

ACTA ARITHMETICA XIX (1971)

L-functions of elliptic curves with complex multiplication, II

b:

R. M. DAMERELL (London)*

§ 7. Division values of elliptic functions. This paper, like Part I [3], is concerned with certain Hecke zeta functions defined over a complex quadratic ring S. It was proved there that for suitable values of x and s_0 , the number

$$\Theta = \zeta(s_0, \lambda) \pi^{n/2 - s_0} / x^n$$

is algebraic. In this paper we find an algebraic integer γ such that $\gamma\Theta$ is an algebraic integer. The set of such γ is a principal ideal ($[\alpha]$, say) in the ring of algebraic integers. The value of α is not known, except that α divides γ , so the value of γ given here is not necessarily the best possible. The main result is Theorem 2, stated in § 8. Similar results have been proved in some special cases, see [1], [5], [6], sometimes with better values of γ .

We now adopt the notation of § 2, with some changes. The letter I will denote any algebraic integer, but it will not have any fixed value. Let Γ be a period lattice, \hat{z} a point of finite order (m, say) modulo Γ , and F an algebraic number field containing g_2 , g_3 , $\wp(\hat{z})$, $\wp'(\hat{z})$. We assume that $\frac{1}{12}g_2(\Gamma) = I$ and $\frac{1}{4}g_3(\Gamma) = I$.

Generalizing results of Lutz and Nagell, Cassels has proved the following ([2], Theorem 4):

There is an integral ideal t in **F** such that $t^2 \wp(\hat{z})$ and $\frac{1}{2}t^3 \wp'(\hat{z})$ are integral, and

If
$$m = p^r$$
, $p \neq 2$ or 3, then $t^{p^r - p^{r-1}}|p$, If $m = 3^r$, then $t^{3^{2r} - 3^{2r-2}}|3$, For all other m , $t = 1$.

It is convenient to weaken this result so as to have a single formula valid for all m. The weakened result is:

LEMMA 7.1.

$$m^{1/2} \wp(\hat{z}) = I$$
 and $\frac{1}{2} m^{3/4} \wp'(\hat{z}) = I$.

We now apply this result to the functions defined in Part 1.

^{*}Most of this work was done while the author was a research student at the University of Cambridge.

LEMMA 7.2. Let h(z) be the function discussed in § 4. Then

$$m^{5/4}h(\hat{z}) = I.$$

Proof. $\wp(z)$ satisfies the addition formula

$$\wp(u+v) = \frac{1}{4} \left(\frac{\wp'(u) - \wp'(v)}{\wp(u) - \wp(v)} \right)^2 - \wp(u) - \wp(v)$$

(Fricke [4], page 160). Hence

$$\frac{\wp'(u) - \wp'(v)}{\wp(u) - \wp(v)} = \pm 2\sqrt{\{\wp(u+v) + \wp(u) + \wp(v)\}}.$$

By Lemma 4.3 and equation (4.6),

$$\begin{split} h(\hat{z}) &= H_m(\hat{z}) = \frac{1}{2m} \bigg\{ \frac{\wp^{\prime\prime}(\hat{z})}{\wp^\prime(\hat{z})} - \sum_{r=2}^{m-2} \frac{\wp^\prime(r\hat{z}) - \wp^\prime(\hat{z})}{\wp(r\hat{z}) - \wp(\hat{z})} \bigg\} \\ &= \frac{1}{m} \sum_{r=1}^{m-2} \pm \sqrt{\{\wp(r\hat{z} + \hat{z}) + \wp(r\hat{z}) + \wp(\hat{z})\}}. \end{split}$$

Each of the $r\hat{z}$ has order m modulo Γ , so each $\wp(r\hat{z}) = I/m^{1/2}$. Hence $h(\hat{z}) = I/m^{5/4}$, Q.E.D.

Lemma 7.3. Let U(z) be a standard function with poles of order r at each lattice point. Then

$$m^{r/4} U(\hat{z}) = I.$$

Proof. A standard function is a polynomial in $\wp(z)$, $\frac{1}{2}\wp'(z)$, $\frac{1}{12}g_2$, and $\frac{1}{4}g_3$, with rational integral coefficients. By hypothesis, $\frac{1}{12}g_2 = I$ and $\frac{1}{4}g_3 = I$. So U is a polynomial in $\wp(z)$ and $\frac{1}{2}\wp'(z)$ with integral coefficients. A typical term is $I\wp(z)^a\wp'(z)^b$, which has poles of order 2a+3b at the lattice points. We may assume $0 \le b \le 1$, and then the poles belonging to different terms cannot cancel because they have different orders. So $2a+3b \le r$, and when $z=\hat{z}$ each term has the form

$$(term) = I(I/m^{1/2})^a (I/m^{3/4})^b = I/m^{(2a+3b)/4} = I/m^{r/4}, \text{ Q.E.D.}$$

LEMMA 7.4. Let K_j^i be the function defined in § 3, and let α and β be chosen (as in Corollary 4.1) to make $K_j^i(z) + \alpha z + \beta \overline{z}$ periodic. Then

$$(j-1)! m^{r/4} (K_j^i(\hat{z}) + \alpha \hat{z} + \beta \bar{\hat{z}}) = I,$$

where

$$r = egin{cases} i+j & if & j \geqslant i+2, \ \max(5,i+j) & if & j=i+1. \end{cases}$$

Proof. By Corollary 4.1,

$$(j-1)!(K_i^j(z)+az+\beta\bar{z})=T_i^i(z)+B_i^ih(z)$$

By Lemma 3.3, B_j^i is a standard constant, so $B_j^i = I$ by Lemma 7.3. Also T_j^i is a standard function; by Lemma 3.1, K_j^i (and hence T_j^i) has poles of order i+j at the lattice points. The result now follows from Lemmas 7.3 and 7.2.

Lemma 7.5. Suppose now that Γ admits complex multiplication by the ring S. Then

(7.1)
$$\varphi(\Gamma)f\sqrt{|d|} = I.$$

(f and d were defined in § 2, and φ in § 4.)

Proof. By equation (6.1),

$$\varphi(\Gamma) = (\tau \overline{\tau} - \tau^2)^{-1} \sum_{\substack{\varrho \in \Gamma \\ \varrho \bmod \tau \Gamma}} \wp(\varrho/\tau, \Gamma),$$

where τ is any element of S, not real. Let $\tau = a + bf\sigma$, and $t = \tau \overline{\tau}$. Then $\mathcal{O}(\varrho/\tau) = I/t$, by Lemma 7.1, and

$$\tau \overline{\tau} - \tau^2 = \tau b f(\overline{\sigma} - \sigma) = (-i)\tau b f \sqrt{|d|}$$

by the results quoted in § 2. So (6.1) becomes

(7.2)
$$\varphi(\Gamma) = I/(t^2 b f \sqrt{|d|}).$$

This holds for all τ , and if we choose two values of τ for which the numbers t^2b are coprime, we may replace the denominator in (7.2) by $f\sqrt{|d|}$. This gives (7.1).

LEMMA 7.6. Let $0 < s_0 \le \frac{1}{2}n$ and $\frac{1}{2}n - s_0 \in \mathbb{Z}$. Put $p = \frac{1}{2}n - s_0$, $q = \frac{1}{2}n + s_0$ r = 5 if p = 0 and q = 1, otherwise r = 5p + q. Then

(7.3)
$$\psi(\Gamma)^p F_n(\hat{z}, s_0, \Gamma) - B = I/[(q-1)! \, m^{r/4} (f \sqrt{|d|})^p],$$

where F_n is the function defined in § 5, and B is the constant of Lemma 5.2 (so B=0 unless $s_0=1$).

Proof. By Lemma 5.2.

(7.4)
$$\psi^p(\Gamma)F_n(z,s_0,\Gamma)-B$$

$$= \sum_{t+u+v=v} \left[\frac{v!}{t! \, u! \, v!} \, h(z)^t (-\varphi)^u (-1)^v \, K_{q-u}^v(z) \right] + Cz + D\overline{z},$$

where B=0 unless $s_0=1$ and C=D=0 unless $s_0=\frac{1}{2}$. First suppose that $s_0 \ge 1$. Put $z=\hat{z}$ and apply Lemmas 7.2-7.5:

$$\psi^{p}(\Gamma)F_{n}(\hat{z}, s_{0}, \Gamma) - B = \sum_{t+u+v=n} I(I/m^{5/4})^{t}(I/f\sqrt{|d|})^{u}(I/(q-u-1)! m^{(q-u+v)/4}).$$

The largest power of $fV|\overline{d}|$ occurs when u=p, the largest factorial when u=0, and the largest power of m when t=p and u=v=0. Hence

$$\psi^p(\Gamma)F_n(\hat{z}, s_0, \Gamma) - B = I/[(q-1)! m^{(5p+q)/4} (f\sqrt{|d|})^p]$$

as required.

Now suppose $s_0 = \frac{1}{2}$. As in the proof of Lemma 5.2, we may replace each of the non-periodic K's in (7.4) by the corresponding periodic function $K_{q-u}^v(z) + \alpha z + \beta \bar{z}$, and this cancels the terms $Cz + D\bar{z}$. Put $z = \hat{z}$ and apply Lemmas 7.2–7.5:

$$+\sum_{\substack{u+v=p\\d=q}} I(I/f\sqrt{|d|})^u (I/(q-u-1)!m^{r/4}),$$

where $r = \max(5, q - u + v)$. As before the largest power of $f[\sqrt{|d|}]$ occurs when u = p, and the largest factorial when u = 0. The largest power of m is either $m^{5/4}$ or $m^{(5p+a)/4}$, and 5p+q>5 unless p=0 (so $q=p++2s_0=1$). This proves the Lemma when $s_0=\frac{1}{2}$.

§ 8. Determination of γ .

LEMMA 8.1. Let x be such that $\frac{1}{12}g_2(Sx)$ and $\frac{1}{4}g_3(Sx)$ are algebraic integers. Let b be a proper ideal of S (see § 2) and \hat{b} an ideal number representing b.

Then

$$\frac{1}{12}g_2(\boldsymbol{b}x/\hat{\boldsymbol{b}})=I$$

and

$$\frac{1}{4}g_3(\boldsymbol{b}x/\hat{\boldsymbol{b}})=I.$$

Proof. We prove the lemma for g_2 , the proof for g_3 being similar. Let $\hat{\boldsymbol{b}}$ and \boldsymbol{b}^* be two ideal numbers for \boldsymbol{b} . Then $\hat{\boldsymbol{b}}/\boldsymbol{b}^*$ is an algebraic unit, so for given \boldsymbol{b} the result is independent of the choice of $\hat{\boldsymbol{b}}$, by the homogeneity of g_2 . Now let \boldsymbol{a} and \boldsymbol{b} be in the same ideal class of \boldsymbol{S} . Then $\boldsymbol{b} = [a] \boldsymbol{a}$ and $\hat{\boldsymbol{b}} = \alpha \hat{\boldsymbol{a}}$ for some a in k, and

(8.1)
$$\frac{1}{12}g_2(\mathbf{b}x/\hat{\mathbf{b}}) = \frac{1}{12}g_2(\alpha \mathbf{a}x/\alpha \hat{\mathbf{a}}) = \frac{1}{12}g_2(\mathbf{a}x/\hat{\mathbf{a}}).$$

Given a proper ideal class A of S, let p be a prime ideal in A such that $p\bar{p}$ is a rational prime P, say. Then SPx is a sublattice of px, and

$$g_2(\mathbf{p}x) = g_2(\mathbf{S}Px) + 10 \sum_{\varrho} \wp^{\prime\prime}(\varrho, \mathbf{S}Px)$$

by equation (6.0). Here ϱ runs through all non-zero residues of px modulo SPx. By equation (3.11) and homogeneity and Lemma 7.1 we deduce:

$$\begin{split} &\frac{1}{12}g_2(\boldsymbol{p}x) = \frac{1}{12}P^{-4}g_2(\boldsymbol{S}x) + 5\sum_{\varrho} \{P^{-4}\wp^2(\varrho/P, \boldsymbol{S}x) - \frac{1}{12}P^{-4} \ g_2(\boldsymbol{S}x)\} \\ &= I/P^4 + I/P^5 + I/P^4 = I/P^5. \end{split}$$

Hence

$$\frac{1}{12}g_2(\mathbf{p}x/\hat{\mathbf{p}}) = \hat{\mathbf{p}}^4I/P^5 = I/P^5.$$

Similarly, if q is a second prime in the same ideal class, then

$$\frac{1}{12}g_2(qx/\hat{q}) = I/Q^5.$$

But the two left-hand sides are equal by (8.1), so their common value is an integer, Q.E.D.

LEMMA 8.2. For all s for which $F_n(z, s, \Gamma)$ is defined,

(8.2)
$$\frac{\psi(\Gamma x)^{n/2-s}F_n(zx,s,\Gamma x)}{\psi(\Gamma)^{n/2-s}F_n(z,s,\Gamma)} = x^{-n}.$$

Proof. F_n is defined by equation (5.1) for re(s) > 1:

$$F_n(z,s,\varGamma) = \sum_{\Omega} rac{(ar z + ar \Omega)^{n/2-s}}{(z+\varOmega)^{n/2+s}}.$$

Hence

$$\frac{F_n(zx,s,\Gamma x)}{F_n(z,s,\Gamma)} = \frac{\overline{x}^{n/2-s}}{x^{n/2+s}}.$$

From equation (4.5') we deduce that

$$\frac{\psi(\Gamma x)}{\psi(\Gamma)} = \frac{A(\Gamma)}{A(\Gamma x)} = |x|^{-2} = (x\overline{x})^{-1}.$$

Combining these two results gives (8.2) when re(s) > 1. For other s the result holds by analytic continuation.

THEOREM 2. Let $\zeta(s,\lambda)$ be a Hecke zeta function defined over the ring S, let s_0 be a value of s such that $\frac{1}{2}n - s_0 \in \mathbb{Z}$ and $0 \leq s_0 \leq \frac{1}{2}n$, as in Theorem 1. Let x be chosen such that $\frac{1}{12}g_2(Sx)$ and $\frac{1}{4}g_3(Sx)$ are algebraic integers. Let γ be defined as follows:

$$\gamma = \begin{cases} e \, \hat{\boldsymbol{m}} \mathcal{N}(\boldsymbol{m})^{5/4} & \text{if } n = 1 \text{ and } s_0 = \frac{1}{2}, \\ 2^{n/2 - s_0} e(\frac{1}{2}n + s_0 - 1)! \hat{\boldsymbol{m}}^n \mathcal{N}(\boldsymbol{m})^{n/4} & \text{otherwise,} \end{cases}$$

where e is the number of units of S, \hat{m} an ideal number for the conductor m of λ , and $\mathcal{N}(m)$ its norm.

L-functions of elliptic curves

Assume also that if $s_0 = 1$, then the character χ is not trivial on the numbers of S (i.e. there is an α for which $\chi(\alpha) \neq 1$). Then

$$\gamma\Theta = \gamma\zeta(s_0,\lambda)\pi^{n/2-s_0}/x^n$$

is an algebraic integer.

Proof. By equation (6.2)

$$\Theta = e^{-1} \left(-\frac{1}{2} \mathscr{N}(\boldsymbol{m}) f V[\boldsymbol{d}] \right)^{p} \sum_{i=1}^{h} \left[\hat{\boldsymbol{a}}_{i}^{n} \chi^{-1} (\hat{\boldsymbol{a}}_{i}) \sum_{\substack{\beta \in \boldsymbol{a}_{i} \\ \rho \bmod \boldsymbol{b}}} \chi(\beta) \psi^{\beta}(\boldsymbol{b} x) F_{n}(\beta x, s_{0}, \boldsymbol{b} x) \right],$$

where $p = \frac{1}{2}n - s_0$ and $b = ma_i$. Within the square brackets, replace x by $x/\hat{b} = x/\hat{m}\hat{a}_i$. By Lemma 8.2 this gives

(8.3)
$$\Theta = e^{-1} \left(-\frac{1}{2} \mathcal{N}(\boldsymbol{m}) f \sqrt{|\boldsymbol{d}|} \right)^{p} \hat{\boldsymbol{m}}^{-n} \times \times \sum_{\hat{\boldsymbol{i}}=1}^{h} \left[\chi^{-1} (\hat{\boldsymbol{a}}_{i}) \sum_{\substack{\beta \in \boldsymbol{a} i \\ \beta \text{mod} \boldsymbol{b}}} \chi(\beta) \psi^{p} (\boldsymbol{b} x / \hat{\boldsymbol{b}}) F_{n} (\beta x / \hat{\boldsymbol{b}}, s_{0}, \boldsymbol{b} x / \hat{\boldsymbol{b}}) \right].$$

By Lemma 8.1, $\frac{1}{12}g_2(\boldsymbol{b}x/\hat{\boldsymbol{b}}) = I$ and $\frac{1}{4}g_3(\boldsymbol{b}x/\hat{\boldsymbol{b}}) = I$. Each β is in \boldsymbol{a}_i , so β has index $\mathcal{N}(\boldsymbol{m})$ modulo \boldsymbol{b} . By Lemma 7.6, with $m = \mathcal{N}(\boldsymbol{m})$, the inner sum of (8.3) is

(8.4)
$$\sum_{\beta} \chi(\beta) \{B + I/[(q-1)! \mathcal{N}(m)^{r/4} (f \sqrt{|d|})^p]\}.$$

Here B is the constant of Lemma 5.2, so B=0 unless $s_0=1$. If $s_0=1$, then χ is assumed non-trivial, so $\sum_{\beta} \chi(\beta)B=0$. So B may be neglected. Since the $\chi(\hat{a}_i)$ and $\chi(\beta)$ are algebraic units, (8.3) reduces to

$$\Theta = e^{-1} \left(\frac{1}{2} \mathcal{N}(\boldsymbol{m}) f \sqrt{|\boldsymbol{d}|} \right)^{p} \hat{\boldsymbol{m}}^{-n} I / [(q-1)! \mathcal{N}(\boldsymbol{m})^{r/4} (f \sqrt{|\boldsymbol{d}|})^{p}].$$

Now put $p = \frac{1}{2}n - s_0$, $q = \frac{1}{2}n + s_0$, r = 5 if n = 1 and $s_0 = \frac{1}{2}$, and $r = 5p + q = 3n - 4s_0$ otherwise. Then

$$\Theta = \begin{cases} I/e\hat{\boldsymbol{m}} \mathcal{N}(\boldsymbol{m})^{5/4} & \text{if } n = 1 \text{ and } s_0 = \frac{1}{2}, \\ I/[2^{n/2-s_0}e(\frac{1}{2}n+s_0-1)!\hat{\boldsymbol{m}}^n \mathcal{N}(\boldsymbol{m})^{n/4}] & \text{otherwise.} \end{cases}$$

This proves Theorem 2.

I would like to thank Professor J. W. S. Cassels for his most valuable help and encouragement, and for his advice in the preparation of this paper.

References

- [1] B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves, II, J. Reine Ang. Math. 218 (1965), pp. 79-108.
- [2] J. W. S. Cassels, A note on the division values of \(\omega(u) \), Proc. Camb. Phil. Soc. 45 (1948), pp. 167-172.
- [3] R. M. Damerell, L-functions of elliptic curves with complex multiplication, I, Acta Arith. 17 (1970), pp. 287-301.
- [4] R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, II, B. G. Teubner, Leipzig and Berlin. Page references apply to the 1916 edition.
- [5] A. R. Rajwade, Arithmetic on curves with complex multiplication by V-2, Proc. Camb. Phil. Soc. 64 (1968), pp. 659-672.
- [6] Arithmetic on curves with complex multiplication by the Eisenstein integer, Camb. Phil. Soc. 65 (1969), pp. 59-73.

ROYAL HOLLOWAY COLLEGE UNIVERSITY OF LONDON

Received on 10, 7, 1970

104