icm

Then necessarily, θ is integral but not rational. Let $g(X) = \operatorname{Irr}(\theta, Q) = X^m + c_{m-1}X^{m-1} + \ldots + c_1X + c_0$ be the minimal polynomial for θ in $\mathbb{Z}[X]$. Since the absolute norm

$$\| heta\|=|c_0|=\|\mathfrak{p}\mathfrak{a}\|=\|\mathfrak{p}\|\cdot\|\mathfrak{a}\|=pa,$$
 $(p\,,a)=1$

and so

$$f(X) = p^{-1}g(pX)$$

is primitive with rational integral coefficients! Since we may choose a prime to any prime $q \leq n$, the values f(x) need not possess a non-trivial common divisor.

For any number field k with class number h(k) > 1, construct f(X) as above. Then every value f(x) has at least one non-principal prime divisor in k.

For θ/p is a root of f(X) = 0 and hence in k[X],

$$f(X) = (pX - \theta) \frac{G(X)}{p}$$

where $F(X) = pX - \theta$ has non-principal content p.

Specializing, let
$$k = Q(\sqrt{-5})$$
, $p = 2$, and $\theta = 1 + \sqrt{-5}$. Then $f(X) = 2X^2 - 2X + 3$

always has non-principal divisors in $Q(\sqrt{-5})$. This can be seen directly by translating Artin reciprocity for the class field $Q(\sqrt{5}, i)/Q(\sqrt{-5})$ into residues modulo 20.

Reference

[1] C. J. Parry, On a problem of Schinzel concerning principal divisors in arithmetic progressions, Acta Arith. 19 (1971), pp. 215-222.

MICHIGAN STATE UNIVERSITY

ACTA ARITHMETICA XIX (1971)

Primitive representation of a binary quadratic form as a sum of four squares

b

JOHN L. HUNSUCKER (Athens, Ga.)

1. If an integral binary quadratic form f of nonzero determinant is representable as a sum of four squares, i.e., in the form $(r_1x+s_1y)^2+\dots+(r_4x+s_4y)^2$ where r_1,\dots,s_4 are integers, then f can be written as ef', where e is a positive integer, $f'=[a,2t_0,b]=ax^2+2t_0xy+by^2$, $(a,t_0,b)=1$, a>0, $ab-t_0^2>0$. L. J. Mordell showed that such a form is representable as a sum of four squares if and only if $ab-t_0^2$ is not of the form $4^h(8n+7)$. H. Braun gave an expression for the number $r_4(f)$ of such representations, and G. Pall and O. Taussky found a simpler expression which showed that for fixed f' (with $r_4(f')\neq 0$), $r_4(ef')/r_4(f')$ is a factorable function of e. We will here prove a like result for $r'_4(ef')/r'_4(f')$, where $r'_4(\dots)$ denotes the number of primitive representations, in which the g.c.d. of the six determinants $r_is_j-r_js_i$ is unity; and we will find simple formulas for $r'_4(f)$, and related results.

2. Let B_1 denote the matrix of ef', $c = ab - t_0^2$, $b_1 = e^2c$,

(1)
$$E = \operatorname{adj} B_1 = eR, \quad R = \begin{bmatrix} b & -t_0 \\ -t_0 & a \end{bmatrix}.$$

Our work will be based on an algorithm due to G. Pall ([3], § 3). The algorithm is simplest for the study of primitive representations of a form in k variables by one in n variables, when k = 1 or n-1. In our case, n = 4 and k = 2, and we have to locate the integral symmetric positive-definite matrices G of determinant b_1 for which

$$KEK' \equiv -G(\operatorname{mod} b_1)$$

has integral solution matrices K (of order 2). By (2) the g.c.d. e of the elements of E must divide the elements of G. But Pall's algorithm (see (13)-(14) of [3]) requires in the case where the determinant of the representing form is 1 that

$$(3) L'GL \equiv -E(\operatorname{mod} b_1)$$

be solvable for L. Hence the g.c.d. of the elements of G is also e.

323.

We put G = eQ with Q primitive, and so reduce (2) and (3) to

(4)
$$KRK' \equiv -Q, \quad L'QL \equiv -R(\text{mod }ee).$$

We denote the form of matrix Q by g. If (4) holds, R and -Q represent the same residues modulo ec, and hence (g|p)=(-f'|p) for each odd prime factor p of e. However, the conditions imposed on the generic characters of g by the solvability of (4) may conflict with the product relation the generic characters must satisfy (which, as Gauss showed, ensures the existence of a corresponding form). If f_0 is a positive-definite primitive binary quadratic form of discriminant $-2^h m = -2^h p_1 \dots p_r$ (where the p_i are odd primes, not necessarily distinct), the Gaussian product relation may be given the form

(5)
$$\alpha(f_0) = \beta(f_0),$$

where $\alpha(f_0) = (f_0 | p_1) \dots (f_0 | p_r), \ \beta(f_0) = (2 | a)^h (-1)^{\frac{\alpha - 1}{2} \cdot \frac{m+1}{2}},$

where a is any odd number represented by f_0 . We will prove:

THEOREM 1. The form f is primitively representable as a sum of four squares if and only if

(6) (i)
$$e^z c \equiv 3 \pmod{8}$$
, or (ii) $c \equiv 1$ or $2 \pmod{4}$ and e is odd or double-an-odd.

These are exactly the cases in which g can be chosen to make (4) solvable. The forms g which thus work for a given f constitute a single genus characterized by the property that (g|p) = (-f'|p) for odd prime factors p of e and the following: in case (i), one of e and e is e. e, (properly primitive), the other i.p. (improperly primitive); in case (ii), e and e are e. e and the generic character e e e0 is determined by (5).

Proof. We cannot have f' and g i.p., since then $m \equiv 3 \pmod{4}$, $\beta(\frac{1}{2}g) = \beta(\frac{1}{2}f') = 1$, $a(\frac{1}{2}f')/a(\frac{1}{2}g) = (-1|m) = -1$. If 2|ee, (4) shows that f' and g are alike i.p. or p.p.; hence both are p.p. If f' is i.p. and g is p.p. [or vice versa], $a(g)/a(\frac{1}{2}f') = (-2|e)$, $\beta(g) = \beta(\frac{1}{2}f') = 1$, hence g works only if $e \equiv 3 \pmod{8}$. Only cases with f' and g both p.p. remain. Then $e \equiv 3 \pmod{4}$ is excluded since a(f')/a(g) = (-1|e) = -1, and $\beta(f')/\beta(g) = 1$. In case (ii), the generic character $\beta(g)$ can be uniquely chosen to satisfy (5). If 4|e, and f' represents the odd number a, then by (4) either g represents $-a \pmod{8}$, or h is even and g represents $-a \pmod{4}$, hence $a(f')/a(g) = (-1)^{(m-1)/2}$, but

$$\beta(f')/\beta(g) = (-1)^{\frac{a-1}{2} \cdot \frac{m+1}{2}} \cdot (-1)^{\frac{-a-1}{2} \cdot \frac{m+1}{2}} = (-1)^{(m+1)/2}.$$

3. Let us denote by p^e and p^{γ} the precise powers of p in e and c. Supposing that G is such that (4) is solvable we will count the solutions $K(\text{mod } p^{e+\gamma})$ of

(7)
$$KRK' \equiv -Q(\operatorname{mod} p^{s+\gamma}).$$

We can replace f' and g by equivalent forms and can multiply both members by a residue prime to p. Thus, if p is odd, we can give both f' and -g the residue $x^2 + p^{\gamma}ty^2$, where t has the quadratic character of c/p^{γ} . Thus (7) reduces to

(8)
$$k_1^2 + p^{\gamma} t k_2^2 \equiv 1$$
, $k_1 k_3 + p^{\gamma} t k_2 k_4 \equiv 0$, $k_3^2 + p^{\gamma} t k_4^2 \equiv p^{\gamma} t$, $\pmod{p^{e+\gamma}}$,

and it follows easily that the number of solutions of (7) is

(9)
$$2p^{\epsilon-1}[p-(-e|p)] \quad \text{if} \quad \varepsilon > 0 = \gamma;$$

$$2p^{2\gamma} \quad \text{if} \quad \gamma > 0 = \varepsilon;$$

$$4p^{\epsilon+2\gamma} \quad \text{if} \quad \gamma > 0, \varepsilon > 0.$$

For example in the last case we may take k_2 arbitrary $(p^{e+\gamma} \text{ residues})$, and have two residues k_1 such that $k_1^2 \equiv 1 - p^{\gamma} t k_2^2 (\text{mod } p^{e+\gamma})$; then, regarding k_3 as determined by $k_3 \equiv -p^{\gamma} t k_2 k_4 / k_1$, and substituting into the third congruence, we get $p^{2\gamma} t k_2^2 k_4^2 + p^{\gamma} t k_4^2 k_1^2 \equiv p^{\gamma} t k_1^2 (\text{mod } p^{e+\gamma})$, or $k_4^2 \equiv k_1^2 \text{ mod } p^e$, $k_4 \equiv \pm k_1 (\text{mod } p^e)$, or $2p^{\gamma} \text{ residues } k_4 : p^{e+\gamma} \cdot 2 \cdot 2p^{\gamma} = 4p^{e+2\gamma}$.

We have also to consider p=2 in the cases (6). We can take R and -Q to be the identity mod 2 if $e\equiv 1$, $e\equiv 2\pmod 4$; to be S (see below) mod 2 if e and e/2 are odd; to be one or both of V and $W\pmod 4$ if e/2 and e/2 are odd. We count respectively two, four, and eight solutions K:

$$S = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad V = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad W = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}.$$

Now (7) is equivalent to

(10)
$$KEK' \equiv -G(\operatorname{mod} p^{2s+\gamma});$$

and, counting K to the modulus $p^{2\varepsilon+\gamma}$, the number of solutions of (10) is, if p>2,

(11)
$$2p^{5\varepsilon-1}[p-(-e|p)] \quad \text{if} \quad \varepsilon > 0 = \gamma;$$

$$2p^{2\gamma} \quad \text{if} \quad \gamma > 0 = \varepsilon;$$

$$4p^{5\varepsilon+2\gamma} \quad \text{if} \quad \gamma > 0, \varepsilon > 0;$$

and, if p = 2, 1 if ec is odd,

(12)
$$2^5$$
 if $c \equiv 1$, $e \equiv 2$, 2^2 if $c \equiv 2$, e odd; 2^7 if $c \equiv e \equiv 2 \pmod{4}$.

325

4. The form $x^2+y^2+z^3+w^2$ has $2^4(4!)/2=192$ unimodular automorph's. Pall's algorithm leads to a formula which reduces in the present case to

(13)
$$r'_4(f) = 192 \sum_{j=1}^n \varrho(G_j)/u,$$

where G_1, \ldots, G_n are representative matrices, one chosen from each class for which (2) is solvable, u is the number of unimodular automorphs of each G_i (the same for each since they belong to one genus), and $\varrho(G)$ (again the same for each G_i) is the number of solutions K of (2), with K counted not modulo b_1 but instead modulo B_1 . Here two solutions K_1 and K_2 are called congruent modulo B_1 if $K_1 - K_2$ has B_1 as a right divisor, i.e., $K_1 - K_2 = XB_1$ for an integral matrix X. (Notice that if K is a solution of (2), so is $K + XB_1$).

To count the number of solutions modulo B_1 , notice that: as X ranges over all 2-by-2 integral matrices, XB_1 gives rise to exactly b_1^2 incongruent matrix residues modulo b_1 . For, the result is unaltered if B_1 is multiplied on either side by unit-modular matrices, and hence we can diagonalize B_1 . And if $rs = b_1$,

$$\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} \begin{bmatrix} r & 0 \\ 0 & s \end{bmatrix} = \begin{bmatrix} x_1 r & x_2 s \\ x_3 r & x_4 s \end{bmatrix}$$

with, evidently, $(b_1/r)^2(b_1/s)^2 = b_1^2$ distinct residues mod b_1 . We therefore have

THEOREM 2. In the cases in (6) the number $r'_4(f)$ of primitive representations of f as a sum of four squares is equal to

(14)
$$192(k/u) \prod_{p|b_1} \chi(p),$$

where $\chi(2) = 1$ if $e^2 c \equiv 3 \pmod{8}$, or e is odd and $c \equiv 2 \pmod{4}$; $\chi(2) = 2$ if $e \equiv 2$, $c \equiv 1$ or $2 \pmod{4}$; and if p > 2, $\chi(p)$ (obtained from (11)-(12) by dividing by p^{4s+2r}) is given by

(15)
$$2p^{\varepsilon-1}[p-(-c|p)] \text{ if } \varepsilon > 0 = \gamma; \quad 2 \text{ if } \gamma > 0 = \varepsilon; \\ 4p^{\varepsilon} \text{ if } \gamma > 0, \varepsilon > 0.$$

Here k denotes the number of classes in the unique genus of G, and u is the number of unimodular automorphs of any form in that genus.

We recall from elementary number theory that if d denotes the discriminant of the primitive part of g (or f), u = 6 if d = -3, u = 4 if d = -4, u = 2 if d < -4. Also, f and g have equally many classes in their two genera, save that if $e^2c \equiv 3 \pmod{8}$ and $e^2c > 3$, one of f' and g is i.p., the other p.p., and the p.p. genus has three times as many classes as the i.p. one.

Theorem 3. Assume that $r_4'(f')>0,$ i.e., $e\equiv 1,2,3,5,$ or $6 \pmod 8$. Then

(16)
$$r'_{4}(f') = 192(k/u)2^{q},$$

where q is the number of distinct odd prime factors of c. Also,

(17)
$$\frac{r'_4(ef')}{r'_4(f')} = \prod_{p \mid e} \chi_0(p) = e \cdot 2^s \cdot \prod_{\substack{p \mid e \\ p \nmid c, p > 2}} [1 - (-c \mid p) p^{-1}],$$

where $\chi_0(2) = 0$ if (6) does not hold, and $\chi_0(2)$ coincides with $\chi(2)$ in Theorem 1 otherwise; and if p is odd,

$$\chi_0(p) = egin{cases} 2p^{s-1}[p-(-e|p)] & \textit{if} & p \mid e, p \nmid c; \ 2p^s & \textit{if} & p \mid e, p \mid c; \end{cases}$$

where s denotes the number of distinct odd primes dividing e: obviously; for fixed f', a factorable function of e.

References

- H. Braun, Ueber die Zerlegung quadratischer Formen in Quadrate, Journ. Reine Angew. Math. 178 (1938), pp. 34-64.
- [2] L. J. Mordell, An application of quaternions to the representations of a binary quadratic form as the sum of four linear squares, Oxford Quart. J. 8 (1937), pp. 58-61.
- [3] G. Pall, Representation by quadratic forms, Canad. Journ. Math. 1 (1949), pp. 344-364.
- [4] and O. Taussky, Application of quaternions to the representations of a binary quadratic form as the sum of four squares, Proc. Roy. Irish Acad. 58 (1957), pp. 23-28.