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Bounds for solutions of diagonal equations
by

JAnE PriMax (Adelaide, South Augtralia)

1. Introduction. In the first part of this paper (§ 2 to § 7) I shall
prove the following theorem for the case & = 4.

TuworEM 1. Let k be an integer, k 2 2, and let n be the integer defined
by '
(1) no=2"4+1 if 2<hk<11, ‘
w2 28 (2logk+loglogk+3)+1>n—1 if ’k=12.
Then for any 6 >0 there ewisls a conslant ¢, depending only on 0 and F,
with the following property. If 1), ..., A, are non-zero integers which are not
all of the same sign if k is even, then the Diophaniine equation

(2) Ayt f L Ak =0
Las a solution in non-zero integers such that
(‘3) ]z’lm;r]fl'lln L + |2n-’1’£1 < 09 !leg I l?.:n’li"'."UJ'-ﬁJ
where ‘
if 2<Eg11
I i k=il

The case k = 2 of the theorem. (which is a modified form, of a theorem
of Cagsels [3]) was proved by Birch and Davenport [2] and was used in
their proof of a corresponding result on diagonal quadratic inequalities [17.
The case k¥ =3 was proved by Pitman and Ridout [11] and uged
similazly in the proof of a corresponding result on cubic inequalities.
The proof for the case & = 4 is a straightforward generalization of the proof
of Theorem 1 of [11]. The theorem for % == 4 iz an essential preliminary to
my proof [10] of a theorem (Theorem A in § 9 below) which gives a hound
for the least non-trivial solution of the Diophantine inequality

(5) g+ oo S aal < 1

where » is defined by (1), and 1, ..., 4, are real numbers which satisfy
|4;] 2 1 for all £ and which are not all of the same sign if k is even. From
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now on, by a solution of a Dicphantine equation or irequality, I shall
always mean a solution in integers @, ..., ®,, 1of all zero.

We note that for (2) to have a zelution the following congruence
condition must be satisfied: for any prime power p% the congruence
(6) 2ot A, =0 (mod p)
has a solution with @, ..., #, not all divisible by p. Following Davenport
and Lewis [7], we define G* (%) to be the least number such that if »
= 67 (k) and the coetficients of (2) sabisfy the congruence condition, then (2)
has infinitely many solutions; and we define I'* (%) to be the least number
sueh that if = I™(k) then every equafion (2) satlisfjes the congruence
condition.

Davenport and Lewis showed that I'™(k)< k-1, with equality
whenever -1 is a prime; Chowla and Shimura [4] showed that I™(%)
= O(klogk) if % is odd; and Dodson [8] has obtained further information
abont I™* (k) which depends on the nature of k. Davenport and Lewis also
showed that ¢ (%) = O(klogk), and, in particular, that G*(k)< k241
for k> 18. It follows thaf for & =18, (2) has infinitely many solulions
it m >z k*4+ 1, and, further, that for sufficiently large odd k, (2) has infinitely
many solutions if » > cklogk.

For 4 < k<17, the situation i less clear, though (2) eertainly hias
infinitely many solutions if # > 2"+ 1. Davenport and Tewis [7] indicated
that the smallest value of # for which (2) always has a solution is exactly 17
for & = 4, at most 23 for k¥ = b, and exactly 37 for Z = 6. They gave
an upper bound for G*(k) for 12 < k< 17, but expressed doubt as to
whether existing methods wonld yield a proof that G* (%)< k?+1 for the
remaining values of &, namely 7 < & < 17. J

We now see that the value of # in (1) is best possible for & = 4, but
is far from best possible for large valiies of . In § 8 I shall indicate how

the methods of Davenport and Lewis [7] can be used to obtain an analo- .

gous theorem (Theorem 2) for & =12 in which the size of % is more satis-
factory (1). Unfortunately, as I shall explain in § 9, these methods do not
apply to the inequality (5); in § 9 T shall also disenss the extent fo which
other related methods can be used to deal with (5) for simaller values of n.

This paper owes much $6 the helpful comments of the late Professor
- Davenport on an earlier version.

2. Notation and preliminary lemmas. Throughout this paper, & is
a fixed integer, & > 4, and we write '

‘ . v = 1/k.

The letters o, a; always dencte integers, the letters g, ¢, always denote

() Added in proof. B. 0. Birch has vecently shown that for odd & the
bound in (3) can’ be mueh improved by taking = very large. S8ee Proc. London
Math. Soc. (3) 21 (1870), pp. 12-18. ' '
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positive integers, and the symbol )} indicates summation from 4 =1
' i .
to ¢ = n. We use the permanent notation
ely) = &,

In this section we suppose that 1., .
satigty

.+y 4, are given real nmubers which

Al=1 =1,...,%)

and which are not all of the same sign if & iz even. (In ounr applications
in this paper, i,,..., 4, will be integers, but it iz convenient to give our
preliminary results in a form: which can be used in [10].) We write

(1) 7 :H 40, A = max|a,].
=1 i
Let P be a large positive integer such that
(8) Pz (G=1,...,n).
We define
@ . Silay = D el2arf),
2

where @; runs through all integral values in the range
(10) , P |1 < 3P,
and we write _
(11) o(a) = [] 8w
Tl

We also define

q
(12) L S(a,q) = Y elartig),
@=]
(13) I{p) = N em M e(Bm),

=4

T
-

where . runs through all integral values in the interval
(14) (2%, (8P)"].

For convenience I collect together here some general lemmas which
are needed for the proof of Theorem 1. Tn these lemmas, § denotes a fized
sinall positive number, and e denotes an arbitrarily small positive number
which is not necessarily the same throughout. The constants implied by the

_ notations 0, <, » are always independent of P and of the ;; in this section
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they depend only on & and s; in later sections they will depend on 0, §
and & and so ultimately on 6, since & and e will be determined by 2. (The
notation 4 < B means 4 = O(B), and 4 > B means A > c¢B for some
positive constant ¢.)

LeMMA 1. (i) If p is prime and (a,p) =1, then

18(a, p)| < (k—1)p"*.
(i) If (a4, g) =1, then
Sle, q) <€ ¢
Proof. See, for example, Lemmas 12 and 15 of Davenport [6].
LEMMA 2. If 18] < &, then

T{f) € Pmin(1, P75
Proof. See, for example, Lemma ¢ of Davenport [5].' ,
Lemma 3. Suppose that
Ao = (a;/q;)+ By,

where _

(15) (6, ¢) =1, @< UA7PM, 1B < gt (AP R
Then

(16) Sila) = 1A a8 ey, g T80+ O (P,

where -+ is the sign of A;; and each of the two terms on ithe vighi-hand. side
of (16) is -
< 1247 g7 P min(L, P~*(1,/ 8.
Proof. By Lemma & of Davenport [5], with |4,|"P in place of P,
we have '

Sql(a) == SI-E"IS(&L-, g’a)J+ O(Q,(,;SM)—}_E),
where -

J = 2 wm e (fm)

W

and m runs through the integers of the range
| ATUPR < m < 1 8P
The velation (16) Tollows from this, sinee it ig ealsily‘dedueed from (13}
and the condition on §; in (15) that
I(£BiA) = J+0).

The last part of the lemma follows from, Lemmas 1 and 2 and the fact
that if {15) holds then :

A" € 14,7 g7 P min (1, PR [B)
for all sufficiently small positive e.
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LEMMA 4. Suppose that Aa = (@;/q;)+ f;, where

(@, 0) =1,  (AITPY << (AP, Bl < PR (1 ¥ 2 L
Then
8;(a) < (47" Py,
where
1 .
ST if  4<E<1,
(17 o= '

1
2% (2logk-+loglog k+ 3)

if k=12,

Proof. For 4 < k<11, the result follows from Weyl's inequality;
see, for example, Lemma 11 of Davenport [6]. For k=12, the regult
(actually with & replaced by 2 smaller exponent) is a slight modification
of Vinogradov's inequality as stated in Theorem 9 of Hua [9]; it is obfained
by using Hua’s Lemma 5.10 when g; lies outside the range from [1;|7"F
to (|2 7Py

LEMMA 5. For any X = 1, we have

X . |
(18) j |Si(a)17‘—1da % _X(_Mﬂ—ﬂP)n—l—k.Hs’

a
where n 18 defined by (l),'

Proof. Let
= s
S = 3 e(pa).
Pgr<sP

Then for 4 < k< 11, since n = 2°+1, we have
: 1
(19) f[S(,B)Pl_ldﬁ'@ Pn,—l—k-{—s
. 0
by Hua's inequality (see, for example Daven:gﬁoirt [6], Lemma 2). And for
k=12 (19) also holds, since in this cage

n—1 2 2§ (2logk~loglog -+ 2.5)

and therefore (19) follows from Vinogradov's mean-value theorem ag
stated in Lemma 7.13 of Fua [9].

Inequality (18) follows from (19) by replacing P by |A,]7" P, substi-
tuting g = A0, and using the fact that §;(«) is periodic of period |4,/
{See the proof of Lemma 5 of Pitman and Ridout [11].)

Lmyma 6. Lel

Z = E W™ (MW oo my,)

iy, e By,
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where the swmumation i over all inlegral n-tuples (M, ..., w,,) such that
each m; is in the interval (14) and

Moy — My Mg b oo =y, = 0y

where - stands for exactly one of the gigns -+, —; but nol necessarily the
same one in each case. Then

7> PR

Proot. Theresult follows from the fact that each integral (n— 1)-tuple
Mgy + 0.y By, SUCh that '

(1+ 97{) PF & Wy (3;6_2;6)1)]%
Prgm, < (1+278P% (0 =38,...,n)
determines an inlteger
my = myF myF ... T my,

such that m, is in the interval (14).

3. Normalization of a diagonal equation. In order to deal with the
singular series in the proof of Theorem, 1, we need to make some additional
assumptions about the coefficients ;. The following lemuna shows thatb
these agsumptiong involve no loss of generality. '

Limpma 7. Let O, B be given positive numbers such that B =1, and
let w be an integer suoh that n =2k 4 1. Suppose that (2) has o solution in
non-zero tntegers such that '

(20) D adi < oI,

whenever 1, ...,

@) Ay
if k is

(22) A, is k-th power frec for all i

(23)  no prime divides more than n—3 of the A,

Ay Salisfy the following conditions:

A, are mon-zero imlegers which are not all of the same sign
EVeN; '

Then (2} has a solution in non-zero infeyers such that (20) holds, whenever
Ayy ieuy Ay o mom-zero indegers which satisfy the condition (21).

Proof. The proof is gimilar to that of Lemma 6 of [11]. We introduce
the following notation. ¥or any diagonal form

o= pah4 oo A iy

. Wwe write
HF = Wl,“ﬁ wre #m‘!
W = imw |+ .. ~HMm ).
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First we show by induction that the condition (23) can be removed.
For 7 =0,1,2,..., we consider the condifion .

(23), at most r distinet primes divide more than n—3 of the 2

Suppose that (2) has a solution in nen-zero integers such that (20)
holds, whenever 1,, ..., A, satisfy (21), (22), and (23),; and consider a form £
whose coefficients 4, ..., 4, satisfy (21), (22}, and (23),.;, but not (23),.
For some prime p, & can be written in the shape

F = Fot+pP+p*Fob .. " Fryy

where the following conditions hold: each B, iz a diagonal form in #;
variables (7, > 0 and the variables in distinet F; are distinet);

Now= Wyt Ryt o gLy, Ny K2

s and at wost » other
primes divide more than «— 3 of the coefficients of the F;. Since n222k+1,
at least one x; is greater than 2; say m 28 and ng, Ny, ..., Wy < 2,12 1.
We congider the form

# does not divide any of the coetficients of the F;

G =p" P4 p" T+ L +p" T F, L+ FA T+ “i‘_-’?kktul,lﬂkmu

and note that _

(24) PG = PP FoH PP P b TR P L R T R
(25) Ip* 6 = "1

(26) IIGP'M — HFPF"(NU*“”H""":"%#I) < HFP?.H.

Since #; 2 3, the form. G satisfies (23),, and so by our hypothesm there
is a solutiozn of @ =0 gnch that

&) << CII5.

By using (24} and (25) and absorbing %th powers of p into the variables
we obtain a solution of ¥ = 0 such that

Wl < Op*II.

SBince # = 2k+ 1 and ¢ = 1, it follows from (26) that
< pT T
Since B

2 1, thiz implies that our solution of I = 0 satizfies

||| < CITh.
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Thus we have ghown that under our hypothesis equation (2) hag
‘a solution in non-zero integers such that (20) holds, provided that A, . ey Ay
satisfy (21}, (22), and (23),,;. Since we are given that (2) has a solution
in non-zero integers such that (20) holds, provided that i, ..., 4, satisfy
(21), (22}, and (23),, it now follows by induction that the same resnlt
holds provided that i, ..., 4, satisfy (21), (22), and (23), fol some »; and
this is equivalent to the removal of the restrietion (23).

We now remove the restriction (22), We congider a form

F = Laf4 .
where (21) holds and for each 4

T
-+ }tnm“ H

Ay = .“-rf”m
the », being kth power free. The form
= vlwl + e n

has non-zero integral coefficients which. satisfy (21) and (22). Therefore,
by the result of the last paragraph, there is & solution of @ = 0 such that

: 16l < C1IZ.

Let
M=y e iy

By considering the equation #*@ =0 and absorbing the kth power of

&/p; into the ith variable, we obtain a solution of ' = 0 such that

Il = Gl < Cu TG < O (uf1Tp)" = CIIF.

Thus {2) has a solution which satisfies (20). Since we have only assumed
* that (21) holds, this completes the proof of the lemma.

4. Minor arcs. We now assume that » is defined by (1) and that
A1y ++ey %y, aT€ NoD-zeP0 integers which satisfy conditions (21), (22), and (23).
For any positive integer P such that (8) holds, we let 4"(P) denote the
number of golutions of (2) such that (10) holds for all 4. We suppose that 9
is @ given positive number and, further, that § < 1, which clearly involves
no loss of generality. We shall show that there is a constant D, = 1, inde-
pendent of the A;, such thas if P'~° >DﬂII"’ then A4 (P} > 0. Smce we
~ may take P so that

DyIT? < P < 2D, 11",

this will imply the existence of a sclution of (2) in non-zero integers such
that '

Z lﬂ"q,wil < 91.(21)911'#)15!(1—0).
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Since 1/(1—8)|1 ag §]0, this will prove Theorem 1 for the case where
Ayy ooey Ay, satisfy the additional conditions (22) and (23); and the theorem
for the general case without these restrietions will then follow from

- Lemma 7.

We have

(P} = [o(a)da,
J

where J is the cloged interval [0, 1] and »{a) is defined by (11). The main
term in our estimate of .4 (P} will be of the form ¢lI""~*P"~*, where ¢ > 0;
80 we must ensure, roughly speaking, that our error termg are substantially
smaller than /7 "P* "% whenever P is somewhab Jarger than 7% In order
to estimafe o(«), and hence 4#°(P), we must consider rational approxi-
mations to the 1. )

Let 0 be a small pogitive number such that 0 < §< 1; this number
will be fixed throughout the argunient and will eventually be chosen in
terms of 6. For each aedJ, we consider rational approximations a;/g; to
the 7,0 such that '

oy @) =1, Aa = (a/q)+ By,

27)
( g < (IR B < gt (AT Py TR,

(The existence of such approximations follows from. Dirichlef’s theorem
on. Diophantine approximations and (8).) If for some i we have

(28) ;= (147 P)y°

for all snch approximations e,/g;, so that A« belongs to a “minor are®
in the standard sense, then our only estimate of §;(a) is the upper bound
given by Lemma 4. Therefore we must show that the contribution to
A (P) from all ¢ with this property is small enough to be permissible.
Since this requirement determines the size of » and p in our theorem, we
deal with it first, in the following lemma. _
Lepmma 8. Let K be the set of all o in J sueh that for some i ine-
quealily (28) holds for every appromimation a,fq; which satisfies (27). Then

(29) fl@(a)|da & I pr-k. i) p-ot2s
& .

Proof. Let K, be the set of all « in J such that inequality (28)
with ¢ = 1 holds for every approximation a,/¢, which satisfies (27) with
& = 1. Then, using the upper bound for |8, ()] given by Lemma 4, we have

1

[ Io(a) lda < (12,/7P)" Mfw (a) ...

Ky

Sy la)ida,
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where ¢ iz defined by (17). By Holder’s 1nequa.].1ty a,ud Lemma 5 with
X =1, it follows that

f!,D |Cl6€ < II"pr- k M 11:0'[ .A;L[H(ﬂ‘Al)P‘.ﬂ-FM
& HAuPn,——k _Hl[(?L—I]P—U'%“Zﬁ ,
since for all & by (1) and (17)
(30) _ vo < 1/(n—1).

Corresponding results hold for the contributions from the sets K, ..., K,
defined in the obvious way, and the lemma then follows from, the fact
that K iz the union of the K.

The 8ize of » in the theorem, ig determined by the need to uge Lenumna 5
(Hua’s inequality or Vinogradov's mean value theorem), in the above
argument. If we take # ag small ag possible and want our estimates to be
in terms of 77, then clearly we cannet essentially improve the bound in
(29) by the present methods. Roughly speaking, the condition that the
error given by (29) is small enough to be permissible is

P> Hlf{s('nm 1}

which, by (1) and (17), is éssentially P » I7¥. Thus the bound in the theoremn
cannot be decreased while we have an error term as large ag the bound
in (29).

It ig clear from, the proof of Lemma 8 that the same conclugion will
follows if K is replaced by any snbset of J in which the inequality

8;(a) < |}] M preoss

alwaiys holds for at least one ¢. By Lemmas 3 and 4 and (30), this ine-
quality holds if A« has an approximation e,/g; satisfying (27) such that
ab least one of the inequalities

. Mi‘_lf(n—l)l)c’ |ﬂi/’1'i1 -~ pa-kied
holds,
Hence we dissect J into two subsets, M (the “major ares” ) and J— M,
where M is defined, as the set of all o in J for which each 1, o hag an approxi-
mation a;/g; sueh that (27) holds and

(31) _ G < | THOTIPT, B Ay S PR

The main term in our éstimate of 4 {(P) will he the contribation from M,
and. it is clear from the preceding discussion that the contribution from
J—M ‘has the same upper bound as the contribution from X:
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CoroLrARY TOo LEMMA 8. We have

f i,u( [da < I pe- k Hl,’(n l)Pfu—Hd
J—-M

5. Major arcs: the main term. First we show that M can be regarded
a8 % union of disjoint intervals,

Lemma 9. Suppose that P > 244" for 4,j=1,...,m,1 %3
For any positive integer ¢, define : '

{32) 0 = 0:{q) = (A q) (F=1,...,n).
Lor each pair of integers a, q such that (a, q) = 1 and

(33) 0 < g < min{é; |3,y P,
T
el o, , be the set of all a such that

(34)

cnl -
o«— —‘ < N 2l

1) If aedy 4 then there is exactly one pair ag, q; such that (27) and (31)
hold, wamely
(35) @, = li-éb/(s“ 4 = Q/ab

(i} We have '

a)da -—=Z vla)du,

A S q

" where the summation is over all pairs a, g such that (33) holds and

(36) (e, q) =1, O0g<agg—1.

Proof. TFirst we remark that for any o there iz at most one pair
a;, q; satisfying (27) and (31). For, if

r

a, o, a;
R R S
‘ g-é f ﬁ ’ (L, 1;
where both approximations satisfy (27) and (31), then, exactly ag in
[11], Lemma 8 (i), we can deduce that

2 Mi.il—ﬁmm_ul) > .Pk"l—zkc',

which is impoessible under owr agsumptions. Part (i) of the lemma is easily
deduced. from, (33) and (34) together with the above remark. Tt follows
that Jy; N and J, ; nJ and the J, ¢ fuch thrl.t (36) holds and ¢ > 1.
are all subsets of M.
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Suppose that «e M, and that, for each i, a;/g, satisties (27) and (31).
If for some 4 == § we have a,/4,¢; # 6;/;q;, then

Bi b

FARYY

b

1
HM%‘Q:‘,

from, which we deduce (by the same ideas ag in [11], Lemma 8 (ii)) that

&
Lt A

23,21 H > PR

which is impogsible under our assumptions. Hence the a;/4;q; are all
equal, and so there exist integers o, ¢ such that {(e,q) =1, ¢ > 0, and

& @ ,
LJ-—=— ('l'-«'ll,-.-,ﬂr)-

A q
Tt follows that (35), (33), and (34) bolds and hence that either aed,,
or aed,, for some g, ¢ such that (36) hold. Also the unigueness of the
a;/q; implies that the J, , are disjoint. Since J N {J, W J4 4} is congruent
to Jy 1 (modl) and »(a+1) = v(a) for all «, part (ii) now follows.
Tn order to be able to nse Lemma 9, we shall assnme from, now on
that

(37) P> 20,

(There is no loss of generality here, since we shall eventually choose
P> TV, We now estimate the contribution from M to A7 (P).

Lmmara 10. Assuming thet (87) holds, we have

(38) f’v(a)da = H‘"GR(PH:O(P”“k“1+(ﬂ“1)5)+

M .
+O {‘H—-vljn—-k, (Hl!(’ﬂ“l)l)——ﬂ-’-g)'n_gk}y
where
(39) S = Z 2 QI QH. ((]21, gl) e S(a’m Qﬂ,),
=1 (atlzsﬂ .

the a;, g; are defined by (33) and (32), and
RB(P)» P"E,

Proof. Buppose that aeJ, ,, where a, g satisfy (33) and (36), and that
@, ¢; are defined by (35) and (.32) C[.‘hen it follows from Lemma 9 (i) and
Lemma 3 that o

(40} wla) = I (g1 ... 4u) 7 8@, 1)

< S{a ) [ AR+ B,
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b
w
or

where, for each i, & is the sign of A, § = a—(a/g), and

B < > [ [ {4 g7 Pmin(1, P~*(2,/ 80}

Ld

i=1 iR
< gOWE B P imin (1, P72,
since |4, 7'g < ¢, < ¢ by (35). Now
_ i
(41) [ min(1, P84 dp < P,
and o
;S: S‘ g et .< 1,

=1

i)

]
il
j =

(e,

since ¢ may be takeﬁ arbitrarily small and (n—1)»> 3 for all k>
Hence, integrating (40) over J, , and then summing over the pairs e, gj
we have, by Lemma 9 (i),

(42) ﬂ!v(a)da =gn-wﬁ...gnrlsml,gl) 8@y, ¢) IHI -+ f) da+
a aq”‘
+ 0P,

where the ranges for a, ¢ ave given by (33} and (36). .
The error caused by replacing J,, by [(a/g)~%, (a/g)+3] in (42) is

< 17" dgy a,)”

&y Ju

fP“mm(l P8 da,

where the ranges for «, ¢ are as befo_re and. Jy , is the set of all « = (a/g)+p
such that

Jg‘ 2 lﬁ{ 2 Pcrmk_ﬁ
Now for any pair a, g,

(g g 7P [ |17 e & g proEeiamned)
i
~and algo
o0
2 " < 2 q—-fm-i-l <1,
a,q g

VoL

since @y > 2 for all k. Ag (n—L)e>1 by (1) and (17), we now obtain

(@45 @) BEH

+ 0 (Pn—kwl-}-(-n—-l)d) ,

(43)  [o(a)da = 177 3(gy--. )" S(05, ¢2) -..8

M o, g
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where
1z »
(44) R(P) = f{n 1(44)} ag,

—1fa di=
and the ranges for a, ¢ are given by (33) and (36).
By using Lemmas 1 and 2 and. (41), it is easily shown that the error
cansed in (43) by extending the range for ¢ to infinity is -

< T prk 2 E (ql . qn)—r,

I a
where ¢ runs over the range (36), and ¢ over the range

g > min {8, |4,|~H 01y poE,
We congider a particular sef of divisors 8, ..:, &, 0L 4;, ..., 1, Tespectively,
and guppese that ' .

i {8, |2, ~F0} = |2,
T

The contribution to the above sum fromw. the pairs @, g eorresponding to
B1seeny 9y 18
< I (8, ... an)*'Im—kZ g~ =1

a

where the range for ¢ is
. q > aj Mj_lhkf(-nwl)Pah'
Thus the contribution from these @, g 18

< H—mank(al . dn)v aj—(-nwmz) |ZjE(nﬁzlﬂ)f(n-—l)IJ---(-n.-—Zir)a

< H—u_Pnfk.H(n-ﬂc)/(n»--].)_P—(-n—2k)r: .

Since I < P, the number of different possibilities for &, ..., 8, i O (P
and hence the total error satisfies the condition on the second error term
in (38). Hence it follows from, (43) that (38) holds with B{P) given by (44).

By the definition (13) of I{f), it follows that R{P) is procisely a sum,
of the type Z considered in Lemma 6, since we may assume without loss
- of generality that 1, > 0, 4, < 0. Hence R(P)» P, and this ecompletes
the proof of the lamma,

6. The singular series, We now obtain a lower bound for G, the sum
of the singular series defined by (39); the series is certainly absolutely
convergent becange, by Lemma 1 (ii), ‘

(@1 @) 7 8@, 1) o B, g) < (gnoee )7 < TP
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We may re-write the series as

<0

q
Z 2 T8 (ha, q) ... S(ha, g).

(a, g)= .I.

A, for example, in Chapter 5 of Davenport [6], it cap be shown that

(45) - & =[x,
il
where the product is over all primes p, and
o pf
(46) Cx(p) =1+ S’sz’“ﬂ 84, p°)
e
and, that, furthermore, '
(£#7) x{p) = lim p~C~ M (p%),
B0

where 3 (p®) denotes the number of distinct solufions (modp®) of the
eongruence (6). We shall need the lower bounds for M(p®) given by the
following B

Lemwma 11. (i) Let » be a prime such that pt k, and suppose that A, ..., A,
are not divisible by p, while the remaining A, are all divisible by p. Then for
all s=1

;M (pS) = p(n—l) (8— 1)+(n7i)N (_’P} ,

where N (p) denotes the nwmber of non-trivial solutions (modp) of the con-
gruence
Maf4 .. 4 Laf = 0 (mod p).

(i) For each prime p there is a number y << 4% such that for all s = v

H () > po VeI (p7), |
where N (p*} is the number of primitive solutions (mod p*) of the congruence
At A, mk

(A primilive solutzon is one such that not all m; are divisible by p)

_ Proof. The proof, which depends on Hensel’s lemma, corresponds
exactly to that of Lemma 10 of [11], and therefore I omib the details.
A gnitable value of y ig

= (mod ¥y,

= max Zm,,
k4

where p™i|kA; for ¢ =1, ..., n. Since the 4; are &th power free, m; is cer-
tainly less than 2% for all 4.

R w— Arta Arifhmeting YTV 4
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We can now obtain a lower bound for S.
LEMMA 12. (i) There is an absolute constont ¢, > O such that if ¢ > ey,
then

[Jrpy=% (w12 >e).
n

(i1} There is & constant ¢y = cy(&) > 0 such that if ¢ > 6y, then

[lumy=m (@it p > o).
» ‘

(iii) We have
Sz el
where ¢y = ¢5(8) > 0. ‘ ‘
{The products in (1) and (i1) are over all primes which satisfy the condition
th pareniheses.)
Proof. (i) Suppose p¥7l. If p¥a, then, by Lemma 1 (ii),

B(ha, p*) < pO
Thus

¥ n o
Zpﬁmﬂ S(zﬂ_“’ p'e) < p&(lnzln) < p--zs
=i

=]
vta

(since n = 3% for all ). Therefore, by (46),

l(p)—1l < Mp ™ < p7
8=1
from which (i) follows easily.

(ii) Let 9 be a prime such that p > & (and thevefore p4%). Since af
most #—3 of the 4; are divisible by p, we may aggume that 1,, ..., 4, are
not divigible by %, while the remaining 1, are divisible by p; where ¢ 3.
Using the notation of Lemma 11 (i), we have

Pl
P(N(P)“F‘l) = S(dya, p) ... 8{4a, p)
N1
= Y 8Uhe, ) ... 8(ka, p).
a=1

Now by Lemma 1 (i), each of the S(4a,p) in the above fo_rr.nn].d hag
absolute valiue at most (k—1)p**, and therefore

¥ @)+ 1—p < p (p—1) (B—1)'p" < (B—1)'p'.
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Since ¢ 2 3, and therefore {—1 > /2, for any & > ¢ there is a constant
¢s(e, t) sueh that '
Nip)yzp'*

provided that p > e,(e, 1).

It now follows from Lemma 11 (i) and (47) that for any & > 0 there
is & constant e, = ¢y(e) {the maximum of k, ¢s(e, 3), ..., e3(e, n)) such
that if p is any prime greater than c,, then M (p®) = p® 1 for all s and so

ip)zp"
The eonclusion of (i) follows from this.

(iii) Since # > B -1 for a-],} k = 4, it follows from, the results of Daven-
port and Lewis [7] which were discussed in § 1 that, in the notation of
Lemma 11 (ii), N (p") = 1 fgy all primes p; hence, by that lemma,

M(ps) >p(11—1)(s—47c)
for all primes p and all ¢, and so, by (47),

2(p) = p~H0 Y
for all primes p.
For any & >0, let ¢ = max(e;, ¢;), where ¢,, ¢, are as in (i) and (ii).

Then
[]xp) = [[p74 = o,

psze pse
say, and (iii) now follows from (45}, (i) and (i).

7. Completion of the proof of Theorem I. Assuming that (37) {and
hence (8}) holds, we deduce from the.corollary to Lemma 8 together with
Lemmas 10 and 12 that '

-/V(P) = ceH-w——eink_i_H—wPu—kE,
where ¢, >0 and
B< Hli{ﬂ.-—l)P--a+zd+Hvl;—1+(n—1)ﬂ+(Hll(nwl)P—a-[-s)n—ﬂk’

o being defined by (17). We choose ¢ 8 in such a way that 0 < (n—1)6
= g < o and
) 1 :
Y ~ ;
1—40 (n—1) (o— 3¢)

this is possible since 9= 1/{{n—1)s} Dy (1) and {4). It follows that if
P = 211v 50 that (37) holds, then

E < III/'('.W.—ljlj—z:r-{-e< P—ia‘
Ilence there ig o constant D, > 2 snch that if P!~ = D, I7* then A4 (P) >0,
By the remarks at the beginning of § 4, this completes the proof of the .
theorem. ‘
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§ 8. Use of diminishing ranges for equation (2). Davenport and Lewis
[7] obtained their results on G (k) for & 12 (see § 1) by using diminighing
ranges for the variables together with Vinogradov’s estimates. I shall
now jndicate how their method can be combined with the ideas of § 2to 7
to obtain an analogue of Theorem 1 with smaller »; I shall omit the details,
which are messy but straightforward. T shall refer to Davenport and
Lewis [7] as DL,

As before, we gfart with s given pumber 8 such that 0< 6«1,
and we assume that 1, ..., A, are non-zero infegers satisfying (21). We
also assume that fhe congruence condition (see § 1) corresponding to
equation (2) is satistied; the size of n wi]l emerge from our argument.
In our final result we shall have an inequalty like (3) in which the expo-
nent of A4, ... A | is ab least 1 and we sha¥l have % > 2k-1; hence, by

Lemma 7, we assume without loss of generality that (22) and (23) hold.

For ease of reference. we follow the notation of DL as much as possible;
we use the same notational conventions as in § 2 abow_re.

We define 77, A by (7) as before, and we re~write (2) as
{48) adf+ . e byt L Ryl by byt =0,
and assume, without loss of generality, that

A =e>0, e<0.

We denote a typical coefficient of (48), that is, of (2), by 1. We write
B = max {5, bjl; ¢, =2,...,1)
and note that :

IT = o, ... 6,0y ... byby ... by| > AB = B
For any large positive integer P, we write .
P, =P =1,
where, as befo_ré, v = 1fk; we assume from, the outset that
{49) Pz=A, Pz=24.

This time we define 4" () as the number of solutions of (48) such thab

P oo < (2r+-2YP (0 =1, ..., 21),

(50) . . .
| Po iy < @r 2P, By< B i< r 2R, (0 =1, ...,

- and we geek to show that A4 (P) > 0. .
The relevant trigonometric sums are.of the form

T(a, 3,Q) = D e(Aax"),.

. €x
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where z-runs through all integers in the range
Q< e < (@r+27g,

A is a non-zero integer and @ = P, for some i. (The §;(a) of (9) are thus
T(a, A P)) We define S(a, q) by (12) as before. We now define

I(8,Q) =M vim ™ e(fm),

Hi

Whe;*e m Tuns through all integers in the closed interval
[QF, (2r+2)@"];

we note that I{f, @) satisfies the result corresponding to Lemma 2. We

now define :
: ar i i

Viey =[] T{a, i, PY[ [ T{a, by, P) [ | T(a, 85, ),
=1 i=1 Tl

and as befors we have

H(P) me(a}dcc
o

where J = [0, 1].

For each aeJ, Davenport and Lewis congidered a rational approxi-
mation a/g to a and then estimated the T («, 4, §) by nsing the fact that
Azfg is a rational approximation to e zinee 2 is integral. However, this
means that the bound on the error in the approximation Aa/g¢ iz large
ior large %, which causes difficulties when we want to keep track of the
contribution from A to ouny error terms. One way out would be to consider
separate approximations to the e as we did for Theorem 1; but this would
prevent us from using the approach of Davenport and Lewis to the “semi-
major” ares (see below) and so would lead to a weaker result. Instead,
we shall use the following lemama, which i obtained by modifying the
proofs of Lemmas 7, 8, and 9 of Davenport [5].

LeEMMA 3'. Suppose that 1, v are non-zero inlegers, @ = 1| =0, and
a = {afq)+ B, where

(a, ) =1, 0<g<< (A" 128 < yg (A7 @
If (47Q)" > v, then
(51) T(a, 4, Q) = 1 "¢ 8(ia, ) I(4-5, Q)+ E,

where -4 is the sign of A and |B| < cle, o, E)¢™5 and each of the two

~ expressions on the right-hand side of (61) has absoluie value

< o(8, k)g "Q min(1, |8]7Q77).
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_ Sirce we must apply thiz lemma with y = A4, @ =P, wo. cannot
take & to be small without forcing % to be very large. As the form in which
we have given Lemma 4 ix not satisfactory unless & ix small, it is conve-
nient to uge instead the following lemma, which iz obbained from Vmo-
gradov [12], Chapter VI, Theorem 1.

Temma 4'. Suppose that. k= 12 and |a— (a/g} < q72, where

(@, 0)=1, (A7QP " < g<UAT QP

Then,
|T{a, 2, Q) < e(F, 8) (A (147" @)Y ¢,
where
=0y . — ]— 1_(3 T
(52) e(?) “(l+ 30ifc) 3k7log {125 (k- 1)/(L— 6)}
2
5=

3ltlog (12&(k-+ 1)}
In order to use this lemma, we assume fronl now on that
k=12,

Instead of using Vinogradov’s mean-value theorem we shall use the
following mean-value theoremn, which is essentially Lemma 10 of DL.
LEMMA 5% We have

fﬂu*ab )

For each aeJ there is a rational a/g such that

(53) (a,0) =1, 0<g< (AP},

T(e, by, Pl da < |by... b,bl ... B Bp-ka=F,

(54)

a__z_ ’ < Q—](A—wp)mwk;

we shall subdivide J into major ares, semi-major ares, and minor ares
according to the nature of the approximation ajg. (Note that the sub-
division. here is slightly different from that used in DI.)

The set of all a in J such that (54) holds is called & major are if a,nd
only if @ and g satisfy both (53) and the condition

‘ q< (lg|7 Py (=1, 90,
g< (b7 PY" g < (|by] " P G o=1,...,8).

We can estimate the contribution to .47 (P) from the major ares by uging
Lemma 3’ with 6 = % and arguing as in § 5 above; the details are very
similar to those of DL Lemma 16. It turns out tha,t if

(56) PRt 4L, rml, P oA,

(55
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then the contribution from. the major arcs is

{(87) ' IISR(P)+P*E,
where © ig precisely the singular series considered in § 6,
Iz 2r
= [ []1(xs8,P H{I(j:ﬁ PI(-f, )} ag,
_1ja ge=]

the 4+ being the signs of ¢, b;, b; respectively,

(58) P = 2r-+k—2E{1—2),
and
(59) B < PO (PR)™ 04 (BL)

By a similar argument to that in DL, Lemma 15, it iz easily shown that
R(P)>» P

Our argement in § 6 really depended only on the conditions (21), (22),
and {23), the mequ‘lhty n 2= 2k-+1 and the fact that N(p”} = 1 for all
primes p. Since these conditiony are all satisfied here, it follows that

{60) S = el
where ce > 0.

Now we consider pairs a, g such that {55) does not hold. For such
a pair, the get of all ¢ in J such that (54) holds is called & semi-mnajor arc
if and only if a and ¢ safisfy both (53} and the condition

(61) g< {(le|"P)* for at least » values of 4.
We now assume further that
(62) 1= 2;

by (49), this ensures that AP = B~ P, and hence that
(63) ‘ g3 (BP)" '

for any semi-major arc. To estimate V(a) when o helongs to a semi-major
are, we apply the bound in Lemma 3" to the r sums I'(«, ¢, F) to which,
by (61), it applies, and use the trivial upper bound for the remwaining swins.
‘We must then integrate with respect to ¢ and suimn with respect to ¢ and g,
using (63), to find the contribution from the semi-major ares, which turns
out to be

(61) < Pﬂi (B—-v_Pt)l—-rlllz
provided that ‘
(65) Pz A5

r > 2k,
(Cf. DI, Lemma 14.) '
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We gay that an element e of J be?owge to @ minor are if and only if o
belongs neither to a major are nor to a semi-major arc. Cleatly if « belongs
to & minor arc, then

g = (| " PP for at least » values of 4,
and hence we can apply the bound of Lemma 4" (with 6 = }) to » of the

sums T(a, ¢;, P). The contribution from, the minor arcs can then he esti-
mated by using Lemma 5° as in DL, Lemnma 11; this contribution ig

(66) < TPt

where p = g(%) iz defined by (52) with 6 = L.
By the discussion of major arcs we shall need at least P, = I to
“ensure that 47 (P) > 0; hence we assume that

. -t
(67) Pr oz ent-r
‘We make the further assumptions
. Zrp 1
(68) ¥ 2= Ok, (1— v)" =< min {z-kw-«l—, B—iﬂ-}

Inequalities (67) and (68) 11np1y that ony plewous assunphions (49) (56),

(62}, (6b) all hold, apd algo that «# = 2k2-1 and
B <Pl (L—v)t < 2{rg— R (L—9)).

Hence the following éstimate of 4" (P) can be obtained from the relations
(B7) to {60}, (64), and (66):

AP) 2 ¢ T PP 0 {PP-0-' Ty g - preio-ntTly
By arguing as in § 7, we finally obtain the following
THEOREM 2. Suppose that k= 12, n = 2+ 21, and write

1 1\t
R
P k

1 1
=1 .
¢ ( + 307:;) 6ltlog (4% (k- 1)}

Suppose also that

' ; 1. . 2rp 1
. ok <mn gt

Then for any 6 >0 there is a constomt ¢, with the following property. If
Ays ey Ay are non-zero integers which are not all of the same sign if k is even
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and which salisfy the congruence eowdﬁwn Jor (2), then (2) has o selution
in won-gero integers such that

[Almﬁl_l_ e _I" M'n.m:ﬁl < GJFJM'J. e A’n!w+0'

We note that the hypotheses of the theorem imply that ¢ » klogk.
If r» klogk, we can choose t < klogk so that (69) holds and w» < k2.
Hence it follows from Theorem 2 and the results of Chowla and Shimura
mentioned in § 1 that if % is odd and sufficiently large and n > eklogk,
then (2} has 8 solution with

a4+ Ak < Ay 2,7,

where ¢ and 4 are suitable constants,
I6 is interesting that the bounds in terms of 4 given by Theoremns 1
and 2 are roughly the same, since both yield a solution of (2) such that

(70) ) € ARG ),

§ 9. Use of diminishing ranges for imequality (5). In [10] I prove
& theorem corresponding exactly to Theorem 1 on solotions of inequality
{5) such that

V‘lmﬂ ""If" + Mnﬁ}ﬁi < KﬁMl et }"n]'kw‘i-n?

where 7 and y are defined by (1) and (4), and Ay, ..., 1, are real numbers
which satisty |2,/ 1 for all i and which are not all of the same sign if %
iy even; I shall call this theorem: Theorem A. The proof in [10] is by ana-
lytic methods vsing equal ranges, and it depends in an essential way on
Theorem 1; I now discuss briefly the possibility of improving Theorem A

by using diminishing ranges and Theorem 2.

- . We assume that k= 12 and re-write (5) as
(71) ey @4 ... Feam -+ byt by +b1J1 + by <L,

and use the notation introduced in § 8. We let 4 (P) denote the number
of solutions of (71) such that (50) holds with » in place of 2r, and we esti-
mate 47 (P) by using the fact thaﬂ:

A (P)2 F(P —ka(a «)du,

where J = [0, oo) and f is a suitable kernel funetion with the property

that |f(e)} < 1 for all ¢ = 0 (see [10], Lemma 2 or [11], Lemma 12).

Since the 1 are not necessarily rational, we capnot obtain rational
approximations for the A« from those for ¢. Hence for ¢ =1, ..., » we con-
sider approximations a,/g; to the 4o = ¢« such that (27) holds. If, for
SOME @, ¢4 ... ¢ 18 small enough, we can deal with (71) by applying Theo-
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rem 2 to a suitable equation in # variables {cf. [10], Lemma 4 or [11],
Lemma 15); this apgument requires that » = I™(k), which implies r = k241
for certain even k. .

It ¢, ... g is. always reasonably large, we estimate #(F) as follows.
The main term, which comes from the small values of a, is off —*P? where
e >0 and @ is given by (58). To estimate the contribution from. those «
for which at least one g; is large, the only possibility reems to be to use
the same method ag for the minor arcs in § 8, except that we can now uso
Lemma 4; this yields an eprror texm which is

(72) & IT" PP A (b, ... BB, ... b v prork=siis

where ¢ is given by (17). Similar arguments to those in [10], Lemma 5,
and [11], Lemma 16, yield a reasonable upper bound for the contribution
from the remaining a, provided that r 2= k*-1, but complications arigse
if v kR '

It is clear from, (72} that in order to show that #(P) >0 we need
t » klogk and P°» A"; and hence at best we obtain a solution of (71)
with

|50'¢[ < A.dkz(logfc)z’

which is slightly worse than (70). Moreover, the result obtained would
be ungymmetrical in the 1;, and wounld involve more than k241 variables.
Thus this approach does nol seem tio yield a marked improvement on
Theorem A; this was ove of the main reasons for giving a detailed proof
of Theorem 1 rather than of Theorem, 2.
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