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Then necessarily, 8 is integral but not rational. Let ¢(X) = Trr(6, Q)
= X4, X" 4 ...-¢X+¢ be the minimal polynomial for § ip
Z[X]. Since the absolute norm

18] = leol = llpal = lipll- fall = pa,
(_P, a) = 1

F(X) =p7g(pX)
is primitive with rational integral coefficients! Since we may choose
a prime to any prime ¢ < n, the vatues f(z) need not possess a non-trivial
common. divisor. .

- For any number field & with oass number (k) > 1, construct f(X)
as above. Then every valuse f(m) has at least one non pmnc@pal prime dzmsm
wm k.

For 6/p is a root of f(X) = 0 and hence in E[XT,

G(X)

and so

f(X) = @X—8)——
wher,é F(X) == pX— 0 has non-principal content p.
Specializing, let k= Q (¥ —5), p = 2, and § = le—V — 8. Then
fX) = 2X*—2X+3

always has non-principal divisors in Q{ l/_5) This can be seen directly

by translating Artin reeiprocity for the class field Q(l/o, 2 /Q (:l/:_5)
into residues modulo 20..
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Primitive representation of a binary quadratic form
as a sum of four squares

by
Joun L. HUNSUCKER (Athens, Ga.)

1. If an integral binary guadratic formi f of nonzero determinant
is representable as a sam of four sqoares, i.e., in the form (r,o-t+s,9)2-1
+ - {ryetay)? where ry, ..., 8 are Integers, then [ can he written
as ef', where ¢ iy a positive integer, f = [a, 24, b1 = ax?4-21, 2y by®,
(@)1, ) =1,a >0, ab—1; > 0. L. J. Mordell showed that such a form
is representable as a yum of four squares if and only if ab—%; is not of the
form 4*(8n47). H. Braun gave an expression for the number r (f) of such
representations, and G. Pall and O. Taussky found a simpler expression
which showed that for fixed f (with r,(f') s 0), r.(ef'}/r.(f) is a Tactorable
functicn of e. We will here prove a like result for #, (af’) ry (F), where r,(...)
denotes the number of primitive representations, in which the g.c.d.
of the six determinants 7r;8;— #;8; 1s unity; and we will find simple formulag
for 73(f), and related 1esult~, ’

2. Tet B, denote the matrix of of, ¢ = ab—#, b, = e?¢,

: . . ' b —t,

{1 _ B =adjB, =eR, R= _ .
- —t, @

Our work will be based on an algorithm due to G. Pall ([3],§3). The
algorithm is simplest for the study of primitive representations of a form
in % variables by one in » vaviables, when & = 1 or s—1. Tn our case,
# =4 and k = 2, and we have to locate the integral symmetrie positive-
definite matrices & of determinant b, for which

@) : KBE' = —G(modb,)

hag integral solution matrices K (of order 2). By (2) the g.c.d. é of the
elements of B must divide the elements of 6. But Pall’s algorithm (see
(13)—(14) of [81) requires in the case where the determinant of the Tepre-
senting form is I that

{3 I'GL = —F{modb,;)

be solvable for I. Hence the g.o.d. of the elements of G is also e.
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We put & = ef) with § primifive, and so reduce (2) and (3) to

(4) HKEBE' = —¢, L'QL = — R(modee).

We denote the form of matrix @ by g. If (4) holds, R and —@ represent
the same residues module ee, and hence (g|p) = (—f'|p) for each odd
prime factor p of ¢. However, the conditions imposed on the generie
characters of ¢ by the solvability of (4) may conflict with the product
relation the generic characters must satisfy (which, as Gauss showed,
ensures the existence of a corresponding form). If f; 1z a positive-definite
primitive binary quadratic form of diseriminant —2m = —2%p, . .y
(where the p; are odd primes, not necessarily distinet), the Gaussian
product relation may be given the form

() a(fo) = B(f),

a¢—1 m+1

(fola) - (Fulp), Blf) =@laf(-1)* *,

" where ¢ is any odd number represented by f,. We will prove::

THEOREM 1. The form [ is primitively representable as a sum of four
squares if cmd only if

where a(f,) =

or (ii} ¢ =1 or 2(mod4)
and e is odd or doubie-m—odd.

(6) (i) 6%¢ = 3(mod8),

These are exacily the cases in which g can be chosen to make (4) solvable.
The forms g which thus work for o given f constitute a single genus charac-
terized by the property that (g|p) = (—f'|p) for odd prime factors p of o
and the following: in cass (i), one of f* and g is p.p. (properly primitive),
the other i.p. (improperly primitive); in case (ii), ' and ¢ are p.p. and the
generic character B{g) is delermined by (5).

Proof. We cannot have f and g ip., since then m ~3(mod4) '

BlEg) =BRS) =1, a(}f)altg) = (—1|m) = ~1. I 2|e, (4) shows
that f* and g are alike i.p. or p.p.; hence both are p.p. If f/igip. andyg
is p.p. [or vice versal, a(g)fa(df) = (—21¢), flg) = B{Lf)} = 1, hence
g works only if ¢ = 3(mod8). Only cases Wlﬂl f &nd ¢ both p.p. remain.
Then ¢ = 3(mod4) is exelnded gince a(fYelg) = (—~1|6) = —1, and
B(f/B(9) = 1. In case (i), the generic character B(g) can be uniguely
-~ chosen to satisfy (5). If 4 |e, and f’ represents the odd number @, then by
(4) either g represeénts —a{mod8), or & is even and g vepresents —a{mod4),
hence a(f')fa(g) = (—1)"2 put

a»—l m+l

BUMIBlg) =(~1)y* "=

—@-1 el

( 1) T3 Ta (_+1)(m+1)12,
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3. Let us denote by p°® and p” the precise powers of p in ¢ and e.
Supposing that @ is such that (4) is solvable we will eount the solutions
E(modp*t?) of

(7) ERK'= —@ {madf‘“’) .

We can replace f' and g by equivalent forms and ean multiply both members
by a residue prime to p. Thus, if p iz 0dd, we can give both f and —g
the residue o#¥-} p*iy?, where t hag the quadratie character of ¢/p”. Thus (7)
reduces to .

{8) ki‘l‘??tkg =1,

Fikytp7thoky =0,  K4pYik =

(modp**},

and it follows easily that the number of solutions of (7) is

27 p—(—elp)l H >0 =y;
{9) 2% i v >0 = e
4T i 9> 0,80,

For example in the last case we may take %, arbitrary (p**” residues),
and have twop residues k, such that i =1 —p"il(moedp®t?); then,
regarding ky as determined by ks = —p¥ik,k,/k,, and substituting info
the third econgruence, we get p™tkilG+p?ekik? = 97tk (modp™™"), or
ki = &} modp®), k, = Lk, (modp°), or 2p" residues k,: p*t7 -2 -2p” = 4p°+,

We have also to eonsider p = 2 in the cases (6). We can take R and
~ @ to be the identity mod2 if ¢ =1, ¢ = 2(mod4); to be § (see below)
mod 2 if ¢ and ¢/2 are odd; to be one or both of V and W{mod4) if ¢/2 and
¢/2 are odd. We count respectively two, four, and eight solutions K:

R M R P A

Now (7} is equivalent to
(10} EER' = —G{modp**);

and, counting ¥ to the modnlus p"EJ”’ the number of solutions of (10) is,
if p>2,

257 p—(—alp)] H e>0= y;
(11) : . 2p M oy >0 =
' ' p** iy > 0,8 > 0;

and, if p =2, 1 if 6c ix odd,

2% if ¢=2, ¢ 0odd; 27 if ¢=¢6=2(mod4).
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4. The form aof-}y?-t#?+w? has 2*(41)/2 = 192 unimodular -awto-
morph’s. Pall’s algorithm leads to & formula which reduces in the present
case 1o

(13) ra(f) =102 > oG,

where @, ..., @, are répresentative matrices, one chosen from caeh class
for which (2) is solvable, % is the number of unimodular auntomorphs
of each &, (the same for each sinee they belong to one genus), and o ()
(again the same for each @) is the number of solutions K of (2), with K
eounted net moduale b, hutf instead modulo B,. Here two solutions K,
and K, are called coagruent modulo B, i K,—I, has B, as a right diviset,
ile.,,—I, = XB, for an integral matrix X. (Notice that if ¥ is a zolution
of (2), so is K+XB,).

To count the nmmnber of solutions medule B, notice that: as X
ranges over all 2-by-2 integral matrices, X B, gives rise to evactly b} incongruent
watriz residues modulo b,. For, the result is unaltered if B, iy multiplied
on either side by unit-modular matrices, and hence we can diagonalize B, .

And if rs = by,
By @) 1 O -
@y B, 10 & - gV ByS

with, evidenﬂy, (by/r)2 (B, [5)? = U} distinet residues modb,. We therefore
hzwe .
. In the cases in (8) the number v4(f) of pr @mz:t*zw Fepresen-

THEOREM 2
tations of f as & sum of four squares is equal to
(14) 192 (kjv) [ 2@,
Biby

where x{(2) = 1 4f 2o = 3(mod8), or 6 ¢s odd and ¢ = 2% (mod4); y(2) =2
if e=2, e=1 or 2(mod4); and if » > 2, x(») (obtained from (11)-(12)
by dividing by p**®) is given by ’
(18) 2 p—(—elp] f >0 =p; 2y >0=4¢

dp® if vy > 0,e>>0.
Here T denotes the number of classes in the unigue genus of @, afnd’ w8 the
number of wnimodular awtomorphs of any form in that genus.

We recall from elementary number theory that if d denotes the
diseriminant of the primitive part of ¢ (or f), 4 =6 if d = —3, u =4
if d=~—4,u=21ifd< —4. Also, f and g have equally many classes
in their two genera, save that if e?¢ = 3(mod8) and e%¢ > 3, one of f

- and g is L.p., the other p.p., and the p.p. genus has three times a8 many
classes as the ip. one. .
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THEOREM 3. Assume that r,(f') >0, 1.6, 6 =1,2,3,5, or 6{mod8s).
Then

(16) ro(f1) = 192 (k/u)29,

where g is the number of distinet odd prime factors of ¢. Also,

an DTt =2 [] p—t-emz™
4 Bl

ZJ‘TC,P>"

where x5{2) = O if (6) does not hold, and y,(2) coincides with x(2) én Theo-
rem L otherwise; and if p is odd,

29" p—(—elp)l i ple,pte;
2p° if  pie,ple;

where § denotes the number of distinet odd pnnws dividing e: obviously,
for fized f', & fadorable function of e.

Zo(P) ={

References

[11 H. Braun, Ueber die Zerlegung quadratischer Formen in Quadrate, Journ. Reine
Angew. Math. 178 (1938), pp. 34-64.

[2] L. J. Mozxdell; An application of qualernions fo the represenfalions of a binary
quadratic form as the sum of four linear squares, Oxford Quart. J. 8 (1837),
pp. 58-61. :

37 G. Pall, Represenlation by guadratic forms, Canad. Journ. Math. 1 (1949),
pp. 344-364. '

[4] — and O. Taussky, Application of quaternions to the represenialions of o binary
quadratic form as the sum of four squares, Proc. Roy. Irish Acad. 58 (1957), pp- 23-28.

Recetved on 10. 3. 1970 87



