infeger
is at least 16 and is comgruent (mod p) to a difference of two distined
nori-zero 4th powers..

TEMMA 10. Let 0 << <1 and let p = d'*° where 3T < o << (L4 f)/2.
Suppose that af least t{(21log?p) of the residue classes au (mod p), where 1
runs through the t non-zero d-th power residues (mod p) and where

0 <a< ¥p'lt,
have vepreseniatives, b say, such thot

Y=< <2¥
where ¥ < plogp|dMDU=A Then for d sufficiently large we have

y(d, p) < logtd- AP g1ET L8
where %o = (VRe(L+8)—3¢%) - g} 2 (14 0)-
Proof. We can choose at least #/(4log®p) of the numbers b, say

Byy ..., by where w 2= t/(4log?p), to be of the same sign. Also we can
suppose without loss of generality that each residue class (mod ) containg

less than 16 of the aumbers by, ..., b,,, since otherwise arguing as in the
preceding lemma we deduce that

v(d, p) < 2F (logdya0+a2,

It follows that the numbers b, ..., b, must he distributed amongst
at least [w/16] different residue classes (mod «}. By applying Lemma 8
with » = @, [ = [w/16], we can solve the congruence '

by -+, = 0 (mod a)

where 1 < 4, < ... < 4, << w, with 5 <€ a(logp)®/t. We recall that b, = au,
(mod p) whence there exists an integer ¢ say such that

¢ = {by+ ... +b)le=1u + ... +u (modp),
where sY /e < |e] < 25¥ /a. Therefore by Lemma 6 we have
(16) v(d, p} < 2]al gllogm)ilogic) __ o lclp(lc'gs”c‘“g“") R
Using the estimates for s, ¥ and a4, we obtain
Ts/o < (log d)* gtM0+M

whence if ¢ =1,
(d, p) < 4¥sfa < (logd)*a¥0+A
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and if s =92
(17) @ < 2p? <9V a << Yo < (logd)* qUR+8

Now let s =p* =2 without loss of generality and Suppose first that
0 <A< A, Then we have

yid, p) < 4]{8.p{logs)llug(l’m’u)m—l & (10gd)‘kd(lfﬂ)(l-I-ﬁ)p3(14-0)/(0—2§)’
i.e.
(18) v (d, p) <€ (logd)! @HA0+A-lolr+ofet 80

for d sufficiently large.
Next suppose A,< A= 1, so that s satisfies

P <9t = s <allogp)t < (logd)d WA-Pyieipe
Le, since p = @' =qi-+1,
(19) § < (logdy* qUm+A-—ebs
Algo ¥sla > tsp~?, whence ‘

log(¥s/a) > {0+ (14 ) A—35}logd

and providing 4 is large enough we have

(logs}/{log(¥s/a)) < {(1+ f—20)/2 (A4 o+ Ao)} -+ £5.

Thus from the estimate (16) and since 1< Aoy We get
(20) y(d, p) < {logd)* g20+8)+{1-+e)1+F—20) 20+ Ag-+e2g)}+85
Now J, was choosen so that
L+ F—20)/2 {0+ Ao+ 0do) = AL+ 0)/e,

and the lemma follows on comparing the estimates (18) and (20).

We see that Lemmas 9 and 10 do not provide estimates for »(d, p)
when, '

21)  3(1+8) < 2 < H(1+p)-- 284 31oglogp log d+Slog2 log d.
However we deal with this case in the following lemmna:
LeMMa 11. Let 0 < f <1 and let p = @' where o satisfies (21),

Suppose thot at least i/(2log?p) of the residue classes aw (odp) where w
runs through the t non-zero d-th power residues (modp) and where

0<a< ¥Yp't,
have representatives, b say, such that | |

Y<ihi <2y,
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where ¥ < plogp[dWDE-P . Then for & sufficiently large
y(d, p) <10g¢(l'd(l+ﬁ”2+126,
Proof. The estimates (16), (17) and (19) of the preceding lemma
still hold, and we have
& < ¥sja < (logd)* @iH0+a,
and using (21), _
s <& (logd)y'd®.
It follows similarly that
y(d,p) < (log @t e+ mrviss,

gince d is sufficiently large.
Now we are able to establish

TuroreM 1. Suppose 4 is o positive integer stricily less than ¥(p—1)
and which divides p—1. Then for d sufficiently large
yid, py <$-d.
Proof. First we recall that if p > @* we have
v(d, p) < max(3, 9logd),

which plainly implies the theorem, and so from henceforth we suppose

that p << & and write '
' p=dte,  0<po<1,
Now choose p, s0 that

(22) 30+ 00) =33+ F)+ A1+ o)/ 2o

and in view of the choice of 1, in Lemma 10, we also have that

23) Ml = 5(4+A)+ (14 e} (14 —200)/2 (004 Ao+ 2o o)
Next choose 5, so. that
(24) 1—fo =3(1400)-

We remark that the exponent of 4 in the estimate for y(d, p) will be
1—py+ . Dropping the snffix , from 2, and f,, we have

00 = 5{2—54)
and.
2 = go(1-35)/2(140o).
Using (22) and (23) to eliminate 2 and 8¢, we obtain the following cubic
for 1 '
(25) 3(1—388)(2—5A) (13— 194+ 50 (1— B2 (1—134) = 0.
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. Thiz has one real root, B say, and B satisfies
1/8 < B < 1/7,

which implies that 3/7 < gy < 11/24 and 33/480 < A < 3/25.
Wext chooss K to be a constant greater than 2V and greater than
the constants implied in the estimates for »(d, p) in Lemmag 10 and 11.
Then providing 0 < p < gy = (1/3) (2—5B), Lemma 2 gives
p(d, ) < B dORETe o« K. g8,

Bo we take p, < p <1 and assume that
v(d, p) > K (Jogdytar—riz
where & = 3/(loglogp), and obtain a contradiction.
. This assumption imples that there existy a non-zero residue class
(mod p), @, say, such that

| T (et} = 2 82,(%%)] > t{1— (2logp)/dE},

since otherwise the corollary to Lenuna 1 with # = @~% tells ux that
y(d, p) <L dn.

We see that the conditions for the application of Lemma 4 are fulfilled
with L = (2logp)/d*~® and therefore we deduce that there exists a posi-
tive number ¥ < (plogp}/d"™~* and a positive integer & < ¥-p%/t such
that at least ¢/(2log?p) of the ¢ residue classes an (mod p) have representa-
tives, b say, which satisly
< B2y

By comparing the estimates for »(d, p) in Lemmas 9, 10 and 11, we have
that for g, < 0 < 1,

vid,p) <
whence by the choice of 2, p, and B,

E (log d)f @A+ B0 B egh+126 ,

»(d, p) < K (log d)tgt-—Bries

which gives us the required contradiction. Since B =
follows on taking 4 sufficiently large.
The estimate for I'(k, p) now follows easily:
TaROREM 2. Let k be o sufficiently lavge positive wnileger. Then for oll
primes p with (k,p—1) < Y(p—1), we have

Ik, p) < k™.

1/8, the theorem

icm
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Proof. We vecall that (%, p—1) = 4 divides k and that d < 3(p—1)
whence
Lk, p) = I'd, p) < d
and
d,p)<y(d, p)+1.

Also we can suppose that d = %", since otherwise

Ik, p) = I(d, p) < d < 5.

But by choosing & sufficiently large we ean ensure that ¢ is large enough
for Theorem 1 to hold, so that we have

FU":P) = P(d:_@)g

since d divides %, and the theorem is proved.

Plainly this estimate could be made a little sharper and the exponent
7/8 eould be reduced slightly by defermining the real root B of the eubic
(25) more precisely. But since we are very likely a long way from the
final answer, we leave the exponent in its present simple form.

y{d, p)+1 < A B,

2. The congruence x4 ... +af=0 (mod p). As in the previous
section, 8(k, p) = 8(d, p) and so again it suffices to consider 4(d, p),
the least positive integer s such that the congruence

(26) i+ .. +af =0 (mod p),

where p—1 is a multiple of d, has a nontrivial solufion. Since the con-
gruence {26) is a specialization of the congruence (1) it is immediate
that

(27) 0(d, p) < I'(d, p).
As before the cases d =1 and 4 = p—1 are somewhat special: plainly
6(1719) =

and since when 4 = p—1, the only values of x%(mod p) are 0 and 1,
and since 6(d, p) < d-+1 by the Cauchy-Davenport Theorem, we have

G(p—l,p) =

- Also when 4 divides 3(p—1) (as is always the case when % is odd), —

is a dth power residue (mod p), whence clearly

6(d, p) = 2.

Moreover since I'(d, p) << (4, p)+1, it follows from (6) and (27) that
when & < p,

6{d, p) < 8logp+2 < @*
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for d sufficiently large. Accordingly we can assume without loss of gene-
rality that d® >p and that 1<d < 3(p—1) which is equivalent to
2 <t<p-—1, and as before we write

pgd“’g} O<Q<l.

71 we can. Tind a set of values of 4% whose sum iy congruent to 0 (mod p)
then we have an upper bound for 6{d, p). In fact the set of distinet non-
zero values yq, ..., 4, where ¢ = (p—1)/d, of 2*(mod p) provide such
a set, for by Fermat’s Theorem, they are given by the roots of the con-
gruence ‘

y'—1 = 0 (mod p)

and the sum of the # roots of this congruence is congruent to 0 (mod p),
ie. )
Y1+ .o ¥, = 0 (mod p).
Thus by its definition,
(@28) 0d,p)<t = (p—1)jd < &,

an estimate which is effective when d is near p or when ¢ is composite.
For if ¢ = #,ts, t, > 1, 1, > 1, then the dth power residues {mod p) satisfy
gt —1 == 0 (mod p),
so that there exist §; dth power residues z,..., &y, say, which satisfy
_ dh—1 == 0 (mod p)
and hence which satisfy
#1F .o g =0 {mod p).
Clearly we can choose &, < 7 and so if ¢ is composite,
0(d, p) < 817 < ',
since d > p'®. Therefore if # is nob an odd prime greater than d“* then
8. Chowla’s conjecture holds.
Here we show that when d<<p—1 and 4 iz sufficiently large

b(d, p) < @"+e

by combining (28) with the estimates for y(d, p) used in Theorem I.
Instead of the equations (22) and (23), we seek to solve the equations

oo = F(1-48) = A(L+04)% 00 :
= F (14 )+ (T4 00) A4 B —200}/2 (00 A+ 0o 4)

(29)

icm
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s

with f chosen so that
(30) g0 = 1—§.

We note that the term o, on the left hand side of equations (29) and (30)
carresponds to the exponent of ¢ in the estimate (28) for 6(d, ). On
eliminating A and g,, we obtain the following cubic for 8:

(A—=3F)B(1—BF+2(2—8)'] = 0.
Evidently this has one real root, namely 1/3, whence go.=2/3 and 1 = 0,

_ The significance of the vanighing of 1 iz that the improved version oh-

tained above of I. Chowla's estimates is no more effective in this case
than hig original estimabes. We can suppose without loss of generality
that 2/3 < ¢ <1 since otherwise by (28) 6(d, p) < d° < @R <« BB+, Lot
K be the constant introduced in Theorem 1 and assume that

6(d, p) > K(logady a3+ 1
where § = 3/(loglogp). Then it follows from (27) that
‘ vid, p) >-K(10gd)4d2[3+ua:

‘which irhplies exactly as in Theorem 1, that the conditions for Lemma 4
are fulfilled with L = (2logp)/@®, which in turn Implies that the esti-
mates for y(d, p) in Lemmas 9 and 11 hold. Thus for i<ex],

7(d, p) < max (2" (log dy* @", .K.(logd)“d”“m) '
which is a contradiction. Thus we mﬁst have for 1 < d< H{p—1)
0(d, p) < K (logd)* @+ 41,
so that if d iy sufficiently large

0(d, p) < @B+,
and we have

ToEOREM 3. Let € > 0 be given and let p be prime such that (&, p—1)
<p-—1. Then for k sufficiently large, we hove C '

B(k, p) < B+,
Proof. We recall that as d < p—1 by ﬁypothesis,
. BU‘C!P) ":B(dap)éd’

and take d > 1 since otherwise 8(k, p) < k**. Thus by choosing % suffi-
ciently large, we can ensure that '

B(k, p) < f3+e < szaa-a,
which gives us the theorem. S -

= PR . PR
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3. The comgruemce @z} -+ ... + @} = 0 (mod p). We recall that
fhy, ..., G ave arbitrary integers mot divigible by p. .Arguing ag in the
previous section, we can confine otrselves to studying y* (d, p) (= »" (&, p)),

where d divides p—1. The case d =1 is trivial and plainly

¥ (l,p) =2

and more generally it is easily proved msing addition of residue classes

([9], p. 167, Lemma 2.3.1) that

}J*(d,ﬁ) <d-1,
while in the case d =p—1,

'F*(p_l:_'p) =p.

Actually the above estimate can be improved by uging a theorem due
$0 Chowla, Mann and Straus ([6]) bubt the estimate just given is suffi-
cient for our purposes. Thus for the rest section we assume unless other-
wise stated that p >2 and 1 < d < p—1. Further, Wwhen: p > d* the use

of exponential sums gives ([9], p. 172, Lemma 2.5.5 and p. 163, Lemma -

%.4.1) that ]
‘ 2 (d, p) < max (3, 48logd4- 1)+ 1 < &*F

for 4 sufficiently large. A
When d divides 3(p—1) (as is always the case when % is odd), —1
is a dth power residue (mod p) and a simple box argnment gives ([9],

p. 166, Lemma 2.2.1)

Y (d, p) < [(logp)/(log2)]+1 < &
for d large eﬁough. Tn general such arguments are not available but there
I8 an argument (the possibility of which was suggested o me by Di.
Trdss through Professor Davenport) which applies without the hypo-

thesis that d divides 3(p—1) and only requires that ¢ >1, which has

- been assumed already. |
Suppose we can find #(d, p) disjoint sets of coefficients

(g eeny O3 Gpygay oreg Brgs covsd Oy pin ooes Gigy

where 8 = 6(d, p), yuch that their sums are ail mutnally congruent (mod p)-
Then we can solve the congruence '

@at4 ...+ ael =0 (mod p)
lion-_trivia;lly by taking '

e, @ z_w; (mod p}  for 'r;-_, <1 S t(F=1,...,0)
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where (z,, ..., #;) is & non-trivial solution. of (26) and where 7o = 0 and
by taking

2, =0 for 4>

The possibility of finding 8(d, p) such sets of coefficients is guaranteed
by a purely combinatorial theorem of Erdog and Rado ([10], Theoremn III)‘
It is easily seen that the results of § 3.3 ([9]) still hold when ¢ is'replacec‘;
by 8 = 8(d, p) and when considered (mod p). In particular we get Lemma
3:3.3 there in the following modified forni: ' ‘

LevwaA 12, Suppose 1 < d < p—1 and let

r = [(logpt)/(log4)]+2.
Then '

Pd, p) <o, p)r.
Hence we have .
_ THEOREM 4. Let & >0 be given and let & be o sufficiently large positive
integer. Let p be o prime with d = (k,p—1) <p—1. Then
Yok, p) < BPFe

. The proof is gimilar to Theorem 3. We can suppose that d > 1%*?
gince otherwise ' .

Pk, p) =y d,p) S A+ LS LT < 128

and then if & is large enough it follows readily from Theorem 3 and Lemma
12 that we can ensure thab _ '
YUk p) = (A p) < PR < R

since we can nssume p < &, so that r < 3logk.

In conclusion. we note that this improved estimate for * (%, p} implies
a sharper estimate for the related funetion I*(k, 'p), which is defined
to be the least value of s for which the congruence

(31) ' R w4 + @,z = 0 (mod p™y,

. where a,, ..., a, are arbitrary non-zero integers, has a non-trivial solution,

for every porsit‘ive integer =, for the particular prime p. In the author’s
paper ([91); it is shown that (Lemma 4.4.2) if 4 < p—1 and & > 7, then

« Tk, p) < 12 (log k)P K1
so that if k is sufficiently large we have

T* (b, p) < B+,
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Tn fact it is shown that except for the case when p does not divide &,
Ik, p) < 12 (log kY k*?.
But if p does not divide %, then (loe. cit., equation (4.2.2))
(&, p) < k{y* (8, p)— 13415
80 tﬁat by Theorem 4, if & iz large emough
T*(k, p) < E¥+e,

Collecting these results we have
TEBOREM 5. Let & >0 be given and let p be o prime such thal p—1
does not divide k. Then for k sufficienily large

T (k, p) < EoFe,

The function I™(k) is defined to be the least s such that the con-
gruence (31) has non-trivial solutions for every prime power p™ Thus

I (k) = Max ™ (%, p).
Vg

Recently A. Tietdviinen [16] has shown very elegantly that for_all
sufficiently large odd %,

I* (k) < (14 &)k logkf(log 2).

Such an estimate cannot hold for I"™ (k) in general ([9], p. 200, § 5.2), but
by adapting the proof of Theoren 5.4.2 ([9], p. 208) it can be readily
verified that Theorem 5 implies that there are infinitely many even k
such that :
I™ (k) < KB+,

Finally let T(?c, P} be the least s such that the congrnence
1—1— = (mod "),

where ¥ is any integer, always hag & non trwlml bolumon, ie. Ik ™)
is the least s such that every integer N has a non-frivial representation

as a gum of § kth powers in GF[p™]. It is likely that I. Chowla’s results
([4],§ 7, 8) can be adapted to establizh that 1f P >3 and (&, p—1) < ${p~1},
then for all » =1,

'k, p™) < el

for k sufficiently large. In view of Theorcm 2, it i3 ‘well-kmown that only.

the case when p divides %k needs to be congidered. Tf this resull is true,
then it would follow that for large enough k, any integer N can be re-
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presented non-frivially as a sum of less than % Lth powers in every
p-adic field with (&, p—1) < 3{p—1) and p > 3.

I am very grateful to the late Professor H. Davenport for his advice
and encouragement. Also I am indebted to the referee for pointing out
o number of mistakes and snggesting some improvements.
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