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L-functions of ellipti.c curves with complex multiplication, I
by

R. M. DAMERELL (London)*

§ 7. Division values of elliptic functions. This paper, like Part T [3],
iz concerned with certain Hecke zeta functions defined over a complex
quadratic ring 8. It was proved there that for suitable values of 2 and. s,,
the number

0 = L(sy, "0 a"
ix algebraic. In this paper we find an algebraic integer y such that y@ is
an algebraic integer. The set of snuch y is a principal ideal {{a], say) in the
ring of algebraic integers. The value of ¢ iz not known, except that «
divides y, so the value of y given here is not necesparily the best possible.
The main result is Theorem 2, stated in § 8. 8imilar results have been proved
in gome speeial cases, see [1], [5], [6], sometimes with better values of 5.

We now adopt the notation of § 2, with some changes. The letter I
will denote any algebraie infeger, but it will not have any fixed value.
Let I De a period lattice, 2 a point of finite order (m, say) modulo I,
and F an algebraiec number field containing g., 42, #(2), @' (). We assune
that & ¢.(0") = 7 and Lg,{I") = I.

Generalizing results of Ltz and Nagell, Casgels has proved the fol-
lowing ([2], Theorem 4):

There is an integral ideal T in F such that1? @ (2) and 3t* o' (2) are éntegrol,
and

If m =", p %2 or 3, then t*"— g,

If m =37, then #7773,

For all other m, t = 1.

It ix convenient to weaken this result so as to have a single formula
valid for all m. The weakened result is:

Learma 7.1,

P pE) =TI and  imtp’() = 1.

We now apply thiz result to the functions defined in Part 1.

*Most of this work was done while the aunthor was o research student at the
University of Cambridge.
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Loawa 7.2. Let hiz) be the funclion discussed in § 4. Then
wih(z) = I.
Proof. p(z) satisties the addition fopmula

P (w)— P () \F
Plutv) = ( (m) — p(u)— p{v)
(Fricke [4], page 160). Ilence
EJ'(M%@’ v)

/
= p) = +2V{@(u-tv)+ plu)-+ gﬂ_(@)lr-

By Lemma 4.3 and equation (4.6),

1 (P 1 @) — p'(3) }
hiz ) == Em( ) {Sﬂ (Z) % qz) ga(z)
2 > i]/{g){fz—}—z‘)-l-gﬂ(m)']' £ @)}

Each of the #Z has order m module I', so each @(r2) = I/mY*. Hence
h(z) = I/m’*, QE.D. :
Lemma 7.3, Let U(z) be a standard function with poles of order + at
each lattice point. Then
WU (%) — 1.

Proof. A standard function is a polynomial in @(2), 50 (=) 50 .
and g, with rational integral coefficients. By hypothesis, <5g. =1
and 3¢, = I. So U is a polynomial in p(2) and %go'(z) with integral coeffi-
clents. A typical term i Tp(2)*p’(2)°, which hag poles of order 2a-+3b
at the lattice points. We may assume 0 < b <{ 1, and then the poles belong-
ing to different terms canmot cancel because they have different orders.
So 26-+3b < r, and when z = 2z each term haa the form

(term) = I(I}mM*)(T|m¥4P = T[/mCat30 — [)p/* Q.E.D.

Luywa 7.4, Let K} be the function defined in § 3, and let a and B be
chosen (s in Corollary 4.1) to make K:(2)-+az+ Bz periodic. Then

(j—1) o™ (K} (3) 4 o 4 2) = I,

where
:{'Hrj i jzite,
max (5, -4} if j =i+1.
Proof. By Corollayy 4.1,
G- 1)’( ()+az+ﬁz) T3 (#)+ Bfh(z).
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By Lemma 3.3, B} is & standard constant, so Bl= T by Lemma 7.3. Also T}
is a standard functlon by Lemins 3.1, Ki (and hence T‘) has poles of
order 'Hr j at the lattlce poinis. The 1esu1t now Lollows from, Lemmas 7.3
and 7.

Leania 7.5. Suppose now that I' admils compler multiplication by the
ring 8. Then

(7.1) e(MfVid = 1.

{f and d were defined in § 2, and ¢ in § 4.)
Proof. By equation (6.1),
g(I) = (zr—2) N olojz, ),

oel’
omodrl”

where 7 is any elenient of S, not real. Let v = a--bfe, and 1 = rz. Then -
@{ofr) = I)t, by Lemma 7.1, and

T7— 72 = thf (G ) = {—i)TBfV |d]
by the results quoted in § 2. So {6.1) becomes

(7.2) o(T) = I/ bf) 1Y),

Thig holds for all 7, and if we choose two values of = for which the nnmnberg
i*h are coprime, we may replace the denominator in (7.2) by f l/[}ﬂ. This
gives (7.1).
LEMMA 7.6. Let 0 < sg S nond In—sge Z. Putp = In—s¢, 9 =in-+3,
54f p =0 and ¢ = 1, otherwise ¥ = dp+q. Then

(7.3) w(DP P, (2,80, T)— B = T][(g— Lt (f V|d))?],

where I, is the function defined in § 5, and B is the constant of Lemma 5.2
{so B =0 unless g, = 1).
Proof. By Lemma 5.2,

(7.4) y (1) Fy (2, 84, I')=- B

- ¥ [__i‘”

tlule!
Ut o=p

h(z)‘(—qv)"(——1)”11_*;%(2)]+oz+1>?s,
where B = 0 unless g =1 and ¢! =0 =10 unless s, = . Tirst ﬁuppo.ée

that s, 2 1. Put # = 2 and apply Lemmas 7.2-7.5

VIV F, (2, sy, I'—B = Z I(I/-mm)f(r/fu/ﬁ;)”(I/(q—zf,—1)!m(f~'-""“’)f*).

P wr=yp
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The largest power of f}/ E oceurs when » = p, the largest factorial when
u = 0, and, the largest power of m when ¢ =9 and ¥ =v = 0. Hence
yP () F i3, 8y, T)—B = I[(q—21)1mEP+O%(fY |giy]

a8 required.

Now suppose s, = }. As in the proof of Temma 5.2, we may replace
each of the non-periodic K8 in (7.4) by the correspondin periodic fune-
tion Ki_,(2)+ az-}- f7, and this cancels the termg Cz-+Dz. Put s = Z and

~

apply Lemmas 7.2-7.5:

Y E, G 50, T) =
{4+utr=n
[A=3]

2

R+n =
t=1{

TCT o (LY a1 ( L] (g — m— 1) a0 4003)

(I)fvialy”

—u—1) !m’”‘r‘d) ,

where » = max {3, ¢—w+v). As before the largest powet of f ¥|d| 0CCUTH
when » = p, and the largest factorial when u = 0. The largest power
of m is either m™ or m®#= and 5p-+¢ >5 unless p — 0 (so0 g_r = p+
+28y = 1}. This proves the Lenmnia when s, = L.

§ 8. Determination of e

Lmyyva 8.3, Let © be such thal l,gz(&n) and g.(Sz) are algebraic
integers. Let b be a proper ideal of 8 (see § 2) and b an m’ewl number repre-
senfing b,

Then

ﬁlﬁ‘gz(bm/a) =
a1
g5 (b /b) =

Proof. We prove the lemma for ¢,, the 1)100E for g, being similar.
Let b and b* he two ideal numbers for b. Ther b {b* is an algebraic unit,
80 for given b the result ix independent of the choice of b, by the homo-
genelty of gz Now let @ and b bein the same ideal clasg of S. ’I‘hen b =[ule
and & = ca for some a in k, and
= '11?9'2‘(““37/“&) = %gg(am/fz).

(8.1) = 0a(bu/b)

Given a proper ideal class 4 of 8, let p be a prime ideal in A such

that pp is a rational prime P, say. Then SPax is a sublattice of pz, and

9:(p7) = 0:(SP2)-+10 > 0" (¢, SPa)
. ] : )

icm

Lifunclions of elliplic curves 315

by equation {6:0). Here g runs through all non-zero residnes of pe modulo
SPx By equation (3.11) and homogeneity and Lemma 7.1 we deducer

0:(P2) = P g (S2)+5 3P g (ofP, Sa)—4P ™t gy (Sa)}
4
=I[P*LTIPP 4 T|P = I[P,
Hengce ) )
w2 (prfp) = p*I/F° =T|P°.

Simﬂa'_ﬂy, it ¢ is a second prime in the same ideal class, then

w9:(qz/q) = I|QF.
But the two left-hand sides are equal by (8.1), so their common valne
is an integer, Q.E.1).
Lenma 8.2, For all s for which ¥, (=, s, I') iz defined,
vyt F, (zJ‘ g, I'n)

(8.2) WY, Ty =

Proof. I, is defined by equation (5.1) for re(s) > 1.:
(?+p)ﬂ/2 g
Fo(z,8,T) = S’ D Gor o
Hence '

F, (2,8, Tw) gn*®

'ZFH(S5 S? F) mﬂ12+s )
From equation (1.5') we deduce that
Iy A
pllw) A7) @)= = (7)1
y(')  A(lu)

Combining these two resnlts gives (8.2) when re(s) > 1. For other s the
result holds by analytic continuation.

TEHEOREM 2. Let (s, A} be a Heeke zeta function defined over the ring S,
let sy be a value of s such that In—s,cZ and 0 < s, << 3n, as in Theorem 1.
Let @ be chosen such that — g‘,(Sm) and 105(Sz) are algebraic integers. Let v be
defined as follows:

emN ()l
om2~5y, (%H-{— 84— 1) !mn'/f‘(qn)nm

if n=1ands, =%,
Y= )
otherwise,

where e is the number of units of 8, M an ideal number Jor the conductor m
of A, and A4 (m) its norm.
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Asswine wlso that if s, = 1, then the characler y is not trivial on the
numbers of 8 (Le. there is an o for which yla) # 1). Then

y@ = yi(sq, )70
is an algebraic infeger.

Proof. By equation {6.2)

. - i3
6 = (b iV jp N[t ) 3 upe vt s )]
= J-?n‘;)t:lib

where p = n—sg, and b = ma;. Within the square brackets, replace z
by /b = m/ma,. By Lemma 8.2 this gives

(8.3) O =e—4% (1n)fl/m}”7fr“><

I

x a7 @) D) x(BYy? (bw|b)F, (pib, 5,, bu]b)].
i=1i feai
Fmodb

By Lemma 8.1, -54,(bx/b) = T and 1g5(bx/d) = I. Bach fis in a;, w0 §
has index 4 () modulo b. By Lemma 7.6, with m = .4 (m), the inner
sun. of {8.3) is

(8.4) D B (B4 I][(g— 1)1 (m)™ (#V]d))PT).
£

Here B is the constant of Lemma 5.2, g0 B = 0 unless s, = 1. If §, = 1,
then y is assumed non-trivial, so } % (8)B = 0. So B may be neglected.
B

Since the y(&,) and x(#) are algebralc units, (8.3) reduces to
6 = ¢~ (b4 (m)fV )P T (g — 1) 1 ()™ (1Y 1Y

Nowputy = n—s, ¢ = In+s,7 = 5ifn = lands, = L,andr = bhp+
¢ = 3n— 48, otherwise. Then -
Ijew A’ (i)

- _ if m =1 and s == 1,
T/12" %06 (304 5y — 1) lat"A" (m)) '

otherwise,

This proves Theoreny 2.

I would like to thank Professor J. W. 8. Cassels for his most valuable
help and encouragement, and for his advice in the preparation of this
paper. o :
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