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where o(s,2v--2, —1) is given by (4.10), o(s,2v»,1) is given by (4.11),
and g(s) is given by (4.9). ‘
Hence, we have proved the following
THroREM 4.2. The number of 8 X n matrices X over F, such thot X X7 —
8 '
5

1 N7 g(s) s~y Q'(b 25-s)/a

reven * odcl
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ACTA ARITHMETICA ‘
XIX (1971}

On a problem of Schinzel concerning
principal divisors in arithmetic progressions

by
. Coarres J. Parny (Bast Lansing, Mich.)

The following problem was proposed by A. Schinzel at the A. M. 8.
Number Theory Institute held at Stony Brook, New York in July of 1969.

QuustIoN 1. Let f(x) be & primifive polynomial and & an algebraic
wumber fleld. Do there exist infinitely many integers « such that f{z) factors
into principal ideals in k% (unknown even for [ linear).

For the case that f is linear, I prove here that the answer ix yes. It
has been noted [2] for polynomials of higher degree that the following
additional assumptions are necesgary:

(i) the content of any factor of f(#) in % iz principal (MacCluer);

(ii) each fixed divisor of f(x) is principal (Schinzel).

Introduction. In the linear cage, that is, when f(x) = ma-b with
(m, b) = 1, it seems reasonable to ask the slightly stronger:

QUESTION IL. Do there exist infinitely many primes of the form mz--b
which split into principal prime ideals in kY

The following example (MacCluer) shows that the answer to Ques-
tion IT is no. (Schinzel has informed me that a similar counterexample
whs found earlier by J. Tate.)

The munber field Q(I/ 10) has eclass number = 2 and Hﬂbmt _clazs
field CF (Q (l/_) Q(l/z, V5 5). According to Arfin reciprocity, a ration-

.al prime p 3 2, 5 has non-principal divisors in Q(V10) when and only

when p splits in Q(l/ﬁ) into two distinet prime divigors, each of which
remains prime in @(V2,V5), in Legendre symbols this is equivalent to

51-6)
-—_— — —_— = —1
P »
which obtaing when and only when p = 1.3, 413 (mod 40). Thus for

instance, no prime of the form p = 4043 has principal divisors in
Q(V10).
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However, Question I is worthy of closer examination ag it suggests

an approach to the first question. Specifically T shall prove the following:

TemoreyM L. Tet k be o number fiold galois over @, CF (k) the class field

of k and { o primilive m-th root of wnity. If CI'(&) N 75(5)_ = F and if k N

A QL) = Q, then for cach (a,m) = 1 there are infinitely wmony primes

p == g (mod m) which split principally and completely in k. (L will say

o rational p prime splits principally in L if each prime factor of p in & is
« principal in %)

Recall the following result [1] which I ghall prove for completeness.

TemmA X, If K[k is galois, then so is CF(X)/k.

Proof. Let o be an isomorphism of CF(K)/k. Then cr((”ﬁF(K)) is an
unramified abelian extension of ¢(K) = K. IHenece o(CF(K)) = CF(K)
and by a degree ‘argwment ¢(CF(K)} = OF(K).

Proof of Theorem I. We have the following Axtin diagram.

OT (k) (£)

NS
<

B(OEY ‘
A prime p with Artin symbol, (_—(—g/w) = g,, where o,({) =%

hag absolute norm ||| == ¢ mod m. Thus if in addition p in linear over ¢,

then [p|| = p = @'mod m. It remaing then only to produce infinitely many

such principal primes p, i.e., with Artin symbol (QF-%-)EE) =
But by hypothesis the galois group
G(CT (k) (2)/1) 22 G{OF (k) [k} x G{k{2)/%).
Thus by the Cebotarev d.eﬁsity theorem 1/hp(m) of the primes of & have
(OFUc) ()%

’ ) - 1x o, and thus at least 1/hp(m) (k: Q) of the rational

icm
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primes p split principally in & and satisfy
p = amod m.

CoroLLARY 1. Let & be a number field (not necessarily galois over Q)
and A be the discriminant of k. Suppose (m, A) = 1; then there are infinitely
many primes p = a mod m which split principally and completely in k.

Proof. Since (4, m) = 1 we have that every prime divisor of m is
unramified in & and hence unramified in the galois closure k of . However,
the only primes ramified in @(Z) are the divisors of . Hence @ () M k= Q.
From this it follows that

[CR(F) A HE) : B] = [(CF (B n E(2) 0 Q) : @]

Now because (4, m) = 1 no prime can ramify in the extension (CF (k) n
NEE) N Q(L)/Q and so this has degree 1, hence CF(E) n k() = & We
can thus apply Theorem, T to get infinitely many primes p == e mod m
which split principally and completely in k and hence also split principally
and eompletely in k. '

REMARK. It i5 worth noting that there are always infinilely many positive
rational primes p = 1 mod m (for any m) which splil principally and com-
pletely in any number field k.

Proof. By the Cebotarev density theorem, the set of primes which
split completely in CF(E) ({) has positive density. Bach of these primes p
gplits completely in QL) so

p =1 mod m.

However, each factor p of p in % gains degree 1 in CF{%). Thus p splits
principally and completely in & and hence also in .

Resolution of the Linear case. Ag we have just seen, there are infinitely
many primes p = a mod m that split principally in » provided the modu-
lus m contains no primes that ramify in % On the other hand, we have
seen that there are no primes p == 3 mod 40 that split principally in Q ('l/ i;‘fi),
a field in which both 2 and 5 ramify. We shall soon see that the non-
exigtence of such primes is not solely hecause of the ramification of the
factors 2 or 5 of m = 40, but hecause m = 40 has at least two distinet
prime factors, both of which are rawmified. For :

TuroreM I1. Let &/Q be galois, | be o prime, (a, 1) = 1, and (W, Iy = 1;
then for amy n = 1 there ave infinitely many positive rational primes p which
split principally in k with

p = a mod I
and

p =1 mod .
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Once that we have proved Theorem. 1T we have an immediate solution
to Question T for k/Q galois. That is:

TueoreM 11T If &/Q is galois and (a, m) = 1, then there are infinitely

many rational iniegers

all of whose prime faclors split principally in k.

Tater T will show that the assumpticn of noymality on k/Q can he
deleted.. But now I prove Theorem, II via two lemmag, '

Lwnea TT. Let ML and N /L be finite extensions of the number field L.
Suppose ML and MN|L are golois and M NN = L. Let B be a prime of
MW such that the degree of By =B N N over L equals 1. Let p =B n M.
M/L] . ) _ [MN/N]

15 precisely the order of | ———|.

P B

Proof. We first nofe that we have an izomorphism befiween fhe
galoig groups G{MN/N) and G{M/L) and that the izsomorphism, iy given
by restriction map '

Then the order of {

o= oy

MNL
Let [w J ] = ¢, Bince the degree of Py over L is 1, it follows that

=157

and 8o e G(MN/N). Thus the opder of o equals the order of |y, . But from
the definition of the Frobening gymbol

o[
A P .

_ Linmwa YL, Let k/Q be a Finite galois extension and 1 a rational prime.
Let & be o prime divisor of 1 in the class field CF (k) of b with inertia
Jield T = I(R) over Q. Finally let B be @ prime of CF (k) unremified over Q.

If the degree of the prime P = SB N I s L over Q (or even over'l N I),
then the pri Vme

p = SZB Nk
is principal in ko Moveover, the rational prime

- ‘ p=%ng
splits principally in k. S
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Proof. We have the following diagram:

CF(T).
k/ \I
\]f. N 'I/

|
0

Recall that CF(k)/Q iz galois.
Note that & n I is the inertia field of & n & over § and since CF (k)/%
i nnramified,
[CF(k): 1] = [k:(k N I)].

Since %/(k n I) is normal i follows that CF(k) = kl.

CR(R) /I )
By Lemma IT it follows that the order of [%] eqguals the order

of [y (k0 I)] equals f, say. Now since the degree of Py over k n 1 is 1,
¥

the degree of P over k n I is f. But the degree of p over £ n I is also fsop
must gain degree 1 in the extension CF(k)/%. Thus p is p’_rincsipal in & and
singe % is mopmal, p must split principally in k.

Proof of Theorem TI. We let £ be a primitive I*-th root of vnity
and 2 a primitive m" root of nnity. We have

CF (k)

/ I—I{{"y—
—I({"y—I{¢, &)
\ /#Q({

where Iis as in Lemma IT. Now I (EY N QL , dince ! ig totally rami-
fied in Q() yet has an unramified prime fa,ctor 1n I (). Hence

G(0(0)/0) = &I, &)/}

" Thus the substitution o,(f) = % s an &utomorphiam of I(£, )/ L(L).

By the Cebotarev density theorem, the et of primes p of I({") with Artin
symbol

(1 ) _
:p &
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has positive density. Since almost all primes of (") are of degree 1 ove:r o,
we need only consider guch linear primes. However, if p is such a prime,
then
p = [pjl = a mod I
and
p =1 modm' .

Let p; = p n I; then the degree of p; over @ in 1. So by Lemma ITI, »
musgt split principally in % which proves Theorem II..

I will now show that the aswnmption of normality on k/Q can be
deleted. . ‘ N .

LemyA IV, Let k be an arbifrary number field and & be the galois clom{w'e
of k. Suppose 1 is o rational prime and L 48 o prime factor of 1 in OF(I::.).
Take T = T(2) to be the inertia field of 8 over @ and T = T(8) the inertia
group. Then

T GCER)CR () = T GIOF (F)/k).

Proof. Let I' and I' De the inertia fields of 8 over & and CTF(k)
respectively. Since CF(%)/k is unramified, it follows that CB{E) < I,
and so I' = I'", However,

G{CR(k)/T') = T n G(CF (k)/k)
and '
G(CR(E)/T") = T ~ G(CF (k)/CF ().

With the same notation we now have

X : - [ CF(R)/Q
Levma V. If P is any prime of CF(&) such thal - 22

1} ] e T, then

P =P Nk is principal in k.
Proaf. We have the following diagram

GF(}E)\_
OF(io) k I
NN S

L Eni

NS

kI

o
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CF (% |
Say [— (;?)/Q_] = ¢ and that the degree of p over Q is f,, then

[911973] = " G(OF (B)/E) A T,

Hence
alc @(CF (B)/CR (k) N T

by Lemma IV. Thus p =B A & gaing degree 1 in CE(k)/k.
CF(k)/0

Cororrary II. IF [___L)[:]e Ty then p =P n Q splils principally

Proof. In the preceding proof we can replace k by any of its conju-
gate fields ¢(k) and CF(k) by CF(o(k)) and get that P, =P Nno(k) is
principal. Say p, = o(a). Then ¢ (p,) = ¢ is principal in %. But o7 ()
lies above o7%(p,}) and since the galois group acts transitively on the
primes of CF (%) dividing p, it follows that all prime faectors of p are

prineipal in %,

And so finally we have
TaroREM LV. If k is an arbitrary field and (@, m) = 1, then there are
mfinitely many rational integers

r =amod m

all of whose prime factors split principally in k.

Proof. Using the result of the Preceding corollary we can now retrace
the proof of Theorem IT and the desired result follows.

It is now possible to strengthen Corollary I. Specifically T shall prove
TaEOREM V. Let k be a number field with diseriminant A. T ' m i @ posi-

tive integer with (m, A)= 1", where I is prime, then for each o with (&, m) = 1 )
there are infinitely many primes '
P = a4 mod m

which split principally in k.

Proof. Let 8 be a prime factor of I in OF (k) and take I — I(R) to
be the inertia field of Q. If £ is an mth root of unity, then
| QD nI=0
hence the substitution

o, L

is in G(I(¢)/1).

% — Acta Arithmetica XI¥.3
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Now the get of linear primes P of I with

(_{%E) = g,

has positive de;usity. But
 p =|Pl; =amodm

and by Corollary TI p splits principally in .
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ACTA ARITHMETICA
XIX (1971)

Bounds for solutions of diagonal equations
by

JAnE PriMax (Adelaide, South Augtralia)

1. Introduction. In the first part of this paper (§ 2 to § 7) I shall
prove the following theorem for the case & = 4.

TuworEM 1. Let k be an integer, k 2 2, and let n be the integer defined
by '
(1) no=2"4+1 if 2<hk<11, ‘
w2 28 (2logk+loglogk+3)+1>n—1 if ’k=12.
Then for any 6 >0 there ewisls a conslant ¢, depending only on 0 and F,
with the following property. If 1), ..., A, are non-zero integers which are not
all of the same sign if k is even, then the Diophaniine equation

(2) Ayt f L Ak =0
Las a solution in non-zero integers such that
(‘3) ]z’lm;r]fl'lln L + |2n-’1’£1 < 09 !leg I l?.:n’li"'."UJ'-ﬁJ
where ‘
if 2<Eg11
I i k=il

The case k = 2 of the theorem. (which is a modified form, of a theorem
of Cagsels [3]) was proved by Birch and Davenport [2] and was used in
their proof of a corresponding result on diagonal quadratic inequalities [17.
The case k¥ =3 was proved by Pitman and Ridout [11] and uged
similazly in the proof of a corresponding result on cubic inequalities.
The proof for the case & = 4 is a straightforward generalization of the proof
of Theorem 1 of [11]. The theorem for % == 4 iz an essential preliminary to
my proof [10] of a theorem (Theorem A in § 9 below) which gives a hound
for the least non-trivial solution of the Diophantine inequality

(5) g+ oo S aal < 1

where » is defined by (1), and 1, ..., 4, are real numbers which satisfy
|4;] 2 1 for all £ and which are not all of the same sign if k is even. From



